
A foundational calculus for computing with
streams

Marco Gaboardi1 and Alexis Saurin2?

1 Dip. di Scienze dell’Informazione, Università di Bologna & INRIA Focus, Italy
gabordi@cs.unibo.it

2 Laboratoire PPS, Université Paris-Diderot & INRIA πr2, France
alexis.saurin@pps.jussieu.fr

Abstract. Computing with streams is a topic of increasing interest in
modern computer science. Several proposals have suggested the use of
programming languages and rewriting systems in order to formally de-
scribe programs computing over stream data. However, no stream calcu-
lus (in the sense of λ-calculus) has been exhibited for such studies yet.
The challenge of providing a calculus for streams is to make possible
a more general study than what is possible with stream programming
languages (since no reduction strategy is fixed to start with) and more
modular and compositional than stream rewriting systems (indeed a new
rewriting system shall be designed for each problem). In the present
work, starting from the Λµ-calculus (an extension of λ-calculus for clas-
sical logic) we design ΛS which is a calculus where streams are first-class
citizens. This calculus enjoys several interesting syntactical and compu-
tational properties and, moreover, it is well adapted to the use of types
in order to prove stream program properties.

Extended Abstract

Stream-like data structures are ubiquitous in computer science. By representing
discrete potentially infinite information flows, streams can be used to formal-
ize and study several situations of increasing significance in modern computer
science, such as network communication flows, audio and video signals flows,
etc. Additionally, stream-like data can be used in order to model the potentially
infinite interactions between a program and its environment.
For these reasons it is important to study and develop formal techniques for the
specification and the analysis of programs working on streams. Several interest-
ing results in this direction have been already obtained in the rewriting systems
and functional programming settings respectively. In the rewriting system set-
ting many techniques have been developed in order to study infinitary rewriting
and its properties. Analogously, in the setting of functional programming lan-
guages, many investigations on the notion of laziness has brought to an elegant

? This work started while the second author was a postdoctoral fellow at Università
di Torino and was funded by a grant Lavoisier.

treatment of stream programs and their properties.
at the present a foundational functional calculus, in the spirit of λ-calculus, where
streams are first class citizens is missing. One such a calculus could be a unified
framework where to study stream programs in a modular and compositional way,
without restricting attention to a pre-determined evaluation mechanism.
The starting point of our investigation is Λµ-calculus [3], a calculus extending
Parigot’s λµ-calculus in order to obtain separability. In 1992, Parigot proposed
an extension of λ-calculus providing “an algorithmic interpretation of classi-
cal natural deduction” [2]: λµ-calculus is in Curry-Howard correspondence with
classical natural deduction. In addition to bridging classical reasoning with com-
putation allowing (non-delimited) control primitives, λµ-calculus is a simple and
elegant extension of Church’s λ-calculus which retains most of the standard prop-
erties of λ-calculus such as confluence,subject reduction and SN. A noticeable
exception to this was Böhm theorem [1] which fails in Parigot’s calculus. This led
the second author to introduce an extension to Parigot’s calculus, Λµ-calculus,
for which he proved Böhm theorem [3].
Λµ-calculus has a more liberal syntax than Parigot’s λµ-calculus. This results
in more computational contexts and thus allows to achieve a Böhm out process
in Λµ. Λµ-terms (t, u, v · · · ∈ ΣΛµ) are defined by the following syntax:

ΣΛµ t, u ::= x | λx.t | (t)u | µα.t | (t)α

where x (resp. α) ranges over an infinite set Vt (resp. Vs) of term (resp. stream)
variables. Vt and Vs are disjoint. The set of closed Λµ-terms is denoted by Σc

Λµ.
The Λµ-reduction, written −→Λµ, is induced by the following rules:

(λx.t)u −→βT
t {u/x}

λx.(t)x −→ηT
t if x 6∈ FV (t)

(µα.t)β −→βS
t {β/α}

µα.(t)α −→ηS
t if α 6∈ FV (t)

µα.t −→fst λx.µα.t {(v)xα/(v)α} if x 6∈ FV (t)

where n {(v)uα/(v)α} substitutes (without variable-capture) every named term
(v)α in n by (v)uα.
The Λµ-calculus can be viewed under a stream operation interpretation. In par-
ticular, a term µα.t can be considered as an abstraction over streams of terms
(i.e. λxα1 . . . xαn . . . t) while a term (t)α can be view as the construction passing
the stream α as an argument to term t (i.e. (t)xα1 . . . x

α
n . . .). Thus, µ can be

viewed as a sort of infinitary λ-abstraction but, as suggested by the second au-
thor in [3, 4] in a much wider sense than what Parigot remarked in his seminal
paper [2].

