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There are many reasons for decoding a message in both directions. The most important
is connected to data integrity. In fact when we use a variable length code (VLC in short)
for source compression (cf. [1], [8]), a single bit error in the transmission of the coded
word may cause catastrophic consequences during decoding, since the wrongly decoded
symbol generate loose of synchronization; in this way the error is propagated to the
following symbols till the end of the file. In order to limit this error propagation, the
compressed file is usually divided into records. If a single error occurs in a record, the
decoder tries to read the record from the end to the beginning. If there is just one error
in the coding, it is possible to avoid the error propagation and isolate it. In order to
do this we need codes that can be easily decoded in both directions. These are called
bifix codes or reversible variable length codes (RVLC in short). Actually bifix codes are
usually big and difficult to be constructed, whereas prefix codes over a k-letter alphabet,
i.e. sets of words where no word is a prefix of another one, are very easy to be found,
since they are in bijection with k-ary trees. A word encoded by a prefix code can be
easily decoded without any delay, but it looses this property when we try to decode it
from right to left. In 1999 Girod in [6] introduced a method that encodes words by using
prefix codes, that allows to decode the encoded word both from left to right and from
right to left with a delay of at most the length of the longest word in the code.

In [5] we defined a transducer for the bidirectional decoding of words encoded by
the Girod’s encoding. We also introduce a variant of the Girod’s coding method, and
we define a transducer that allows both right-to-left and left-to-right decoding by this
method. We prove that this transducer is deterministic, co-deterministic and minimal.

For sake of completeness, in this paper we recall Girod’s encoding method with its
variant and the construction of the transducer associated to the decoding operation on
a given code X. Here we are mainly interested to find some bounds to the number of
states of this transducer, depending on different notions of ”size” of the prefix code X,
such as the cardinality of X, the length of X, i.e. the sum of the lengths of its words,
the number of nodes of the tree representing X, and the length of the longest word in
X. The study of the state complexity is interesting for an algorithmic point of view.

We recall now some classical notion that we use in the paper. Let B and A be the
source and the channel alphabets. Let v: B — AT be a map that we extend to words
over B by v(by...by) = v(b1)...v(by). We say that v is an encoding if v(w) = ~v(w')
implies that w = w’. For each b in B, y(b) is said a codeword and the set of all codewords
is said a wvariable length code, or simply a code. In what follows we denote by z; = v(b;)
and by X = {z1,...,2,} the code defined by v. A set Y over A* is said a prefiz code
(resp. suffiz code) if no element of Y is a prefix (resp. a suffix) of another element of Y.
A set over A* is called a bifiz code if it is both a prefix and a suffix set. A decoding of 7 is



the inverse operation than encoding i.e. the function v~! restricted to v(B*). A code is
mazimal if it is not contained in another code. Throughout this paper we consider prefix
codes over a binary alphabet A = {0,1}. For each word u we denote by @ the reverse of

u. For X = {21, 29,...,2,}, we define by X the set X = {Z1,T2,...,Tn}

A finite transducer 7 on the input alphabet A and the output alphabet B is a quadru-
ple 7 =(Q, I, F, E) where Q is a finite set of states, I and F are two subsets of @ called
the sets of initial and terminal states, and E is a set of edges defined as (p,u, v, q) where
p,q € Q, u € A* is the input label and v € B* is the output label. Two edges (p,u1,v1,q)
and (r,u1,v1,8) are consecutive if ¢ = r. A path in a transducer is a sequence of con-
secutive edges. The label of the path is obtained by concatenating separately the input
and the output labels, and is denoted by a pair (u,v) with u € A* and v € B*. A path
is successful if it starts in an initial state and ends in a terminal state. We say that a
pair (u,v) is in the relation realized by T if it is the label of a successful path. A trans-
ducer is called a literal if each input label is a single letter. A literal transducer is called
deterministic (resp. codeterministic) if for each state p and for each input letter a there
is at most one edge starting at (resp. ending at) p with input letter a. A transducer
is sequential if it is literal, deterministic, has a unique initial state ¢ and can have an
input label associated to 7 and output labels associated to final states. There is a unique
minimal sequential transducer equivalent to a given one (cf. [7]).

The binary sum is the operation on {0, 1} defined by: a®b = 0 if a = b and 1 otherwise.
Notice that if c=a @ bthenb=a®cand a =bPc. Let X = {x1,...,2,,} be a finite
prefix code defined by an encoding 7 over an alphabet B = {b1,...,b,}. Consider a
word w = by, ...b;, in B* and its encoding y = v(b) = w4, ... x;, where x;,’s are words
in X. Consider also the word ' = Z;, ...%;,. Let L be the length of the longest word
in {;,,..., 7, }. Consider the words z = y0L, 2/ = 0Ly’ and z = 2 ® 2. The Girod’s
encoding § : B* — A* is the application, §(w) = z, where w = b;, - - - b;, and z is defined
as above (see [6], [8]).

The left to right (right to left, resp.) decoding of z is allowed by the presence of 0
in the beginning of 2’ (in the end of x, resp.). Starting from this known prefix of 2’ we
reconstruct iteratively z and 2’ as follows. Since the first L bits of 2’ are 0’s, then the
first L bits of z are equal to the first L bits of x. By the definition of L, those L bits
contain as prefix at least the first codeword z;, in y. We concatenate its reverse Z;, to
the prefix 0% of 2/. In this way 2’ has again L unread symbols, that can be summed
to the next L symbols of z. As before, this sum contains as prefix at least the second
codeword z;,. Its reverse can be again concatenated to 2’ and have again L unread bits
in 2/. By proceeding in this way we obtain the left-to-right decoding of z. Similarly we
can decode z from right to left: in this case we invert the roles of x and z’.

