
A century of parentheses languages
with some amazing returns

ICTCS 2010, Camerino

Stefano Crespi Reghizzi

Politecnico di Milano

A century of parentheses languages – p. 1/27

Parentheses in mathematical notation

Parentheses have appeared in algebraic writing in the
XV-XVI century. Erasmus of Rotterdam calls them lunulae
Earlier and until the XVIII century, overline vinculum had
been used for grouping literals into a term

aa+ bb m instead of
(

aa+ bb
)m

Abstracting from the contents of parenthesized expressions,
Walter von Dyck’s (1856-1934) name has been given to the
formal language every computer science student knows.

A century of parentheses languages – p. 2/27

Dyck’s language

The alphabet has just two letters: the open/close
parentheses

(
,
)

or begin, end, etc.
The language Cl (") is the equivalence class of all strings
such that repeated deletions of well-parenthesized digram
()

reduce the string to the empty one ".

(()())() ⇒ (()())() = (())() ⇒ (())() ⇒ ()() ⇒ () = "

The equivalence class such that, after all deletions, the
string, say,

))
is obtained is another formal language:

Cl
()))

instead of Cl (").

A century of parentheses languages – p. 3/27

Properties of Dyck’s languages

Modest generalization: several matching pairs in the
alphabet:

(,), [,], {, }, . . .

Obvious revision of cancellation rule.
Concatenating two or more times two such strings
produces a Dyck string.
Reversing a Dyck string produces a Dyck language over the
alphabet

([])
reversal
=⇒

open
︷︸︸︷

)] [

close
︷︸︸︷

(

Substituting a Dyck phrase for a character, say (, changes
the equivalence class from Cl(") to Cl(

)
) i.e., one closed

paren in excess.

A century of parentheses languages – p. 4/27

Dyck’s languages, grammars, push-downs and . . .

Noam Chomsky’s Context-Free grammar [1956] (or
Bar-Hillel’s Categorial g.) generates the Dyck language:

S → S S a phrase is the concatenation of 2 phrases

S →
(

S
)

a phrase is a parenthesized phrase

S → " a phrase is the empty string

Word membership/parsing problem: given a string, is it a
Dyck string? Deterministic push-down (LIFO) machine:

Push on reading (

Pop on reading) and recognize if empty

Time complexity is linear (real-time).

A century of parentheses languages – p. 5/27

and . . . queues

\begin{parenthesis}
equipped with a FIFO memory, a queue (or Post) machine
recognizes the Anti-Dyck language [Vauquelin,
Franchi-Zannettacci 1979], where “no parentheses match”.
Cancellation rule:

(
contains no closing parens

︷︸︸︷

([
)
)] =⇒ ([)]

(
[
)
] =⇒ [] =⇒ "

Such languages are generated by breadth-first context-free
grammars [Allevi, Cherubini, CR 1988].
\end{parenthesis}

A century of parentheses languages – p. 6/27

Parentheses unwelcome!

When parentheses proliferate they are hard to read. The
number of parentheses can be reduced assigning
precedences to operators:

5× 3 + 8÷ 3× 9 + 7 instead of (5× 3) + ((8÷ (3× 9)) + 7)

× (and ÷) takes precedence over + ×⋗+

+ yields precedence to ÷ (and ×) +⋖÷

+ yields to + (association from right to left) +⋖+

Some people hate parentheses: Jan Lukasiewicz [1924]
would write (without vincula) in reverse polish notation:

5 3× 8 3 9× ÷ 7+ +

A century of parentheses languages – p. 7/27

Floyd [1963]: operator precedence grammars

Idea: between all terminal characters there is a precedence
relation:

yields ⋖, takes ⋗

equal-in-precedence, =̇ , between opening-closing
pairs.

Compilers have extensively used Floyd grammars until the
invention of deterministic methods (LL(k) Lewis et al. 1966,
and LR(k) Knuth 1966);
Still popular for fast parsing of expressions.
Precedence relations are easily computed by grammar
inspection.