Under this interpretation one wants to show that Λµ constructions permits
to deal with streams as first class citizens. For instance, one wants to deal with
standard functions working in finite time on streams and proving their properties
by means of types. Unfortunately, in order to do this, one needs to overcome some
difficulties. In the Λµ-calculus syntax, streams objects cannot be in head position

2

since they are permitted only in argument position. As a consequence we have
that all the standard stream functions acting on stream and returning streams
cannot directly be recovered.
To better understand this point consider the destructors head (x:xs) = x and
tail (x:xs) = xs. Clearly we can easily define a term for the head function
as follows: head = λx.µα.x. Analogously, we would define a term for the tail
function as tail = λx.µα.α but unfortunately this is forbidden by Λµ-calculus
grammar. In fact, in Λµ-calculus, there are two distinct syntactical categories:
streams and terms. The former is only represented by stream variables α that
can be used in the construction (t)α. If we wish really to compute with streams,
we shall be able to return a stream as the result of a computation. Since this
is not directly possible in Λµ, so an extension is needed. For this reason we
introduce the ΛS -calculus. The syntax of ΛS -calculus is defined as follows:

ΣΛS 3 t, u ::= x | λx.t | (t)u | µα.t | (t)S | τ(S)
S ::= α | [t | S] | σ(t)

The grammar of ΛS differs from the one of Λµ since we now have a new construc-
tion [− | −] that permits to build actual streams [u | S] and two term/stream
coercions τ(−) and σ(−). The coercion τ(−) builds a term from a stream, for
instance as τ(α), and σ(−) which builds a stream from a term, for instance
σ((t)u). The reduction for ΛS -calculus is obtained by the following rules:

(λx.t)u −→β(T)T t {u/x}
(µα.t)S −→β(S)S t {S/α}

(λx.t)[u | S] −→β(T)S (t {u/x})S
(µα.t)u −→β(S)T µβ.t {[u | β]/α}

µα.t −→fst λx.µβ.t {[x | β]/α} if x, β 6∈ FV (t)
τ(σ(t)) −→τσ t

σ(τ(S)) −→στ S

Thanks to the extensions given above we can now define a term acting as tail
by using the coercion τ(−) turning a stream into a term: tail = λx.µα.τ(α).
Analogously the coercion σ(−) turns a term into a stream. Moreover, the con-
struction [− | −] can be used to build explicitly streams, i.e. given a term t and a
stream S it returns a stream [t | S]. To better illustrate their behaviour consider
a toy function F defined as: F (x:xs) = (x:(tail xs)) A first way to define
in ΛS -calculus a function acting as F is by using the term λx.λy.µα.τ([x | α])
Such a term has the expected behaviour but it does not reflect the composi-
tional meaning of the above definition, i.e. it reflects instead a direct definition
as F’ (x:y:xs) = x:xs. So, in order to have a term reflecting the above defini-
tion in the ΛS -calculus we can consider the term: F = λx.µα.τ([x | σ((tail)α)])
Since (tail)α is a term, we need the coercion σ in order to turn it in a stream.

3

V arT
Γ, x : T `t x : T |∆

V arS
Γ `s α : S|∆,α : S

Γ `t t : T |∆
≡fst (provided T ≡fst T ′)

Γ `t t : T ′|∆
Γ, x : T `t t : T ′|∆

AbsT
Γ `t λxT .t : T → T ′|∆

Γ `t t : T → T ′|∆ Γ `t u : T |∆
AppT

Γ `t (t)u : T ′|∆
Γ `t t : T |∆,α : S

AbsS
Γ `t µαS .t : S ⇒ T |∆

Γ `t t : S ⇒ T |∆ Γ `s S : S|∆
AppS

Γ `t (t)S : T |∆
Γ `t t : T |∆ Γ `s S : S|∆

Stream
Γ `s [t | S] : T → S|∆

Γ `s S : S|∆
Coercτ

Γ `t τ(S) : Str(S)|∆
Γ `t t : Str(S)|∆

Coercσ
Γ `s σ(t) : S|∆

Γ `s S : S {µX .S/X} |∆
µ-intro

Γ `s S : µX .S|∆
Γ `s S : µX .S|∆

µ-elim
Γ `s S : S {µX .S/X} |∆

Fig. 1. The type system for ΛS-calculus.

Analogously, since [x | σ((tail)α)] is a stream, we need the coercion τ in order
to turn it in a term.

Besides the definition of the ΛS -calculus, we prove that it enjoys some im-
portant syntactic and computational properties. In particular, confluence and
standardization with respect to head reduction. The fact that such properties
hold shows that we can use the ΛS -calculus concretely to model stream pro-
gram computations. Moreover, we investigate the ΛS -calculus expressivity by
showing several standard examples of both functions defining streams and func-
tions working on streams. Finally, we show that ΛS -calculus terms can be typed
by means of the type system depicted in Figure 1 and we show that it enjoys
standard properties as subject reduction.

References

1. Corrado Böhm. Alcune proprietà delle forme βη-normali nel λK-calcolo. Publi-
cazioni dell’Istituto per le Applicazioni del Calcolo, 696, 1968.

2. Michel Parigot. λµ-calculus: an algorithmic interpretation of classical natural de-
duction. In Proceedings of the 1992 International Conference on Logic Programming
and Automated Reasonning, volume 624 of Lecture Notes in Computer Science, Lon-
don, UK, 1992. Springer-Verlag.

3. Alexis Saurin. Separation with streams in the Λµ-calculus. In Logic In Computer
Science, pages 356–365, Chicago, 2005. IEEE Computer Society Press.

4. Alexis Saurin. Typing streams in the Λµ-calculus. ACM Transactions on Compu-
tational Logic, 2009. to appear.

4

