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Abstract. In earlier work, we have shown that two variants of weak fair-
ness can be expressed comparatively easily in the timed process algebra
PAFAS. To demonstrate the usefulness of these results, we complement
work by Walker [11] and study the liveness property of Dekker’s mu-
tual exclusion algorithm within our process algebraic setting. We also
present some results that allow to reduce the state space of the PAFAS
process representing Dekker’s algorithm, and give some insight into the
representation of fair behaviour in PAFAS.

1 Introduction

This paper was inspired by the work of Walker [11] who aimed at automatically
verifying six mutual exclusion algorithms – including Dekker’s. Walker trans-
lated the algorithms into the process algebra CCS [9] and then verified with the
Concurrency Workbench [1] that all of them satisfy the safety property that the
two competing processes are never in their critical sections at the same time.

The liveness property that a requesting process will always eventually enter
the critical section is more difficult to verify, since one has to assume some
fairness, which is not so easy to do in a process algebraic setting; with respect
to the verification of liveness, Walker was less successful.

Costa and Stirling [6,7] have studied some notions of fairness in a process
algebra. While their formalisation captures the intuition of fairness faithfully,
it is technically involved and leads to processes with infinite state spaces – at
least for processes that have an infinite computation. In [2,3], we have defined
fair runs in the spirit of Costa and Stirling and characterised them in the timed
process algebra PAFAS [5] as those runs that take infinitely long; here, processes
that are finite state in a standard process algebra without time still have a finite
transition system in the setting where fairness can be studied. The present paper
complements the work by Walker, taking the liveness of Dekker’s algorithm as
a case study to demonstrate how our approach to fairness can be used.

Attempting the verification of the liveness property, Walker used the following
version in [11] – which could be expressed as a modal mu-calculus formula and
checked with the Concurrency Workbench:
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Whenever at some point in a run the process Pi requests the execution of its
critical section, then in any continuation of that run from that point in which
between them the processes execute an infinite number of critical sections, Pi

performs its critical section at least once.

The fairness (or progress) assumed here is that infinitely often a critical section
is entered. This assumption allows a run where one process enters its critical
section repeatedly, while the other requests the execution of its critical section,
but then – for no good reason at all – refuses to take the necessary steps to
actually enter it. Thus, it is maybe not so surprising that four of the six mutual
exclusion algorithms – including Dekker’s – fail to satisfy this property. Walker
then discusses how fairness could be assumed to enable a proof of liveness, but the
ideas discussed could not be expressed for use of the Concurrency Workbench.

Here, we will model Dekker’s algorithm in the CCS-type process algebra
PAFAS and study whether all fair runs satisfy the liveness property. Actually,
we consider two versions of PAFAS. The first one is suitable for (weak) fairness
of actions, i.e. in a fair run each enabled action must be performed or disabled
eventually; if this action is a synchronisation, then the action is already disabled
if one partner of this synchronisation offers a different instance of the action.
As a consequence, repeated accesses to a variable can block another access, and
for this reason some fair runs of Dekker’s algorithm violate liveness; this is not
so different from Walker’s result, but we can point to a realistic reason for the
failure, namely the blocking of a variable. We provide two fair runs, one in which
one process repeatedly enters its critical section while the other is stuck, and one
where both processes are stuck.

It is equally realistic to assume that access to a variable cannot be blocked
indefinitely. In the second version of PAFAS, we deal with (weak) fairness of
components, i.e. in a fair run each enabled component must be performed or
disabled eventually. Thus, if a process wants to read a binary variable, it will
offer two read-actions (one for each value); if none of these is performed, then
in every future state one or the other will be enabled, i.e. the process will be
enabled indefinitely; fairness now implies that the process actually will read
the variable eventually. Assuming fairness of components, we will show that
Dekker’s algorithm indeed satisfies the liveness property. In this proof, we have
to take into account all possible derivatives reachable from Dekker along fair
computations. In particular, we will consider those states where one process has
just performed a request to enter a critical section, and show that from those
states the respective process does eventually enter the critical section.

Modelling fairness involves a certain blow-up of the state space, so for a proof
by hand the number of states we had to deal with was rather large. Consequently,
to manage the proof, we had to rely on structural properties of the processes,
which may be of interest independently of the main aims of this paper. Previ-
ously, we have characterised fair runs as those action sequences that arise from
timed computations with infinitely many unit time steps by deleting these time
steps. Our first result states that we can restrict attention to a particular subclass
of such timed computations and still cover all fair runs. A considerable reduction
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of states comes from switching some components to “permanently lazy”, i.e. to
require fairness only for the other components. In our case study, the “perma-
nently lazy components” correspond to the variables; so this is a very realistic
change, since it seems natural that only the processes are active, while a variable
never forces to be read or to be written. In general, switching some components
to permanently lazy gives an overapproximation for the fair runs, and it is clearly
sufficient to prove a desired property for this possibly larger set of runs. Finally,
we take advantage of symmetries in the Dekker algorithm. The two processes
that compete for the execution of their critical section, indeed, have a symmetric
structure so that their derivatives follow a symmetric pattern. Thus, we check
liveness of a generic fair-reachable derivative to deduce the same property of the
symmetric one; see [4] for many details omitted here. These observations have
allowed a proof by hand. We believe, however, that they are not specific to this
work but really add some general knowledge to the theory of PAFAS useful to
be embedded within an automatic tool for the verification based on fairness.