A century of parentheses languages – p. 8/27

Parsing with precedence 1

Example: arithmetic expression with plus and times and
with parens.

Grammar : E → E + T ∣ T, T → T × F ∣ F, F → (E) ∣

Precedence matrix :

a + × ()

a ⋗ ⋗ ⋗

+ ⋖ ⋖ ⋖ ⋖ ⋗

× ⋖ ⋖ ⋗ ⋖ ⋗

(⋖ ⋖ ⋖ ⋖ =̇

) ⋗ ⋗ ⋗

A century of parentheses languages – p. 9/27

Parsing with precedence 2

Easy: syntax subtrees are delimited by ⋖ . . .⋗, and may
include subtrees separated by =̇. No need to perform
reductions from left to right.

⊢ a × (a + a) ⊣

⊢ ⋖ a⋗ ×⋖ (⋖a⋗ +⋖ a⋗)⋗ ⊣

⊢ ⋖ a⋗ ×⋖ (⋖ E + T ⋗)⋗ ⊣

⊢ ⋖ a⋗ ×⋖ (=̇ E)⋗ ⊣

⊢ ⋖ a⋗ × F ⋗ ⊣

.

Clearly, ⋖ . . .⋗ act as parentheses.
I’ll return to Floyd after various parenthesis models.

A century of parentheses languages – p. 10/27

Similarities with Regular languages REG

Few Properties of
REG

preserved
by

CF Deterministic
CF (DCF)

all Boolean UNION COMPL
Concatenation YES NO
Kleene Star YES NO
unique min. det.
machine / grammar

NO NO

Several scientists looked for “better” subfamilies of DCF:

Parenthesis grammars [McNaughton 1967, Knuth
1967], Tree automata [Thatcher 1967]

Balanced Grammars [Berstel & Boasson 2002]

Visibly Push-Down Automata VPD [Alur &
Madhusudan 2004]

A century of parentheses languages – p. 11/27

Parentheses grammars and tree languages

Parentheses induce well-nested structures on strings.
CF grammar rules are parenthesized [McNaughton]:

E → E + E ∣ v becomes E →
(
E + E

)
∣
(
v
)

The ambiguous phrase

E
︷ ︸︸ ︷

E
︷ ︸︸ ︷
v + v+v

E
︷ ︸︸ ︷

v +

E
︷ ︸︸ ︷
v + v

corresponds to different paren phrases

((v + v) + v) (v + (v + v))

Parentheses Languages PL are DCF and math. similar to
REG.
Very similar to tree languages [Thatcher 1967]

A century of parentheses languages – p. 12/27

REG-like properties of parentheses grammars

Uniqueness of minimal grammar (in
backwards-deterministic form).

Grammars having the same set of rule patterns
(stencils) define a Boolean algebra of languages.

Non-Counting (aperiodic) REG languages
[McNaughton, Papert, Schutzenberger] have
counterparts within parentheses languages [CR,
Guida, Mandrioli 1978]

Similar definitions and properties have been stated
[Thomas] in the framework of tree automata.

A century of parentheses languages – p. 13/27

Further on: balanced strings and grammars 1

Surprisingly Dyck is not a parenthesis language:

()()
︸︷︷︸

missing external parens

(()()() . . . ()
︸ ︷︷ ︸

unbounded

)

PL are not closed under concatenation and Kleene star.
[Knuth 1967] asked: is a given CF language a parens
language? The answer involves an equivalent definition of
well-parenthesizing for an alphabet including parens and
possibly other “internal” letters.
A string is balanced if

open parens = # of closed parens

in every prefix, # open parens ≥ # closed parens

Dyck phrases are exactly the balanced strings.

