Structures of Diversity

Blerina Sinaimeri

Computer Science Department Sapienza University of Rome

ICTCS 2010

イロン 不得 とくほ とくほ とうほ

Zero-Error Capacity

Zero–Error Capacity

Shannon 1956*

Suppose we want to transmit messages across a channel (where some symbols may be distorted) to a receiver: What is the maximum rate of transmission such that the receiver may recover the original message without errors?

Zero-Error Capacity

Zero–Error Capacity

Shannon 1956*

Suppose we want to transmit messages across a channel (where some symbols may be distorted) to a receiver: What is the maximum rate of transmission such that the receiver may recover the original message without errors?

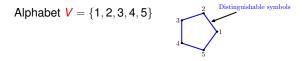
Zero-Error Capacity

Zero–Error Capacity

Shannon 1956*

Suppose we want to transmit messages across a channel (where some symbols may be distorted) to a receiver: What is the maximum rate of transmission such that the receiver may recover the original message without errors?

Channel



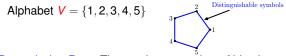
Zero-Error Capacity

Zero–Error Capacity

Shannon 1956*

Suppose we want to transmit messages across a channel (where some symbols may be distorted) to a receiver: What is the maximum rate of transmission such that the receiver may recover the original message without errors?

Channel



 Transmission Rate: The maximum number of bits that can be transmitted without errors per channel use.

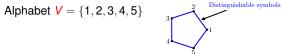
Zero-Error Capacity

Zero–Error Capacity

Shannon 1956*

Suppose we want to transmit messages across a channel (where some symbols may be distorted) to a receiver: What is the maximum rate of transmission such that the receiver may recover the original message without errors?

Channel



 Transmission Rate: The maximum number of bits that can be transmitted without errors per channel use.

Single symbols: log 2

Zero-Error Capacity

Zero–Error Capacity

Shannon 1956*

Suppose we want to transmit messages across a channel (where some symbols may be distorted) to a receiver: What is the maximum rate of transmission such that the receiver may recover the original message without errors?

Channel

 Transmission Rate: The maximum number of bits that can be transmitted without errors per channel use.

Single symbols: $\log \omega(G)$

Zero-Error Capacity

Zero-error capacity

... and if we use larger strings in place of single symbols ...

Zero-Error Capacity

Zero-error capacity

... and if we use larger strings in place of single symbols ...

 $x_1x_2 \in y_1y_2$

Zero-Error Capacity

Zero-error capacity

... and if we use larger strings in place of single symbols ...

 $x_1 x_2 \in y_1 y_2$

Zero-Error Capacity

Zero-error capacity

... and if we use larger strings in place of single symbols ...

 $x_1 x_2 e y_1 y_2$

Zero-Error Capacity

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Zero-error capacity

... and if we use larger strings in place of single symbols ...

Graph G²:

Zero-Error Capacity

Zero-error capacity

... and if we use larger strings in place of single symbols ...

Graph G²:

•
$$V(G^2) = V \times V = \{11, 12, \dots, 55\}$$

Zero-Error Capacity

イロン 不得 とくほ とくほ とうほ

Zero-error capacity

... and if we use larger strings in place of single symbols ...

Graph G²:

- $V(G^2) = V \times V = \{11, 12, \dots, 55\}$
- $\{\mathbf{v}, \mathbf{w}\} \in E(G^2) \Rightarrow \exists i : \{v_i, w_i\} \in E(G)$

Zero-Error Capacity

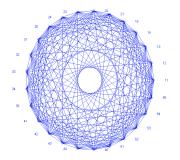
Zero-error capacity

... and if we use larger strings in place of single symbols ...

Graph G²:

• $V(G^2) = V \times V = \{11, 12, \dots, 55\}$

•
$$\{\mathbf{v}, \mathbf{w}\} \in E(G^2) \Rightarrow \exists i : \{v_i, w_i\} \in E(G)$$



イロト イポト イヨト イヨト

э

Zero-Error Capacity

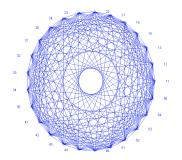
Zero-error capacity

... and if we use larger strings in place of single symbols ...