2 Fairness and PAFAS

We now recall PAFAS, its timed behaviour and the fairness notions we consider,
namely fairness of actions and components. Instead of using the very involved
direct formalisations of fairness in the spirit of [6,7], we define the two types of
fair traces on the basis of our characterisations with everlasting timed execution
sequences in the two respective versions of PAFAS.

2.1 Fairness of Actions and PAFAS

We use the following notation: A is an infinite set of basic actions. An additional
action τ is used to represent internal activity, which is unobservable for other
components. We define Aτ = A ∪ {τ}. Elements of A are denoted by a, b, c, . . .
and those of Aτ are denoted by α, β, . . . Actions in Aτ can let time 1 pass before
their execution, i.e. 1 is their maximal delay. After that time, they become urgent
actions written a or τ ; these have maximal delay 0. The set of urgent actions is
denoted by Aτ = {a | a ∈ A} ∪ {τ} and is ranged over by α, β, . . . . Elements of
Aτ ∪Aτ are ranged over by μ. X is the set of process variables, used for recursive
definitions. Elements of X are denoted by x, y, z, . . . Φ : Aτ → Aτ is a general
relabelling function if the set {α ∈ Aτ |∅ �= Φ−1(α) �= {α}} is finite and Φ(τ) = τ .
Such a function can also be used to define hiding: P/A, where the actions in A
are made internal, is the same as P [ΦA], where the relabelling function ΦA is
defined by ΦA(α) = τ if α ∈ A and ΦA(α) = α if α /∈ A.

Definition 1. (timed process terms) The set P̃1 of initial (timed) process terms
is generated by the following grammar

P ::= nil
∣
∣ x

∣
∣ α.P

∣
∣ P + P

∣
∣ P‖AP

∣
∣ P [Φ]

∣
∣ rec x.P

where nil is a constant, x ∈ X , α ∈ Aτ , Φ is a general relabelling function and
A ⊆ A possibly infinite. We assume that recursion is guarded (see below).
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The set P̃ of (general) (timed) process terms is generated by the following
grammar:

Q ::= P
∣
∣ α.P

∣
∣ Q + Q

∣
∣ Q ‖A Q

∣
∣ Q[Φ]

∣
∣ rec x.Q

where P ∈ P̃1, x ∈ X , α ∈ Aτ , Φ is a general relabelling function and A ⊆ A

possibly infinite. We assume that the recursion is guarded, i.e. for recx.Q variable
x only appears in Q within the scope of a prefix μ.() with μ ∈ Aτ ∪ Aτ . A term
Q is guarded if each occurrence of a variable is guarded in this sense. A timed
process term Q is closed, if every variable x in Q is bound by the corresponding
recx-operator; such Q in P̃ and P̃1 are simply called processes and initial processes
resp., and their sets are denoted by P and P1 resp.1

Initial processes are just standard processes of a standard process algebra. Gen-
eral processes are defined here such that they include all processes reachable
from the initial ones according to the operational semantics to be defined below.

We can now define the set of activated actions in a process term. Given a
process term Q, A(Q, A) will denote the set of the activated (or enabled) actions
of Q when the environment prevents the actions in A.

Definition 2. (activated basic actions) Let Q ∈ P̃ and A ⊆ A. The set A(Q, A)
is defined by induction on Q.

Nil, Var: A(nil, A) = A(x, A) = ∅

Pref: A(α.P, A) = A(α.P, A) =

{

{α} if α /∈ A

∅ otherwise
Sum: A(Q1 + Q2, A) = A(Q1, A) ∪ A(Q2, A)
Par: A(Q1 ‖B Q2, A) = A(Q1, A ∪ A′) ∪ A(Q2, A ∪ A′′)

where A′ = (A(Q1)\A(Q2)) ∩ B and A′′ = (A(Q2)\A(Q1)) ∩ B
Rel: A(Q[Φ], A) = Φ(A(Q, Φ−1(A)))
Rec: A(rec x.Q, A) = A(Q, A)

The activated actions of Q are defined as A(Q, ∅) which we abbreviate to A(Q).

Definition 3. (urgent activated action) Let Q ∈ P̃ and A ⊆ A. The set U(Q, A)
is defined as in Definition 2 when A(_) is replaced by U(_) and the Pref-rule is
replaced by the following one:

Pref: U(α.P, A) = ∅ U(α.P, A) =

{

{α} if α /∈ A

∅ otherwise

The urgent activated actions of Q are defined as U(Q) = U(Q, ∅)

The operational semantics exploits two functions on process terms: clean(_) and
unmark(_). Function clean(_) removes all inactive urgencies in a process term
1 In [5], we prove that P1 processes do not have time-stops; i.e. every finite process

run can be extended such that time grows unboundedly. This result was proven for
a different operational semantics than that defined in this paper but a similar proof
applies also in the current setting.
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Q ∈ P̃. When a process evolves and a synchronized action is no longer urgent or
enabled in some synchronization partner, then it should also lose its urgency in
the others; the corresponding change of markings is performed by clean, where
again set A in clean(Q, A) denotes the set of actions that are not enabled or ur-
gent due to restrictions of the environment. Function unmark(_) simply removes
all urgencies (inactive or not) in a process term Q ∈ P̃. We provide the formal
definition of the former function. The second one is as expected.