In [5], we remark that, by using the properties of ¢, the method can be analogously
applied when any word of length L is used in the place of 0%. We choose to use among
the words of maximal length in X, the one that is minimal in lexicographic order (given
a code, it is univocally determined). We refer to it as the Girod’s generalized method.

Let X be a finite prefix code and let z; be the smallest word in the lexicographic
order among the words in X of maximal length L. For any sequence y of words in X
consider the encoding 7, as defined by the Girod’s generalized method. The transducer
T = (Q,i, F, E) for the left-to-right decoding of d;, is defined by: the states in @ are
pairs of words (u,v) such that 1) u is a proper prefix of a word in X and 2) v is a suffix
of a word in Z, X* of length L — |u|. The unique initial and final state i is (¢, #1,). The
edges in E are defined as follows:

ik

((u,av), ¢, €, (ud, v)) with a @ ¢ =d, if ud ¢ X and ud is a prefix of a word in X
((u, av), ¢, b, (e,vdu))  witha®c=d, if ud =z; € X. ’



Theorem 0.1 The transducer T realizes the function ¢ defined by p(z) = §;'(2)br,
where 521 is the decoding of 61, from left to right and by, is the word v~'(zr). Moreover
this transducer is deterministic, co-deterministic and minimal.

In a similar way we can define a transducer for the right to left encoding. In [5]
we prove that the transducers for the left-to-right and for the right-to-left decoding are
isomorphic. This means that we can use the same transducer for decoding a word in
both directions.

Given a prefix code X = {x1,22,...,Z;} we can measure the size of X in different
ways: |X|, the cardinality X; | X| = >, cx |z|, the length of X; |Tx|, the number of
nodes of the binary tree Tx naturally associated to X; L = max,cx |z|, the length of
the longest word in X. For X prefix code, let Tx = (Q,, F, E) be the transducer, as
defined before, with (g,Z1) as initial state. We are interested to find a bound to |Q].

We say that a prefix code X is uniform if all the words in X have the same length L.
A maximal uniform code whose words have length L contain all the words of length L,
ie. X = AL, Then |X| =2l | X| = L 2¥ and |Tx| = 211 — 1. We have the following:

Theorem 0.2 If X is a prefiz code then the number of states of Tx is less than or equal
to L 2. If X is a uniform mazimal code, this bound is tight.

This means that, for uniform codes, |Q| = || X, |Q| < |Tx|log|Tx| and |Q| =
| X |log(|X|). Moreover Theorem 0.2 gives an exponential upper bound in L.

For maximal prefix codes we get an exponential lower bound in L. This depends on
the well known fact (see [2]) that any word w in A* is in X*Pref(X) (and consequently
W is in Suff(X)X*). Using this fact and the construction of the transducer we get the
following lower bound:

Theorem 0.3 If X is a marimal prefiz code then, |Q| > 2T.

From this theorem we expect that the farthest a code is from being uniform, the
greatest the number of states is in the correspondent transducer.

The following Lemma shows that the number of states of the transducer grows when
adding words to the prefix code:

Lemma 0.4 Let Y C X be prefix codes such that the length of the longest word in X
is the length of the longest word in Y. Then Ty is contained in Tx and the number of
states of Ty is strictly less than to the one of Tx.

Given two binary trees 77 and Tb, we say that they are isomorphic if 75 can be obtained
from T; by choosing some of its nodes and, for each of them, switching the right and
the left subtree. We have noticed, by experimental results, that, if X; and X, are two
prefix codes corresponding to isomorphic trees then the corresponding transducers have
the same number of states. We conjecture that the corresponding transducers are, in
particular, isomorphic as unlabeled graphs.

Let us consider now X a uniform non-maximal prefix code. For uniform codes of two
words we have a precise result for the state complexity:

Theorem 0.5 Let X = {x1,22} be a uniform code and let u be the longest common
prefix between x1 and xo. Then:

Q] = |Tx|—3Ju|+2L—3 if ju| < L/2
Tx|=lul+L—=2  iflul=L/2

In general, we have the following proposition stating a state complexity of O(| X||Tx|)
for non maximal uniform prefix codes:



Proposition 0.6 If X is a non mazimal uniform code then |Q| < |X||Tx| —|X|?. This
bound is tight for codes of two words beginning with different letters.

The tightness of Proposition 0.6 follows by Theorem 0.5.

Let u be a word in A = {0,1}. We define X,, the string-code of u as X,, = {u} U
{va | va € Pref(u)}, where Pref(u) is the set of prefixes of u. We denote by L the
length of u. In this case || X|| = L(L+1)/2+4+ L, |X| = L+1and |Tx| = 2L. These codes
are maximal, then by Theorem 0.3 we have that |Q| > 2. Moreover by experimental
results we have noticed that for all these codes |Q| = 2F*! — 2. This is probably a

general property that we will try to prove. This would mean that |Q| = O(2m), and
Q| = O(2/"x1) and |Q| = O(2X]). Thus these codes seem to have the worst behavior in
terms of the number of states in relation with the different definitions of size of the code.
Moreover, if such a formula is true, then we would get that string-codes defined by words
of the same lengths have all the same number of states in the associated transducer.

We are trying to give a bound on the growth of the number of states of a transducer
associated to a prefix code when we add a new word to the code, depending on how long
is the common prefix between the new word and the words already in the code.

Our last will is to find general upper and lower bounds for general prefix codes taking
into account also the size of the tree representing the code, that gives information on
how long common prefixes between pairs of words in X are.

It would be also interesting to do an average study of the number of states for different
distributions on prefix codes.
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