Graph G²:

- $V(G^2) = V \times V = \{11, 12, \dots, 55\}$
- $\{\mathbf{v}, \mathbf{w}\} \in E(G^2) \Rightarrow \exists i : \{v_i, w_i\} \in E(G)$

 $\omega(\mathbf{G}^2) = ?$



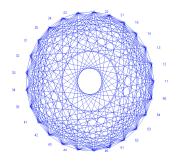
Zero-Error Capacity

Zero-error capacity

... and if we use larger strings in place of single symbols ...

Graph
$$G^2$$
:
• $V(G^2) = V \times V = \{11, 12, ..., 55\}$
• $\{\mathbf{v}, \mathbf{w}\} \in E(G^2) \Rightarrow \exists i : \{v_i, w_i\} \in E(G)$
 $\omega(G^2) = ?$

 $C = \{11, 23, 35, 42, 54\}$



イロト イポト イヨト イヨト

э

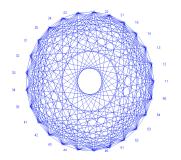
Zero-Error Capacity

Zero-error capacity

... and if we use larger strings in place of single symbols ...

Graph
$$G^2$$
:
• $V(G^2) = V \times V = \{11, 12, ..., 55\}$
• $\{\mathbf{v}, \mathbf{w}\} \in E(G^2) \Rightarrow \exists i : \{v_i, w_i\} \in E(G)$
 $\omega(G^2) = ?$

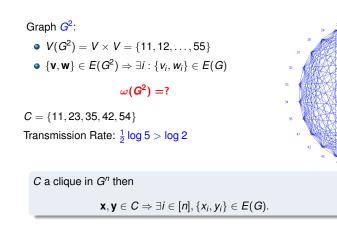
 $C = \{11, 23, 35, 42, 54\}$ Transmission Rate: $\frac{1}{2} \log 5 > \log 2$



Zero-Error Capacity

Zero-error capacity

... and if we use larger strings in place of single symbols ...



Zero-Error Capacity

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Definition

The Shannon zero-error capacity of G is

$$C(G) = \lim_{n \to +\infty} \frac{1}{n} \log \omega(G^n)$$

Zero-Error Capacity

Definition

The Shannon zero-error capacity of G is

$$C(G) = \lim_{n \to +\infty} \frac{1}{n} \log \omega(G^n)$$

$$C(C_5) = ?$$

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

Zero-Error Capacity

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Definition

The Shannon zero-error capacity of G is

$$C(G) = \lim_{n \to +\infty} rac{1}{n} \log \omega(G^n)$$

$$C(C_5) = ?$$

Lovász '79 : $C(C_5) = \frac{1}{2} \log 5$

[Lov79] L. Lovász, On the Shannon capacity of a graph, IEEE Trans. Inform. Theory 25, 1979

Zero-Error Capacity

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Definition

The Shannon zero-error capacity of G is

$$C(G) = \lim_{n \to +\infty} \frac{1}{n} \log \omega(G^n)$$

$$C(C_5) = ?$$

Lovász '79 : $C(C_5) = \frac{1}{2} \log 5$

Determining the value of $C(C_7)$ is still open!

[Lov79] L. Lovász, On the Shannon capacity of a graph, IEEE Trans. Inform. Theory 25, 1979

Zero-Error Capacity

イロン 不得 とくほ とくほ とうほ

Generalizations

- Graphs [Sha56]
- Directed Graphs [KS92, GKV92]
- Graph Families [CKS90, GKV94]
- Uniform Hypergraphs [KM90]

Zero-Error Capacity

Generalizations

- Graphs [Sha56]
- Directed Graphs [KS92, GKV92]
- Graph Families [CKS90, GKV94]
- Uniform Hypergraphs [KM90]

Connections

Extremal Combinatorics

- Perfect Graphs [Ber62]
- Qualitative Independence [Rén71, GKV93]

Information Theory

- Perfect hashing [FK84]
- Zero error list decoding [Eli57]
- Zero error capacity of compound channels [BBT59, Dob59, Wol60, NR05]

Zero-Error Capacity

Generalization to Infinite Graphs?

Zero-Error Capacity

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Generalization to Infinite Graphs?

∜

Zero-Error Capacity

▲ロト ▲帰 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

Generalization to Infinite Graphs?

₩

Permutations

A precise Result Shannon Zero–Error Capacity Difference and Similarity

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

G-different Permutations.

[KSS09] J. Körner, G. Simonyi and B.Sinaimeri, On types of growth for graph-different permutations, J. Combin. Theory Ser. A, 116, 713–723, 2009.