Definition 4. (cleaning inactive urgencies) Given a process term Q ∈ P̃ we de-
fine clean(Q) as clean(Q, ∅) where, for a set A ⊆ A, clean(Q, A) is defined as:

Nil, Var: clean(nil, A) = nil, clean(x, A) = x

Pref: clean(α.P, A) = α.P clean(α.P, A) =

{

α.P if α ∈ A

α.P otherwise
Sum: clean(Q1 + Q2, A) = clean(Q1, A) + clean(Q2, A)
Par: clean(Q1 ‖B Q2, A) = clean(Q1, A ∪ A′) ‖B clean(Q2, A ∪ A′′)

where A′ = (U(Q1)\U(Q2)) ∩ B and A′′ = (U(Q2)\U(Q1)) ∩ B
Rel clean(Q[Φ], A) = clean(Q, Φ−1(A))[Φ]
Rec: clean(rec x.Q, A) = rec x. clean(Q, A)

The Functional Behaviour of PAFAS Process. The transitional semantics
describing the functional behaviour of PAFAS processes indicates which basic
actions they can perform.

Definition 5. (Functional operational semantics) The following SOS-rules de-
fine the action transition relations α−→⊆ (P̃ × P̃) for α ∈ Aτ . As usual, we write
Q

α−→ Q′ if (Q, Q′) ∈ α−→ and Q
α−→ if there exists a Q′ ∈ P̃ such that (Q, Q′) ∈ α−→,

and similar conventions will apply later on.

Prefa1
α.P

α−→ P
Prefa2

α.P
α−→ P

Suma

Q1
α−→ Q′

Q1 + Q2
α−→ Q′

Para1
α /∈ A, Q1

α−→ Q′
1

Q1‖AQ2
α−→ clean(Q′

1‖AQ2)
Para2

α ∈ A, Q1
α−→ Q′

1, Q2
α−→ Q′

2

Q1‖AQ2
α−→ clean(Q′

1‖AQ′
2)

Rela

Q
α−→ Q′

Q[Φ]
Φ(α)−−−→ Q′[Φ]

Reca

Q{rec x.unmark(Q)/x} α−→ Q′

rec x.Q
α−→ Q′

Additionally, there are symmetric rules for Para1 and Suma for actions of Q2.
For an initial process P0, we say that a finite or infinite sequence α0α1 . . . of
actions from Aτ is a trace of P0, if there is a sequence P0

α0−→ P1
α1−→ . . . of

action transitions, possibly ending with a process Pn.

The Temporal Behaviour of PAFAS Process. Now, we consider transitions
corresponding to the passage of one unit of time. The function urgent marks all
enabled actions of a process as urgent when a time step is performed. Before the
next time step, all such actions must occur or get disabled.
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Definition 6. (time step, timed execution sequences) For P ∈ P̃1, we write
P

1−→ Q when Q = urgent(P ), where urgent(P ) abbreviates urgent(P, ∅) and
urgent(P, A) is defined as:

Nil, Var: urgent(nil, A) = nil, urgent(x, A) = x

Pref: urgent(α.P, A) =

{

α.P if α /∈ A

α.P otherwise
Sum: urgent(P1 + P2, A) = urgent(P1, A) + urgent(P2, A)
Par: urgent(P1 ‖B P2, A) = urgent(P1, A ∪ A′) ‖B urgent(P2, A ∪ A′′)

where A′ = (A(P1)\A(P2)) ∩ B and A′′ = (A(P2)\A(P1)) ∩ B
Rel: urgent(P [Φ, A) = urgent(P, Φ−1(A))[Φ]
Rec: urgent(rec x.P, A) = rec x. urgent(P, A)

For an initial process P0, we say that a sequence of transitions γ = P0
1−→

Q0
λ1−→ . . . with λi ∈ Aτ ∪ {1} is a timed execution sequence if it is an infinite

sequence of action transitions and time steps (starting with a time step)2. A
timed execution sequence is everlasting in the sense of having infinitely many
time steps if and only if it is non-Zeno; a Zeno run would have infinitely many
actions in a finite amount of time.

Fairness of Actions and Timing. We can now define the (weakly) fair traces
in terms of non-Zeno execution sequences.

Definition 7. (fair traces) Let P0 ∈ P1 and α0, α1, α2, . . . ∈ Aτ . A trace of P0
is fair (w.r.t. fairness of actions) if it can be obtained as the sequence of actions
in a non-Zeno timed execution sequence. In detail:

1. A finite trace α0α1 . . . αn is fair if and only if there exists a timed execution
sequence Pi0

1−→ Qi0
v0−→ Pi1

1−→ Qi1
v1−→ Pi2 . . . Pim−1

1−→ Qim−1

vm−1−−−→
Pim

1−→ Qim

1−→ Qim . . ., where Pi0 = P0 and v0 v1 . . . vm−1 = α0 α1 . . . αn;
2. an infinite trace α0α1α2 . . . is fair if and only if there exists a timed execution

sequence Pi0
1−→ Qi0

v0−→ Pi1
1−→ Qi1

v1−→ Pi2 · · · Pim

1−→ Qim

vm−−→ Pim+1 · · · ,
where Pi0 = P0 and v0 v1 . . . vm . . . = α0 α1 . . . αi . . ..

