
Decidability of Interval Temporal Logics

Pietro Sala1

Departement Computer Science, University of Verona, Italy
pietro.sala@univr.it

ICTCS 2010

pietro.sala@univr.it


”... truth, as it pertains to language
in the way we use it, relates sen-
tences not to instants but to tem-
poral intervals ...”

Kamp and Reyle (1993)

”What is an interval?”



”... truth, as it pertains to language
in the way we use it, relates sen-
tences not to instants but to tem-
poral intervals ...”

Kamp and Reyle (1993)

”What is an interval?”

. . . . . .
db

. . . . . .
de

. . . . . .



”... truth, as it pertains to language
in the way we use it, relates sen-
tences not to instants but to tem-
poral intervals ...”

Kamp and Reyle (1993)

”What is an interval?”

. . . . . .
db

. . . . . .
de

. . . . . .

db < de



”... truth, as it pertains to language
in the way we use it, relates sen-
tences not to instants but to tem-
poral intervals ...”

Kamp and Reyle (1993)

”What is an interval?”

. . . . . .
db

. . . . . .
de

. . . . . .

db < de

(db,de)



Interpretation of temporal operators



Interpretation of temporal operators

. . .
db

. . . . . .
de

. . . . . . . . .



Interpretation of temporal operators

. . .
db

. . . . . .
de

. . . . . . . . .

db < de



Interpretation of temporal operators

. . .
db

. . . . . .
de

. . . . . . . . .

db < de

(db,de)



Interpretation of temporal operators

. . .
db

. . .
d ′e

. . .
de

. . . . . . . . .

〈B〉ψ

ψ

db < d
′
e < de

(db,de)

(db,d ′e)



Interpretation of temporal operators

. . .
db

. . . . . .
de

. . .
d ′e

. . . . . .

〈B̄〉ψ

ψ

db < de < d
′
e

(db,de)

(db,d ′e)



Interpretation of temporal operators

. . .
db

. . . . . .
de

. . .
d ′e

. . . . . .

〈B̄〉ψ

ψ

db < de < d
′
e

(db,de)

(db,d ′e)



Interpretation of temporal operators

. . .
db

. . . . . .
de

. . . . . . . . .. . . . . .
d ′e

〈A〉ψ

ψ

db < de < d
′
e

(db,de)

(de,d ′e)



Interpretation of temporal operators

. . .
db

. . .. . .
d ′b

. . . . . .
de

. . . . . . . . .

〈Ā〉ψ
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”The decision problem is solved when we know a procedure that
allows, for any given logical expression, to decide by finitely
many operations its validity or satisfiability. (...)The decision
problem must be considered the main problem of mathematical
logic.”

Hilbert and Ackermann (1928)
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On the other hand the decidability of BB̄ can be obtained in
a straightforward way by reducing it to LTL[P, F].
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Decidability

In the very recent years many results have shaped the boundary between
decidability and undecidability.

It is the case of the so-called Maximal Decidable Interval Temporal Logics.

These logics are maximal with respect to the decidability, in fact it has
been proved that the addition of any other Allen’s interval modality leads
to an undecidable logic.

Moreover these logics cannot be expressed in a point based formalism.
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The “yellow region” of valid intervals (i.e.,
{
p = (x,y) : x < y

}
)

is (somehow) definable inside the dense plane:

(>∨⊥∨ π) ∧ (¬>∨ ¬⊥) ∧ (¬>∨ ¬π) ∧ (¬⊥∨ ¬π) ∧

(> → >∧ >) ∧ (⊥ → ⊥∧ ⊥) ∧

(π → +>∧ +⊥) ∧ ( π∧ π → π∨ π∨ π).

π
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Then we can define 〈D〉ϕ = (>∧ϕ) and 〈B〉ϕ = (>∧ϕ).



〈L〉ϕ = +(> → (>∧ϕ)), [L]ϕ = +(>∧ (⊥∨ ¬ϕ))

p p ′

(>∧ϕ)
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ϕ

p

p ′
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¬ϕ



To solve the satisfiability problem for Cone Logic,
we consider portions of the dense plane:

Stripe

A stripe of a labeled rational plane L : D× D → A is the
restriction L[x0,x1] of L to a region of the form [x0, x1]× D.

Fact
Any Cone Logic formula ϕ can be translated into a formula
ϕ[x0,x1] in such a way that, for every labeled dense plane L,

∃ p ∈ D× D.
L,p � ϕ

iff
∃ p ∈ [x0, x1]× D.

L[x0,x1],p � ϕ[x0,x1].
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Since the equivalence relation ≈ has finite index, we have that

Proposition (a tree pseudo-model property)

Any given stripe L[0,1] can be represented by means of a suitable
infinite binary tree T whose vertices are labeled over a finite alphabet
(we call the structure T a tree decomposition of L[0,1]).

...However, tree decompositions must be properly constrained
so that they correctly represents some concrete stripes.

Examples of constraints on a tree decomposition

I For every pair of sibling vertices v = [x0, x1] and v ′ = [x ′0, x ′1]
in T, the labeling of the right border of v has to match with
the labeling of the left border of v ′

(in such a way, we can assume x1 = x ′0),

I There is no infinite path π in T such that, for every
vertex v ∈ π, α appears on the left border of v and
neither α nor α appear on the right border of v.
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Theorem 1 (reduction to a CTL fragment)

Constrained tree decompositions can be defined
in a fragment of CTL, which we denote CTL−.