A precise Result Shannon Zero–Error Capacity Difference and Similarity

$$\pi = \pi(1)\pi(2)\dots\pi(n)$$

A precise Result Shannon Zero–Error Capacity Difference and Similarity

イロト 不得 とくほ とくほ とうほ

Definition

G an infinite graph with $V(G) = \mathbb{N}$. Two permutations π , ρ of [n] are said *G*–different if $\exists i \in [n]$ such that $\{\pi(i), \rho(i)\} \in E(G)$.

A precise Result Shannon Zero–Error Capacity Difference and Similarity

イロン 不得 とくほ とくほ とうほ

Definition

G an infinite graph with $V(G) = \mathbb{N}$. Two permutations π, ρ of [n] are said *G*–different if $\exists i \in [n]$ such that $\{\pi(i), \rho(i)\} \in E(G)$.

Example

A precise Result Shannon Zero–Error Capacity Difference and Similarity

イロト 不得 とくほ とくほ とうほ

Definition

G an infinite graph with $V(G) = \mathbb{N}$. Two permutations π, ρ of [n] are said *G*–different if $\exists i \in [n]$ such that $\{\pi(i), \rho(i)\} \in E(G)$.

Example

A precise Result Shannon Zero–Error Capacity Difference and Similarity

イロト 不得 とくほ とくほ とうほ

Definition

G an infinite graph with $V(G) = \mathbb{N}$. Two permutations π, ρ of [n] are said *G*–different if $\exists i \in [n]$ such that $\{\pi(i), \rho(i)\} \in E(G)$.

Example

n = 5

A precise Result Shannon Zero–Error Capacity Difference and Similarity

イロト 不得 とくほ とくほ とうほ

Definition

G an infinite graph with $V(G) = \mathbb{N}$. Two permutations π, ρ of [n] are said *G*–different if $\exists i \in [n]$ such that $\{\pi(i), \rho(i)\} \in E(G)$.

Example

n = 5

π = 12345
 ρ = 13245

A precise Result Shannon Zero–Error Capacity Difference and Similarity

イロト 不得 とくほ とくほ とうほ

Definition

G an infinite graph with $V(G) = \mathbb{N}$. Two permutations π, ρ of [n] are said *G*–different if $\exists i \in [n]$ such that $\{\pi(i), \rho(i)\} \in E(G)$.

Example

n = 5

π = 12345
 ρ = 13245

G-different.

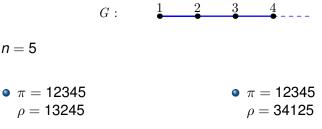
イロト 不得 とくほ とくほ とうほ

Definition

G an infinite graph with $V(G) = \mathbb{N}$. Two permutations π, ρ of [*n*] are said *G*-different if $\exists i \in [n]$ such that $\{\pi(i), \rho(i)\} \in E(G)$.

Example

n=5



G-different.

A precise Result Shannon Zero–Error Capacity Difference and Similarity

Definition

G an infinite graph with $V(G) = \mathbb{N}$. Two permutations π, ρ of [n] are said *G*–different if $\exists i \in [n]$ such that $\{\pi(i), \rho(i)\} \in E(G)$.

Example

n = 5

π = 12345
 ρ = 13245

G-different.

• $\pi = 12345$ $\rho = 34125$

Not G-different.

A precise Result Shannon Zero–Error Capacity Difference and Similarity

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Problem

T(G, n) the maximum cardinality of a set of pairwise *G*-different permutations of [n].

A precise Result Shannon Zero–Error Capacity Difference and Similarity

イロン 不得 とくほ とくほ とうほ

Problem

T(G, n) the maximum cardinality of a set of pairwise *G*-different permutations of [n].

T(G, n) = ?