This is a characterisation for fair traces obtained in [2] on the basis of a more
intuitive, but very complex definition of fair traces in the spirit of [6,7].

2.2 Fairness of Components and PAFASc

In this section, we concentrate on weak fairness of components. We have found
a suitable variation of PAFAS and its semantics which allows us to characterize
Costa and Stirling’s fairness of components again in terms of a simple filtering
2 Note that a maximal sequence of such transitions/steps is never finite, since for

γ = Q0
λ0−→ Q1

λ1−→ . . .
λn−1−−−→ Qn, we have Qn

α−→ or Qn
1−→ (see Proposition 3.13

in [2]).
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of system executions. Conceptually, we proceed analogously to Section 2.1, but
a number of technical changes are needed. Since we associate time bounds to
components in the present section, we may also mark - besides prefixes - the
other dynamic operator + as urgent: a process P + Q becomes P + Q after a
time step. This variant of PAFAS is called PAFASc henceforth.

Definition 8. (timed process terms) Let P̃1 be the set of initial timed process
terms as given in Definition 1. The set P̃c of (component-oriented) timed process
terms is generated by the grammar:

Q ::= P
∣
∣ α.P

∣
∣ P + P

∣
∣ Q‖AQ

∣
∣ Q[Φ]

∣
∣ rec x.Q

where P ∈ P̃1, x ∈ X , α ∈ Aτ , Φ is a general relabelling function, and A ⊆ A

possibly infinite. Again, we assume that recursion is always guarded. The set of
closed timed process terms in P̃c, simply called processes is denoted by Pc.

Function A(_) on process terms, returns the activated (or enabled) actions of a
process term.

Definition 9. (activated basic actions) Let Q ∈ P̃c and A ⊆ A. The set A(Q, A)
can be defined as in Definition 2 when rule Sum is replaced as follows:

Sum: A(P1 + P2, A) = A(P1 + P2, A) = A(P1, A) ∪ A(P2, A)

The Operational Behaviour of PAFASc Processes. A new definition of
function clean(_) is needed

Definition 10. (cleaning inactive urgencies) For a process Q∈ P̃c, defineclean(Q)
as clean(Q, ∅), A ⊆ A, clean(Q, A) is defined as in Definition 4 where rules Sum
and Par are replaced by:

Sum: clean(P1 + P2, A) = P1 + P2

clean(P1 + P2, A) =

{

P1 + P2 if A(P1) ∪ A(P2) ⊆ A

P1 + P2 otherwise
Par: clean(Q1 ‖B Q2, A) = clean(Q1, A ∪ A′) ‖B clean(Q2, A ∪ A′′)

where A′ = (A(Q1)\A(Q2)) ∩ B and A′′ = (A(Q2)\A(Q1)) ∩ B

Definition 11. (Functional operational semantics) The functional operational
semantics for P̃c-terms is as in Definition 5 where −→ is replaced by 
−→ and rule
Suma (and symmetrically its symmetric rules) are replaced by:

Suma1
P1

α
−→ P ′
1

P1 + P2
α
−→ P ′

1

Suma2
P1

α
−→ P ′
1

P1 + P2
α
−→ P ′

1

and function clean is the one in Definition 10. Consequently, traces out of an
initial process P0 consider 
−→ (instead of −→).
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The Temporal Behaviour of PAFASc Process. As in Section 2.1, we define
timed execution sequences to be infinite sequences of action transitions and time
steps starting at some initial process P0 (again a maximal sequence of such
transitions/steps starting is never finite) and the property non-Zeno, where:

Definition 12. (time step, timed execution sequence) For P ∈ P̃1, we write
P

1
−→ Q when Q = urgent(P ), where urgent(P ) abbreviates urgent(P, ∅) and
urgent(P, A) is defined as in Definition 6 but rule Sum is replaced as follows:

Sum: urgent(P1 + P2, A) =

{

P1 + P2 if (A(P1) ∪ A(P2))\A �= ∅
P1 + P2 otherwise

Fairness of Components and Timing. As in Section 2.1, we can now de-
fine (weak) fairness w.r.t. components in terms of non-Zeno timed execution
sequences. In fact, fair traces (w.r.t. fairness of components) can be defined just
as in Definition 7 by replacing each action transition α−→ and time step 1−→ with
its counterpart in the component-oriented timed operational semantics, i.e. α
−→
and 1
−→. To keep things short, we do not report here the formal definition.

3 Dekker’s Algorithm and Its Liveness Property

In this section we briefly describe Dekker’s mutex algorithm. There are two
processes P1 and P2, two boolean-valued variables b1 and b2, whose initial values
are false , and a variable k, which may take the values 1 and 2 and whose initial
value is arbitrary. The ith process (with i = 1, 2) can be described as follows,
where j is the index of the other process:

while true do
begin

〈noncritical section〉;
bi = true;
while bj do if k = j then begin

bi := false; while k = j do skip; bi := true;
end;
〈critical section〉;
k := j; bi := false;

end;

Informally, the b variables are “request” variables and k is a “turn” variable:
bi is true if Pi is requesting entry to its critical section and k is i if it is Pi’s turn
to enter its critical section. Only Pi writes bi, but both processes read it.