Theorem 2 (deciding satisfiability of CTL−)

The satisfiability problem for CTL− is decidable in PSPACE.

Proof idea
CTL− formulas are conjunctions of the following basic formulas:

1. AG(left ∨ right), AG¬(left ∧ right), AG(EXleft ∧ EXright)

2. AG(ξ), AG(ρ → AFξ),
where ρ is a simple propositional formula and ξ contain
only positive occurrences of AX and no occurrences of
other operators.

⇒ Checking satisfiability of these formulas amounts
at deciding universality of Büchi automata.
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ȳ

y ′

ψ1

ψ4

ψ3

ψ2



Decidability over finite linear orders

y

y ′

ψ1 ψ2

ψ2

ψ1 ψ3

ψ4

ȳ
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ymax

ymax − y

y

y ′

ψ1 ψ2

ψ2

ψ1 ψ3

ψ4

ȳ

In the case of finite linear orders the

cardinality of Sh(y) is bounded by

29|ϕ| + 2|ϕ| · (ymax − y).

We can write a decidability procedure
for AĀBB̄ for finite linear orders which
construct a compass structure starting
from ymax.
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ymax

ymax − y

y

y ′

ψ1 ψ2

ψ2

ψ1 ψ3

ψ4

ȳ

The termination is ensured by Dickson’s
Lemma:

Let (Nk, 6) be the k-dimensonal
vector space over N equipped with
the componentwise partial order 6.
Then (Nk, 6) admits no infinite
anti-chains, namely, every subset of
Nk that consists of pairwise
6-incomparable vectors must be
finite.



Complexity, Decidability and Undecidability

q0

c1 = 0?

q2

q1

c2 = 0?

q3
c1 − 1

c2
− 1

c1 + 1

c1 + 1

Minsky Machine



Complexity, Decidability and Undecidability

q0

c1 = 0?

q2

q1

c2 = 0?

q3
c1 − 1

c2
− 1

c1 + 1

c1 + 1

Minsky Machine

First we encode the con-
figuration of a Minsky Ma-
chine by forcing every unit
length interval to satisfy ex-
act one among the letters
c1, ...,cn,q0, ...,qm



Complexity, Decidability and Undecidability

q0

c1 = 0?

q2

q1

c2 = 0?

q3
c1 − 1

c2
− 1

c1 + 1

c1 + 1

Minsky Machine

First we encode the con-
figuration of a Minsky Ma-
chine by forcing every unit
length interval to satisfy ex-
act one among the letters
c1, ...,cn,q0, ...,qm

...
q0 c1 c2 c2 c1 c1 q2 c1 c2 c1



Complexity, Decidability and Undecidability

q0

c1 = 0?

q2

q1

c2 = 0?

q3
c1 − 1

c2
− 1

c1 + 1

c1 + 1

Minsky Machine

The value of the counter
ci is the number of the
ci-labeled unit intervals
between two consecutive
state-labeled unit inter-
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coding is maintaining the
correct value of the coun-
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c2
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c1 + 1

c1 + 1

Minsky Machine

The crucial part of the en-
coding is maintaining the
correct value of the coun-
ters between two consecu-
tive configurations.

...
q0 c1 c2 c2 c1 c1

dec

q2 c1 c2 c1 c1

new

p→
∨
i

(〈B〉ci ∧ 〈A〉(ci ∧ ¬new))∧

〈B〉〈A〉
∨
i

(qi ∧ [B]
∨
i

ci) ∧ [B](¬p∧ ¬dec) ∧ [B̄]¬p

p

We can use a propositional
letter p which behave like a
function between the ci-
labeled intervals in two
consecutive configurations.
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garantee that p represents
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q0

c1 = 0?

q2

q1

c2 = 0?

q3
c1 − 1

c2
− 1

c1 + 1

c1 + 1 ci − 1

ci − 1

ci − 1

ci − 1

Lossy Minsky Machine (LMM)

The crucial part of the en-
coding is maintaining the
correct value of the coun-
ters between two consecu-
tive configurations.

...
q0 c1 c2 c2 c1 c1

dec

q2 c1 c2 c1 c1

new

∨
i ci ∧ ¬new→ 〈Ā〉p

p

p

In order to encode exactly
the computation of a Min-
sky Machine p must repre-
sent a bijection. With the
〈Ā〉 operator we can only
garantee that p represents
a surjective function.

For every computation of a
Lossy Minsky Machine there
exists a model of this formula
which encodes it, and vice
versa.
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In particular:

· we can reduce the problem of Reachability for an LMM (not primitive recursive)
to the satisfiability problem of an AĀBB̄ formula over finite linear orders;

· by adding to AĀBB̄ any other modality among 〈E〉, 〈O〉, 〈D〉 and their
transposes we can encode the Reachability problem for Minsky Machines
(undecidable).

AĀBB̄ turns out to be maximal with respect to the decidability
over the class of finite linear orders.

· Moreover, we can reduce the problem of Structural Termination (undecidable)
for an LMM to the satisfiability problem for AĀBB̄ over linear orders which
feature at least one infinite ascending sequence;
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