A century of parentheses languages – p. 14/27

Letters associated to open paren

Every letter in a string is an associate of an open paren:
(

0
c1

(

2
c3

)

4

(

5

)

6

)

7

letter 1 is associate of (0, letter 3 of (2, letter 4 of (0
[Knuth] A CF language is a parens language iff

every phrase is balanced and

every open parens has bounded number of associates.

S → XY X →
()

c
)
X
)
∣
(
d Y →

(
Y
(
c
))

∣ e
)

is a parens language, though grammar is not
parenthesized.

A century of parentheses languages – p. 15/27

Paren nesting in human and artificial languages

Natural languages rarely exhibit deeply nested
structures

although in principle they are possible
der Mann der die Frau die das Kind das die Katze füttert sieℎt liebt scℎlä

inner clauses are rarely marked by parens or by words
acting as opening / closing tags

good writers moderately use parentheticals, because
they depart from the main subject

A century of parentheses languages – p. 16/27

Parens in computer languages

All programming languages have parenthetical
constructs, perhaps exaggeratedly so in Algol 68

begin . . . end, do . . . od, if . . . fi, case . . . esac

Mark-up or semi-structured (web) documents (e.g.
XML) are deeply and widely nested; visible open/close
tags delimit structures:

<div id="accessorapido">

Navigazione
Avvisi
contenuti
informazioni

</div>
A century of parentheses languages – p. 17/27

Balanced grammars [Berstel & Boasson 2002]

Allow RegExpr in righhand sides of rules:

S →
(
Y ∗

)
Y →

[]

phrases:
()
,
([])

,
([] [])

, . . .

Several properties of regular languages hold for balanced
languages:
Boolean closures, uniqueness of minimal grammar.

An elegant formalism for XML-like languages.

A century of parentheses languages – p. 18/27

Visibly PushDown languages [Alur&Madhusudan 2004]

Restricted type of deterministic pushdown machine.
Motivated by:

model-checking of programs (i.e. ∞ state systems)

XML

VPD Push-Down Machine:

pushes a call (=open) letter, changing state

pops on a return (=close) letter, if a matching call letter
is on top, changing state

changes state on a return letter, if stack empty

on an internal letter, changes state without using stack

accepts by final state.

A century of parentheses languages – p. 19/27

VPD versus balanced lang. and REG

3-partite alphabet:

open parens
︷︸︸︷

Σcall ∪

closed parens
︷ ︸︸ ︷

Σreturn ∪

others
︷ ︸︸ ︷

Σinternal

no bijection open-close: e.g.,
(]

and
()

unbalanced returns may occur as prefix of a word, and
unbalanced calls as suffix
unbal. returns

︷︸︸︷
r1r2

balanced
︷ ︸︸ ︷
c1c1 . . . r1r1 i1

︸︷︷︸

internal

balanced
︷ ︸︸ ︷

c1c1 . . . i2
︸︷︷︸

internal

r2 . . . i2
︸︷︷︸

internal

r2

unbal. calls
︷ ︸︸ ︷
c2 . . . c2

REGULAR ⊂ BALANCED ⊂ VPD ⊂ Deterministic CF

determinization, minimization, uniqueness

closure and decidability properties ≈ to REGULAR

real-time deterministic parsing

A century of parentheses languages – p. 20/27

Examples

Dyck equivalence class ‘
)
’:

(()))

parsed as
︷ ︸︸ ︷(()))

not as
(︷︸︸︷()))

Program execution modelled by VPD, e.g., abnormal
termination of procedure call:

cmaincA
︷ ︸︸ ︷

cB iinstruction . . . rB cBiinstr.iexcept.

A century of parentheses languages – p. 21/27

Plenty of research on VPD

Monadic Second Order Logic of VPD languages

Grammatical formulations of VPD have been provided

! (infinitary) languages

Bisimulation equivalence

Decidable problems

VPD games

Complexity of membership problem w.r.t. grammar
size [La Torre, Napoli, Parente 2006]

Comparison with synchronized [Caucal] and
height-deterministic [Nowotka & Srba] languages

A century of parentheses languages – p. 22/27

But are VPD languages that new?