3.1 Translating the Algorithm into PAFAS Processes

In our translation of the algorithm into PAFAS, we use essentially the same cod-
ing as given by Walker in [11]. Each program variable is represented as a family
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of processes. For instance, the process B1(false) denotes the variable b1 with
value false. The sort of the process B1(false) is the set {b1rf , b1rt , b1wf , b1wt}
where b1rf and b1rt represent the actions of reading the values false and true
from b1, b1wf and b1wt represent, respectively, the writing of the values false
and true into b1. Let B = {false, true} and K = {1, 2}.

Definition 13. (program variables) Let i ∈ {1, 2}. We define the processes
representing program variables as follows:

Bi(false) = birf .Bi(false) + (biwf .Bi(false) + biwt .Bi(true))
Bi(true) = birt .Bi(true) + (biwf .Bi(false) + biwt .Bi(true))
K(i) = kri.K(i) + (kw1 .K(1) + kw2 .K(2))

Let B = {birf , birt , biwf , biwt | i ∈ {1, 2}} ∪ {kr1 , kr2 , kw1 , kw2} be the union
of the sorts of all variables and ΦB the relabelling function such that ΦB(α) = τ
if α ∈ B and ΦB(α) = α if α /∈ B. Given b1, b2 ∈ B, k ∈ K and using ‖ as a
shorthand for ‖∅, we define PV(b1, b2, k) = (B1(b1) ‖ B2(b2)) ‖ K(k).

Definition 14. (the algorithm) The processes P1 and P2 are represented by the
following PAFAS processes; the actions reqi and csi have been added to indicate
the request to enter and the execution of the critical section by the process Pi.

P1 = req1.b1wt .P11 + τ.P1 P2 = req2.b2wt .P21 + τ.P2
P11 = b2rf .P14 + b2rt .P12 P21 = b1rf .P24 + b1rt .P22
P12 = kr1 .P11 + kr2 .b1wf .P13 P22 = kr2 .P21 + kr1 .b2wf .P23
P13 = kr1 .b1wt .P11 + kr2 .P13 P23 = kr2 .b2wt .P21 + kr1 .P23
P14 = cs1.kw2 .b1wf .P1 P24 = cs2.kw1 .b2wf .P2

Now we define the algorithm as Dekker = ((P1 ‖ P2) ‖B PV(false , false, 1))[ΦB ].
The sort of Dekker is the set Ad = {reqi, csi | i = 1, 2}.

3.2 Liveness Property of Dekker’s Algorithm

As discussed in the introduction, a mutex algorithm satisfies its liveness property
if whenever at any point in any computation a process Pi requests the execution
of its critical section, then, in any continuation of that computation, there is a
point at which Pi will perform its critical section. We can expect this property
to hold only under some fairness assumption; so for the formal property we want
to check, we replace ‘computation’ by ‘fair trace’ (in one of our two interpreta-
tions). In other words, a mutex algorithm satisfies its liveness property if any
occurrence of reqi in a fair trace is eventually followed by csi, i = 1, 2. Due to
our definition of fair trace, this amounts to checking that each non-Zeno timed
execution sequence is live according to the following definition.

Definition 15. (live execution sequences) Let P0 ∈ P1, λ0, λ1, . . . ∈ (Ad ∪{τ}∪
{1}). A timed execution sequence γ from P0 with γ = P0

1−→ Q0
λ0−→ Q1

λ1−→ . . .

(γ = P0
1
−→ Q0

λ0
−→ Q1
λ1
−→ . . .) is not live if there exists j ∈ N0 such that λj =

reqi and csi is not performed in the execution sequence Qj+1
λj+1−−−→ Qj+2

λj+2−−−→
. . . (Qj+1

λj+1
−→ Qj+2
λj+2
−→ . . . respectively). Otherwise, we say that γ is live.
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4 Fairness of Actions and Liveness

This section shows that fairness of actions is not sufficiently strong to ensure the
liveness property. We present two fair traces with respect to fairness of actions,
which violate the liveness property, i.e. two non-Zeno timed execution sequences
in PAFAS (cf. Section 2.1) which are not live. We now describe how program
variables and the processes P1 and P2 evolve by letting one time unit pass.

Definition 16. (urgent program variables) According to Definitions 13 and 6,
urgent program variables can be defined as follows:

Bi(false) = birf .Bi(false) + (biwf .Bi(false) + biwt .Bi(true))
Bi(true) = birt .Bi(true) + (biwf .Bi(false) + biwt .Bi(true))
K(i) = kri.K(i) + (kw1 .K(1) + kw2 .K(2))

Let us denote with B = {false, true} and with K = {1, 2}. Then, given b′1, b
′
2 ∈

B ∪ B and k′ ∈ K ∪ K, we define PV(b′1, b
′
2, k

′) = ((B1 ‖ B2) ‖ K), where:

Bi =

{

Bi(b) if b′i = b ∈ B

Bi(b) if b′i = b ∈ B
K =

{

K(k) if k′ = k ∈ K

K(k) if k′ = k ∈ K

As an example, we have that PV(true, false, 2) = (B1(true) ‖ B2(false)) ‖ K(2).

