
The Strength of Parameterized Tree-like Resolution

Olaf Beyersdorff∗

Institut für Informatik, Humboldt-Universität zu Berlin, Germany
beyersdo@informatik.hu-berlin.de

Nicola Galesi Massimo Lauria
Dipartimento di Informatica, Sapienza - Università di Roma, Italy
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Abstract

We examine the proof-theoretic strength of parameterized tree-like resolution—a proof sys-
tem for the coW[2]-complete set of parameterized tautologies. Parameterized resolution and,
moreover, a general framework for parameterized proof complexity was introduced by Dantchev,
Martin, and Szeider (FOCS’07). In that paper, Dantchev et al. show a complexity gap in param-
eterized tree-like resolution for propositional formulas arising from translations of first-order
principles.

Here we pursue a purely combinatorial approach to obtain lower bounds to the proof size
in parameterized tree-like resolution. For this we devise a prover-delayer game suitable for
parameterized resolution. By exhibiting good delayer strategies we then show lower bounds for
the pigeonhole principle as well as the order principle. On the other hand, we demonstrate that
parameterized tree-like resolution is a very powerful system, as it allows short refutations of
all parameterized contradictions given as bounded-width CNF’s. Thus, a number of principles
such as Tseitin tautologies, pebbling contradictions, or random 3-CNF’s which serve as hard
examples for classical resolution become easy in the parameterized setting.

1 Introduction

Proof complexity is a research field which owes one of its main motivations from the problem
of separating complexity classes as P, NP, and coNP, using an approach which integrates tech-
niques and results from mathematical logic, model theory, combinatorics, and computational
complexity. Cook and Reckhow [2] initiated the study of lengths of proofs in propositional
proof systems. Their result that the existence of a polynomially bounded propositional proof
system, i. e., a proof system where all tautologies have polynomial-size proofs, is equivalent to
NP = coNP, has opened the way to proving lower bounds for the lengths of proofs in a diversity
of propositional proof systems ranging from restricted versions of resolution to bounded-depth
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Frege systems (see [6] for a recent survey on the field). While all these systems are known
to be not polynomially bounded, still a lot of effort has to be invested to reach, for instance,
super-polynomial lower bounds for Frege systems.

Recently, Dantchev, Martin, and Szeider [3] introduced and initiated the study of parame-
terized proof complexity. After considering the notions of propositional parameterized tautolo-
gies and fpt-bounded proof systems, they laid the foundations to study complexity of proofs
in a parameterized setting. The main motivation behind their work was that of generalizing
the classical approach of Cook and Reckhow to the parameterized case and working towards a
separation of parameterized complexity classes as FPT and W[P] by techniques developed in
proof complexity.

In this work we continue the study of the complexity of proofs in parameterized tree-like
resolution. As our main contribution (Section 3) we devise a purely combinatorial approach,
based on a prover-delayer game, to characterize proof size in parameterized tree-like resolution.
In particular, we use our characterization to prove lower bounds. Our game is inspired by the
prover-delayer game of Pudlák and Impagliazzo [5], which is one of the canonical tools to
study lower bounds in tree-like resolution [1, 5] and tree-like Res(k) [4]. In fact, we show that
the game from [5] is a very simple case of our game.

2 Preliminaries

Definition 2.1 (Dantchev, Martin, Szeider [3]). A parameterized contradiction is a pair (F, k)
consisting of a propositional formula F and k ∈ N such that F has no satisfying assignment of
weight ≤ k. We denote the set of all parameterized contradictions by PCon.

A literal is a positive or negated propositional variable and a clause is a set of literals. A
clause is interpreted as the disjunctions of its literals and a set of clauses as the conjunction of
the clauses. Hence clause sets correspond to formulas in CNF. The parameterized resolution
system [3] is a refutation system for the set of all parameterized contradictions. Any line in the
proof is either (I) a clause of F ; (II) a parameterized axiom of the form ¬xi1 ∨ · · · ∨ ¬xik+1

for
any set of k + 1 variables {xi1 , . . . , xik+1

}; or (III) a clause obtained by the resolution rule

{x} ∪ C {¬x} ∪D
C ∪D

for previous proof lines C ∨ x,D ∨ ¬x. The aim of a resolution refutation is to demonstrate
unsatisfiability of a clause set by deriving the empty clause. We focus on refutations where
every derived clause is used at most once as a prerequisite of the resolution rule. Such refuta-
tions are called tree-like. The size of a resolution refutation is the number of its lines. Notice
that any tree-like resolution refutation is essentially a boolean decision tree which computes the
axiom or the initial clause by an assignment. This interpretation helps to understand our lower
bounds.