Floyd [1963] Operator Precedence [1963] Languages
FL strictly include VPD [CR & Mandrioli 2009]

The precedence relations of VPD languages have a
particular form

A FL grammar with such form of precedences
generates a VPD lang.

The same formal properties hold for FL and VPD
Boolean closure [CR, Mandrioli, Martin 1978]
Reversal
Closures under concatenation, star, suffix, prefix
[CR & Mandrioli 2010]

A century of parentheses languages – p. 23/27

Precedence relations of VPD

Structure of FL grammar of a VPD lang. :

S
Y

Y
Y

Y
Y
s

c B1

s
r

r
c B1

B1

c r
s

r
s

c0 Z
B2

c B2

s
r
c Z

B2

c B2

B2

s
c r

r
s

Precedence relations:

c ∈ Σcall r ∈ Σreturn s ∈ Σinternal

Σcall ⋖
.
= ⋖

Σreturn ⋗ ⋗ ⋗

Σinternal ⋗ ⋗ ⋗

A language is VPD iff it is generated by a FL grammar with
such precedences

A century of parentheses languages – p. 24/27

Limitations of VPD

Open / close tags must be letter-disjoint

︷ ︸︸ ︷

a
︷ ︸︸ ︷

a . . . b b

︷ ︸︸ ︷

c
︷ ︸︸ ︷

c . . . d d

contradict
︷ ︸︸ ︷

e
︷ ︸︸ ︷
e . . . ac ac

fixed syntax structure in many cases not structurally
adequate

bad

︷ ︸︸ ︷
︷ ︸︸ ︷

3 + 5 × 7 good

︷ ︸︸ ︷

3 +
︷ ︸︸ ︷

5 × 7

Both cases are correctly handled by Floyd grammars.

A century of parentheses languages – p. 25/27

Floyd lang. as generalized parens lang.

Functional notation uses nested parens:
ADD(a,MULT (c, ADD(d, e)))

more readable in infix notation with precedences:
a ADD b MULT (c ADD d)

For ternary operators
IF_THEN_ELSE(c1, s2, s3)
mixfix notation imitates natural language

IF c1 THEN s2 ELSE s3

with precedences:
IF =̇THEN=̇ELSE

IF ⋖ 1st symbol of c1
last symbol of c1 ⋗ THEN

A century of parentheses languages – p. 26/27

Conclusione semiseria

[dal Breve glossario di retorica e metrica]
Parentesi o frase incidentale è l’aggiunta di
elementi non necessari o di precisazioni
all’interno di una frase. È segnalata dalle
parentesi o dalle virgole.

Sono contrito di avervi intrattenuto per un’ora parlandovi di
elementi non necessari!
O forse l’informatica teorica è la scienza del non-necessario
. . . ma illuminante?

A century of parentheses languages – p. 27/27

	Parentheses in mathematical notation
	Dyck's language
	Properties of Dyck's languages
	small Dyck's languages, grammars, push-downs and ldots
	 and ldots queues
	Parentheses unwelcome!
	small Floyd [1963]: operator precedence grammars
	small Parsing with precedence 1
	small Parsing with precedence 2
	 Similarities with Regular languages REG
	Parentheses grammars and tree languages
	small REG-like properties of parentheses grammars
	small Further on: balanced strings and grammars 1
	Letters associated to open paren
	small Paren nesting in human and artificial languages
	Parens in computer languages
	 Balanced grammars [Berstel & Boasson 2002]
	small Visibly PushDown languages [Alur&Madhusudan 2004]
	VPD versus balanced lang. and REG
	Examples
	Plenty of research on VPD
	But are VPD languages that new?
	Precedence relations of VPD
	Limitations of VPD
	Floyd lang. as generalized parens lang.
	Conclusione semiseria