The urgent versions of processes P1 and P2, denoted by P 1 and P 2 resp., are as
in Definition 14 where initial actions are urgent. We use P ij (i = 1, 2 and j =
1, 2, 3, 4) to denote the urgent versions of their derivatives (ex. P 12 = kr1 .P11 +
kr2 .b1wf .P13). As a consequence of the above definitions (and by the action-
oriented operational semantics) we have that Dekker can let one time unit pass
evolving into Dekker = ((P 1 ‖ P 2) ‖B PV(false , false, 1))[ΦB ]. Our first example
shows how an infinite τ -loop can result in the starvation of both processes.

Example 1. Let us consider the following timed computation from Dekker :

Dekker 1−→ Dekker = ((P 1 ‖ P 2) ‖B PV(false , false, 1))[ΦB ]
req1−−−→ req2−−−→ τ4

−→
P0 = ((P11 ‖ b2wf .P23) ‖B PV(true, true, 1))[ΦB ] 1−→
Q0 = ((P 11 ‖ b2wf .P23) ‖B PV(true, true, 1))[ΦB] τ2

−→
P0 = ((P11 ‖ b2wf .P23) ‖B PV(true, true, 1))[ΦB ]

Repeating the last three transitions, we get a non-Zeno timed execution se-

quence that is not live, i.e. Dekker can perform a fair trace Dekker
req1 req2 τ4

−−−−−−−−→
P0

τ2

−→ P0
τ2

−→ P0 . . . that violates liveness since no process will ever enter its
critical section. Intuitively speaking, once in P0, repeated reading of variables
b2 and k blocks indefinitely P2 which will never set its request variable b2 to
false. On the other hand, P1 cannot enter its critical section and, hence, can-
not proceed until the value of b2 is true. Thus, both processes are stuck. The
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next example shows a different kind of computation which also causes a viola-
tion of liveness; along such a computation, one process is stuck while the other
repeatedly executes its critical section. Consider the following computation:

Dekker 1−→ Dekker = ((P 1 ‖ P 2) ‖B PV(false , false, 1))[ΦB ]
req1 req2 τ2 cs1 τ−−−−−−−−−−−→

P0 = ((b1wf .P1 ‖ b2wt .P21) ‖B PV(true, false, 2))[ΦB ] 1−→
((b1wf .P1 ‖ b2wt .P21) ‖B PV(true, false , 2))[ΦB]

τ req1 τ2 cs1 τ−−−−−−−−−→
P0 = ((b1wf .P1 ‖ b2wt .P21) ‖B PV(true, false, 2))[ΦB ]

Again, the trace performed in Dekker
req1 req2 τ2 cs1 τ−−−−−−−−−−−→ P0

τ req1 τ2 cs1 τ−−−−−−−−−→ P0 . . .
is fair but violates liveness since P2 never enters its critical section. Here, P1
repeatedly executes its critical section, again preventing P2 to set its request
variable b2 to true. As a consequence, P2 cannot enter its critical section even if
the value of turn variable k is two.

5 Fairness of Components and Liveness

This section proves that any fair trace of Dekker according to fairness of compo-
nents satisfies the liveness property. We present three ideas to reduce the number
of states we have to deal with.

5.1 Permanently Lazy Components

The state space of a process in PAFASc is considerably larger than in an un-
timed process algebra because process components switch from lazy to urgent.
We can achieve a considerable reduction, if we prevent this by declaring some
components as permanently lazy. As an application, we regard the three program
variables as one component of Dekker ; declaring it as permanently lazy results
in a process denoted by Dekker [PV]. A non-Zeno timed execution sequence of
the original process can be simulated by one of the new process. Thus, instead
of proving that all non-Zeno timed execution sequences of Dekker are live, it is
sufficient to prove that all non-Zeno timed execution sequences of Dekker [PV]
are live. We have also a good intuitive reason to request it to be true. Since fair-
ness is required for all components, a program variable can, intuitively speaking,
enforce to be read or written - provided there is always some component that
could do so. But our intuition for variables is that they are passive, that we
really only want fairness towards P1 and P2. Assuming this kind of fairness is
indeed enough. We now extend PAFASc with a new operator, which can only
be applied to a top-level component.

Definition 17. (permanently lazy processes) Given P ∈ P̃1, we define the per-
manently lazy version of P , written [P ], to be the process with the same syn-
tactical structure of P (and, hence, the same functional behaviour) but which
permanently ignores the passage of time. The timed operational semantics of [P ]
can be defined by the following rules:
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ActL

P
α
−→ P ′

[P ] α
−→ [P ′]
TimeL

[P ] 1
−→ [P ]

The set P̃�1 of initial processes with one permanently lazy top-level component
is generated by:

S ::= P ‖A [P ]
∣
∣ S[Φ]

where P ∈ P̃1, A ⊆ A (possibly infinite) and Φ is a general relabelling function.
Similarly, the set P̃� of (general) processes with one permanently lazy top-level
component is generated by the following grammar:

R ::= Q ‖A [P ]
∣
∣ R[Φ]

where Q ∈ P̃c, P ∈ P̃1, A ⊆ A (possibly infinite) and Φ is a general relabelling
function.