3 Lower Bounds via a Prover-Delayer Game

Let (F, k) ∈ PCon where F is a set of clauses in n variables x1, . . . , xn. We define a prover-
delayer game: prover and delayer build a (partial) assignment to x1, . . . , xn. The game is over
as soon as the partial assignment falsifies either a clause from F or a parameterized clause
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¬xi1 ∨ · · · ∨ ¬xik+1
where 1 ≤ i1 < · · · < ik+1 ≤ n. The game proceeds in rounds. In each

round, prover suggests a variable xi, and delayer either chooses a value 0 or 1 for xi or leaves
the choice to the prover. In this last case, if the prover sets the value, then the delayer gets
some points. The number of points delayer earns depends on the variable xi, the assignment α
constructed so far in the game, and two functions c0(xi, α) and c1(xi, α). More precisely, the
number of points that delayer will get is

0 if delayer chooses the value,
log c0(xi, α) if prover sets xi to 0, and
log c1(xi, α) if prover sets xi to 1.

Moreover, the functions c0(x, α) and c1(x, α) are chosen in such a way that for each variable x
and assignment α

1

c0(x, α)
+

1

c1(x, α)
= 1 (1)

holds. Let us call this game the (c0, c1)-game on (F, k).
The connection of this game to size of proofs in parameterized tree-like resolution is given

by the next theorem:

Theorem 3.1. Let (F, k) be a parameterized contradiction and let c0 and c1 be two functions
satisfying (1) for all partial assignments α to the variables of F . If (F, k) has a tree-like
parameterized resolution refutation of size at most S, then the delayer gets at most logS points
in each (c0, c1)-game played on (F, k).

By setting c0(x, α) = c1(x, α) = 2 for all variables x and partial assignments α, we get
the game of Pudlák and Impagliazzo [5]. Suitably choosing functions c0 and c1 and defining a
delayer-strategy for the (c0, c1)-game we can prove a lower bound to the proof size in tree-like
parameterized resolution. We will illustrate this for the pigeonhole principle PHPn+1

n which
uses variables xi,j with i ∈ [n + 1] and j ∈ [n], indicating that pigeon i goes into hole j.
PHPn+1

n consists of the clauses∨
j∈[n]

xi,j for all pigeons i ∈ [n+ 1] and ¬xi1,j ∨ ¬xi2,j

for all choices of distinct pigeons i1, i2 ∈ [n + 1] and holes j ∈ [n]. The following theorem
shows that PHPn+1

n is hard for parameterized tree-like resolution.

Theorem 3.2. PHPn+1
n has no fpt-size parameterized tree-like resolution refutation.

By inspection of the above delayer strategy it becomes clear that the lower bound from
Theorem 3.2 also holds for the functional pigeonhole principle where in addition to the clauses
from PHPn+1

n we also include ¬xi,j1 ∨ ¬xi,j2 for all pigeons i ∈ [n + 1] and distinct holes
j1, j2 ∈ [n].

4 Kernels and Small Refutations

The notion of efficient kernelization plays an important role in the theory of parameterized
complexity. A set Γ ⊆ PCon of parameterized contradictions has a kernel if there exists a
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computable function f such that every (F, k) ∈ Γ has a subset F ′ ⊆ F of clauses satisfying
the following conditions: (1) F ′ contains at most f(k) variables and (2) (F ′, k) is a parame-
terized contradiction. Some examples of CNF’s with kernels are: Pebbling contradictions,
Non c-Colorability, Graph pigeonhole principle, some encoding of Linear Ordering prin-
ciples, any unsatisfiable Bounded-width CNF. The kernels in the previous examples are very
explicit, but this is not always the case. Is it easy to find a kernel if it is known to exist? The
answer to this question has consequences regarding automatizability of tree-like parameterized
resolution. We show a general strategy for finding kernels and fpt-bounded refutations for pa-
rameterized contradictions of bounded width, which are usually hard for non-parameterized
proof complexity.

Theorem 4.1. If F is a CNF of width w and (F, k) is a parameterized contradiction, then
(F, k) has a parameterized tree-like resolution refutation of size O(wk+1). Moreover, there
is an algorithm that for any (F, k) either finds such tree-like refutation or finds a satisfying
assignment for F of weight ≤ k. The algorithm runs in time O(|F | · k · wk+1).

5 Ordering Principles

In this section we discuss parameterized resolution refutations for various ordering princi-
ples. The principle claims that any finite partially ordered set has a minimal element. We are
also interested in the linear ordering principle in which the set is required to be totally ordered.

Theorem 5.1. The linear ordering principle has fpt-bounded tree-like refutations in parame-
terized resolution.

The following theorem has been first proved in [3]. Their proof is based on a model-theoretic
criterion. A combinatorial proof exists which is based on prover-delayer games.

Theorem 5.2. Ordering Principle has no fpt-bounded tree-like parameterized resolution refu-
tations.
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