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Abstract

In this note we show that the asymmetric Prover-Delayer game developed in
(ECCC, TR10–059) for Parameterized Resolution is also applicable to other tree-
like proof systems. In particular, we use this asymmetric Prover-Delayer to show a
lower bound of the form 2Ω(n logn) for the pigeonhole principle in tree-like Resolu-
tion. This gives a new and simpler proof of the same lower bound established by
Dantchev and Riis (CCC, 2001).

1 Introduction

Proving lower bounds by games is a very fruitful technique in proof complexity [1,8–10]. In
particular, the Prover-Delayer game of Pudlák and Impagliazzo [10] is one of the canonical
tools to study lower bounds in tree-like Resolution [2, 10] and tree-like Res(k) [6]. The
Prover-Delayer game of Pudlák and Impagliazzo arises from the well-known fact [7] that
a tree-like Resolution proof for a formula F can be viewed as a decision tree which solves
the search problem of finding a clause of F falsified by a given assignment. In the game,
Prover queries a variable and Delayer either gives it a value or leaves the decision to
Prover and receives one point. The number of Delayer’s points at the end of the game is
then proportional to the height of the proof tree. It is easy to argue that showing lower
bounds by this game only works if (the graph of) every tree-like Resolution refutation
contains a balanced sub-tree as a minor, and the height of that sub-tree then gives the
size lower bound.

In [3] we developed a new asymmetric Prover-Delayer game which extends the game
of Pudlák and Impagliazzo to make it applicable to obtain lower bounds to tree-like
proofs when the proof trees are very unbalanced. In [3] we used the new asymmetric
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game to obtain lower bounds in tree-like Parameterized Resolution, a proof system in
the context of parameterized proof complexity recently introduced by Dantchev, Martin,
and Szeider [4]. The lower bounds we obtain in [3] for tree-like Parameterized Resolution
are of the form Ω(nk) (n is the formula size and k the parameter), but the tree-like
Parameterized Resolution refutations of the formulas in question only contain balanced
sub-trees of height k.

The aim of this note is to show that the asymmetric Prover-Delayer game is also
applicable to other (non-parameterized) tree-like proof systems. One of the best studied
principles is the pigeonhole principle. Dantchev and Riis [5] show that the pigeonhole
principle requires tree-like Resolution refutations of size roughly n! while its tree-like
Resolution proofs only contain balanced sub-trees of height n. Therefore the game of
Pudlák and Impagliazzo only yields a 2Ω(n) lower bound which is weaker than the optimal
bound 2Ω(n logn) established by Dantchev and Riis. Here we provide a new and easier proof
of this lower bound by our asymmetric Prover-Delayer game.

2 Preliminaries

A literal is a positive or negated propositional variable and a clause is a set of literals. A
clause is interpreted as the disjunctions of its literals and a set of clauses as the conjunction
of the clauses. Hence clause sets correspond to formulas in CNF. The Resolution system
is a refutation system for the set of all unsatisfiable CNF. Resolution uses as its only rule
the Resolution rule

{x} ∪ C {¬x} ∪D
C ∪D

for clauses C,D and a variable x. The aim in Resolution is to demonstrate unsatisfiability
of a clause set by deriving the empty clause. If in a derivation every derived clause is
used at most once as a prerequisite of the Resolution rule, then the derivation is called
tree-like, otherwise it is dag-like. The size of a Resolution proof is the number of its
clauses. Undoubtedly, Resolution is the most studied and best-understood propositional
proof system (cf. [11]).

It is well known (cf. [7]) that a tree-like refutation of F can equivalently be described
as a boolean decision tree. A boolean decision tree for F is a binary tree where inner
nodes are labeled with variables from F and leafs are labeled with clauses from F . Each
path in the tree corresponds to a partial assignment where a variable x gets value 0 or
1 according to whether the path branches left or right at the node labeled with x. The
condition on the decision tree is that each path α must lead to a clause which is falsified by
the assignment corresponding to α. Therefore, a boolean decision tree solves the search
problem for F which, given an assignment α, asks for a clause from F falsified by α. It is
easy to verify that each tree-like Resolution refutation of F yields a boolean decision tree
for F and vice versa, where the size of the Resolution proof equals the number of nodes
in the decision tree. In the sequel, we will therefore concentrate on boolean decision trees
to prove our lower bound to tree-like Resolution.
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3 Tree-like Lower Bounds via Asymmetric Prover-

Delayer Games

We review the asymmetric Prover-Delayer game from [3]. Let F be a set of clauses in
n variables x1, . . . , xn. In the asymmetric game, Prover and Delayer build a (partial)
assignment to x1, . . . , xn. The game is over as soon as the partial assignment falsifies a
clause from F . The game proceeds in rounds. In each round, Prover suggests a variable
xi, and Delayer either chooses a value 0 or 1 for xi or leaves the choice to the Prover.
In this last case, if the Prover sets the value, then the Delayer gets some points. The
number of points Delayer earns depends on the variable xi, the assignment α constructed
so far in the game, and two functions c0(xi, α) and c1(xi, α). More precisely, the number
of points that Delayer will get is

0 if Delayer chooses the value,
log c0(xi, α) if Prover sets xi to 0, and
log c1(xi, α) if Prover sets xi to 1.

Moreover, the functions c0(x, α) and c1(x, α) are chosen in such a way that for each
variable x and assignment α

1

c0(x, α)
+

1

c1(x, α)
= 1 (1)

holds. Let us call this game the (c0, c1)-game on F .
The connection of this game to size of proofs in tree-like Resolution is given by The-

orem 1. The theorem is essentially contained in [3], but for completeness we include the
full proof.

Theorem 1 ( [3]). Let F be unsatisfiable formula in CNF and let c0 and c1 be two
functions satisfying (1) for all partial assignments α to the variables of F . If F has a
tree-like Resolution refutation of size at most S, then the Delayer gets at most logS points
in each (c0, c1)-game played on F .

As remarked in [3] we get the game of Pudlák and Impagliazzo [10] by setting
c0(x, α) = c1(x, α) = 2 for all variables x and partial assignments α.

4 Tree-like Resolution Lower Bounds for the Pigeon-

hole Principle

The weak pigeonhole principle PHPm
n with m > n uses variables xi,j with i ∈ [m] and

j ∈ [n], indicating that pigeon i goes into hole j. PHPm
n consists of the clauses∨

j∈[n]

xi,j for all pigeons i ∈ [m]

and ¬xi1,j∨¬xi2,j for all choices of distinct pigeons i1, i2 ∈ [m] and holes j ∈ [n]. We prove
that PHPm

n is hard for tree-like Resolution. Showing the lower bound by the asymmetric
game from the last section, requires a suitable choice of the functions c0 and c1 and then
the definition of the Delayer-strategy for the (c0, c1)-game.
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Theorem 2. Any tree-like Resolution refutation of PHPm
n has size 2Ω(n logn).

We observe that our proof of Theorem 2 also holds for the functional pigeonhole
principle where in addition to the clauses from PHPm

n we also include ¬xi,j1 ∨ ¬xi,j2 for
all pigeons i ∈ [m] and distinct holes j1, j2 ∈ [n].
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