We define the operational semantics for processes with one permanently lazy
top-level component.

Definition 18. (Functional operational semantics) The following SOS-rules de-
fine the transition relations α
−→⊆ (P̃� × P̃�) for α ∈ Aτ , the action transitions.

Lpara1
α /∈ A, Q

α
−→ Q′

Q ‖A [P ] α
−→ clean(Q′ ‖A [P ])
Lpara2

α /∈ A, P 
−→α P ′

Q‖A [P ] α
−→ clean(Q ‖A [P ′])

Lsyncha

α ∈ A, Q
α
−→ Q′, P 
−→α P ′

Q ‖A [P ] 
−→α clean(Q′ ‖A [P ′])
Lrela

R
α
−→ R′

R[Φ] 
−→Φ(α) R′[Φ]

where clean(Q ‖A [P ]) = clean(Q, A′) ‖A [P ] and A′ = (A(Q)\A(P )) ∩ A.

Definition 19. (time step) For S ∈ P̃�1, we write that S
1
−→ R when R =

urgent(S) where function urgent(S) is defined as follows:

Par: urgent(P1 ‖B [P2]) = urgent(P1, A
′) ‖B [P2] where A′ = (A(P1)\A(P2)) ∩ A

Rel: urgent(S[Φ]) = urgent(S)[Φ]

Definition 20. Let Q ∈ P̃ and R ∈ P̃�. We write that Q  R if either Q =
Q1 ‖A Q2 and R = Q1 ‖A [unmark(Q2)] or Q = Q1[Φ] and R = R1[Φ] with
Q1  R1.

Proposition 1. Let P ∈ P̃1, S ∈ P̃�1 with P  S and v ∈ (Aτ )∗. Then P
1
−→

Q
v
−→ P ′ ∈ P̃1 implies S

1
−→ R
v
−→ S′ with P ′  S′ (S simulates each non-Zeno

timed execution sequence of P ).

This proposition states that all non-Zeno timed execution sequences of Dekker
can be simulated by non-Zeno timed execution sequences of Dekker [PV].
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5.2 F-Steps

We can group the transitions of a non-Zeno timed execution sequence into infi-
nitely many steps of the form S

1
−→ R
v
−→ S′, where v ∈ (Aτ )∗ and S′ is the

next process to perform a time step. Such a step is minimal in a sense, if S′ is the
first process in the transition sequence R

v
−→ S′ that could perform a time step,
i.e. the first initial process. We call such minimal steps f-steps and the processes
reachable by them fair-reachable. We will show in this subsection that we only
have to consider timed execution sequences built from infinitely such f-steps.

Definition 21. (f-executions) A transition sequence S
1
−→ R

v
−→ S′ with
S, S′ ∈ P�1 and v ∈ (Aτ )∗ is an f-step if S′ is the only initial process in the
transition sequence R

v
−→ S′ (allowing R = S′ if v is the empty sequence).
An f-execution from S0 ∈ P�1 is any infinite sequence of f-steps of the form:
γ = S0

1
−→ R0
v0
−→ S1

1
−→ R1
v1
−→ S2 . . . We call the processes S1, S2, . . .

fair-reachable from S0.

F-executions are special non-Zeno timed execution sequences. To show that
checking them for liveness suffices, we need the following proposition.

Proposition 2. For each non-Zeno timed execution sequence from S0 ∈ P�1,
γ = S0

1
−→ R0
v0
−→ S1

1
−→ R1
v1
−→ S2 . . . there exists a corresponding f-

execution γ′ = S′
0

1
−→ R′
0

v′
0
−→ S′

1
1
−→ R′

1
v′
1
−→ S′

2 . . ., where S′
0 = S0, v0v1 . . . =

v′0v
′
1 . . . and each step S′

i
1
−→ R′

i

v′
i
−→ S′

i+1 is minimal.

5.3 Symmetry of Fair-Reachable Processes

Half of the processes which are fair-reachable from Dekker [PV] are denoted by
D1, . . . , D47; see Table 1 and [4] for a full list of the processes. We also consider
all possible symmetries and use Sy to denote the process which is symmetric to
Dy with respect to the local state of P1 and P2 and the value of the variables b1,
b2 and k. For each y ∈ [1, 47], Sy = S(Dy) where function S(_) on processes is
given below. Moreover, S(Sy) = Dy for any y.

Table 1. Fair-Reachable Processes

D1 = ((b1wt .P11 ‖ b2wt .P21) ‖B [PV(false, false, 1)])[ΦB ]
...

D23 = ((b1wf .P1 ‖ P21) ‖B [PV(true, true , 2)])[ΦB ]
...

D47 = (P13 ‖ b2wt .P21) ‖B [PV(false, false, 2)])[ΦB ]

Definition 22. (symmetric processes) Let P1, P11,. . .P14, P2, P21,. . .P24 be pro-
cesses as given in Definition 14. Let moreover x ∈ [1, 4] and {i, j} = {1, 2}. Then:



Checking a Mutex Algorithm in a Process Algebra with Fairness 155

S(Pi) = Pj S(Pix) = Pjx

S(biwt.Pi1) = bjwt.Pj1 S(biwf.Pi3) = bjwf.Pj3
S(kwj.biwf.Pi) = kwi.bjwf.Pj S(biwf.Pi) = bjwf.Pj

Now, let b1, b2 ∈ B, k ∈ K and S = ((S1 ‖ S2) ‖B [PV(b1, b2, k)])[Φ] be action-
reachable from Dekker [PV]. We can define the symmetric process of S as follows:

S(S) = ((S(S2) ‖ S(S1)) ‖B [PV(b2, b1, (k mod 2) + 1)])[ΦB]

We say that two processes S and S′ action-reachable from Dekker [PV] are
symmetric, written S ≈ S′, if either S′ = S(S) or S = S(S′).

Definition 23. (symmetric sequences of actions) Given v ∈ (Ad ∪ {τ})∗, the
string S(v) is defined, by induction on the length of v, as follows: S(ε) = ε,
S(τ v′) = τ S(v′), S(reqi v′) = reqj v′ and S(csi v′) = csj v′ where i, j ∈ {1, 2}
Proposition 3 states that symmetric processes have symmetric behaviours: they
perform symmetric f-steps and evolve into processes which are still symmetric.

Proposition 3. Let S ≈ S′ and v ∈ (Ad ∪{τ})∗. Then: S′ 1
−→ R′ v
−→ S′
0 ∈ P̃�1

implies S
1
−→ R

S(v)
−→ S0 ∈ P̃�1 with S0 ≈ S′
0, and one is an f-step if and only if

the other one is.

Let D0 = Dekker [PV], D = {D0, . . . D47} and S = {S0, . . . S47}. The following
proposition shows that all processes fair-reachable from Dekker [PV] are in D∪S.

Proposition 4. Let S ∈ D ∪ S and v ∈ (Ad ∪ {τ})∗. S
1
−→ R

v
−→ S′ ∈ P̃�1
implies S′ ∈ D ∪ S.

5.4 Progressing Processes

We distinguish terms in D ∪ S depending on how many processes are waiting
to perform their critical section, i.e. depending on how many actions csi are
still pending. The action csi is pending, for a given S ∈ D ∪ S, if there exist
sequences of basic actions v, w ∈ (Ad ∪ {τ})∗ such that Dekker [PV]

v reqi w
−→ S
and csi /∈ w. Trivially, each process may have at most two pending actions and
hence D∪ S = R1 ∪ R2 ∪ R1,2, where R1 (R2) is the set of fair-reachable states with
only cs1 (cs2, resp.) pending and R1,2 is the set of fair-reachable states with both
cs1 and cs2 pending.

We may check if a given fair-reachable process S belongs to R1, R2 or R1,2 by
considering its syntactical structure and, in particular, the local states of P1 and
P2 in S. In detail, we distinguish the following subsets of fair-reachable processes:
D1 = D∩R1 = {D2, D5, D9, D14, D22, D32}, D2 = D∩R2 = {D3, D7, D11, D12, D16,
D21, D23, D29, D30, D31, D33, . . . , D36, D40} and D1,2 = D ∩ R1,2 = {D1, D4, D6,
D8, D10, D18, D19, D20, D24,..., D28, D37, D38, D39, D41, D42,. . ., D47}. Processes
D0, D13, D15 and D17 have no pending sections. Since S ∈ R1, S ∈ R2 and
S ∈ R1,2 imply S(S) ∈ R2, S(S) ∈ R1 and S(S) ∈ R1,2, respectively, we also have:
S1 = S ∩ R1 = S(D2), S2 = S ∩ R2 = S(D1) and S1,2 = S ∩ R1,2 = S(D1,2). Finally,
S0, S13, S15 and S17 have no pending actions.
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Definition 24. (progressing processes) We say that a string v = α1 . . . αn ∈
(Ad ∪ {τ})∗ contains the action csi (i ∈ {1, 2}), writen csi ∈ v, if αj = csi for
some j ∈ [1, n]. Trivially, cs1, cs2 ∈ v if both cs1 ∈ v and cs2 ∈ v.

A given S ∈ D ∪ S implies the execution of the action csi, denoted by S � csi,
if each f-execution from S contains the action csi; S � cs1, cs2 if both S � cs1 and
S � cs2. Finally, we say that S ∈ R1 (symmetrically for S ∈ R2 and S ∈ R1,2) is
making progress (progressing) if S � cs1 (S � cs2, S � cs1, cs2, respectively).

Proposition 5. Let S, S′ ∈ D∪S with S ≈ S′. Then: (i) S � csi implies S′ � csj

with {i, j} ∈ {1, 2}; (ii) if S is making progress then also S′ is making progress.

Now, we prove that all processes in D and hence, by Proposition 5-(ii), all
processes in D ∪ S are progressing. We need the following statement.

Proposition 6. A given Dy � csi if for any f-step from Dy of the form Dy
1
−→

R
v
−→ S ∈ P̃�1 we have either csi ∈ v or S � csi.

Iterative application of Proposition 6 allows us to state which processes can
perform specific actions.

Lemma 1. All processes in D ∪ S are making progress.

Proposition 7. Each f-execution from Dekker [PV] is live.

As an immediate consequence of the relationships between fair traces of Dekker
and f-executions of Dekker [PV], we have the main result of this section:

Theorem 1. Each fair trace of Dekker satisfies the liveness property.
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