A precise Result Shannon Zero–Error Capacity Difference and Similarity

イロン 不得 とくほ とくほ とうほ

Problem

T(G, n) the maximum cardinality of a set of pairwise *G*-different permutations of [n].

$$T(G, n) = ?$$

The semi-infinite path L

Conjecture

[KM06]

$$T(L,n) = \binom{n}{\lfloor \frac{n}{2} \rfloor}$$

A precise Result Shannon Zero–Error Capacity Difference and Similarity

Problem

T(G, n) the maximum cardinality of a set of pairwise G-different permutations of [n].

$$T(G, n) = ?$$

The semi-infinite path L

Conjecture

[KM06]

$$T(L,n) = \binom{n}{\lfloor \frac{n}{2} \rfloor}$$

• Best upper and lower bounds in [BCF⁺]

A precise Result Shannon Zero–Error Capacity Difference and Similarity

3

Problem

T(G, n) the maximum cardinality of a set of pairwise *G*-different permutations of [n].

$$T(G, n) = ?$$

The semi-infinite path L

Conjecture

[KM06]

$$T(L,n) = \binom{n}{\lfloor \frac{n}{2} \rfloor}$$

• Best upper and lower bounds in [BCF⁺]

Surprisingly for the complement graph of L an exact formula is found ...

A precise Result Shannon Zero–Error Capacity Difference and Similarity

イロン 不得 とくほ とくほ とうほ

Theorem

Let \overline{L} be the complement graph of semi-infinite path, then

$$T(n,\overline{L})=rac{n!}{2^{\lfloor rac{n}{2}
floor}}$$

A precise Result Shannon Zero–Error Capacity Difference and Similarity

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへぐ

Theorem

Let \overline{L} be the complement graph of semi-infinite path, then

$$T(n,\overline{L})=rac{n!}{2^{\lfloor rac{n}{2}
floor}}$$

Proof (\leq)

A precise Result Shannon Zero–Error Capacity Difference and Similarity

イロン 不得 とくほ とくほ とうほ

Theorem

Let \overline{L} be the complement graph of semi-infinite path, then

$$T(n,\overline{L})=rac{n!}{2^{\lfloor rac{n}{2}
floor}}$$

Proof (\leq) For any π a permutation of [*n*] define a set $C(\pi)$:

A precise Result Shannon Zero–Error Capacity Difference and Similarity

イロン 不得 とくほ とくほ とうほ

Theorem

Let \overline{L} be the complement graph of semi-infinite path, then

$$T(n,\overline{L})=rac{n!}{2^{\lfloor rac{n}{2}
floor}}$$

Proof (\leq) For any π a permutation of [*n*] define a set $C(\pi)$:

π : **231456**

A precise Result Shannon Zero–Error Capacity Difference and Similarity

Theorem

Let \overline{L} be the complement graph of semi-infinite path, then

$$T(n,\overline{L})=rac{n!}{2^{\lfloor rac{n}{2}
floor}}$$

Proof (\leq) For any π a permutation of [*n*] define a set $C(\pi)$:

π : **231456**

A precise Result Shannon Zero-Error Capacity Difference and Similarity

イロン 不得 とくほ とくほ とうほ

Theorem

Let \overline{L} be the complement graph of semi-infinite path, then

$$T(n,\overline{L})=rac{n!}{2^{\lfloor rac{n}{2}
floor}}$$

Proof (\leq) For any π a permutation of [*n*] define a set $C(\pi)$:

> π : 231456 1 \leftrightarrow 2 : 132456

A precise Result Shannon Zero-Error Capacity Difference and Similarity

Theorem

Let \overline{L} be the complement graph of semi-infinite path, then

$$T(n,\overline{L})=rac{n!}{2^{\lfloor rac{n}{2}
floor}}$$

Proof (\leq) For any π a permutation of [*n*] define a set $C(\pi)$:

- π : 231456 1 \leftrightarrow 2 : 132456
- $3 \leftrightarrow 4: 241356$

A precise Result Shannon Zero–Error Capacity Difference and Similarity

イロン 不得 とくほ とくほ とうほ

Theorem

Let \overline{L} be the complement graph of semi-infinite path, then

$$T(n,\overline{L})=rac{n!}{2^{\lfloor rac{n}{2}
floor}}$$

Proof (\leq) For any π a permutation of [*n*] define a set $C(\pi)$:

 $\begin{array}{rl} \pi & : \texttt{231456} \\ \texttt{1} \leftrightarrow \texttt{2} : \texttt{132456} \\ \texttt{3} \leftrightarrow \texttt{4} : \texttt{241356} \\ \texttt{1} \leftrightarrow \texttt{2}, \texttt{5} \leftrightarrow \texttt{6} : \texttt{132465} \end{array}$

A precise Result Shannon Zero-Error Capacity Difference and Similarity

Theorem

Let \overline{L} be the complement graph of semi-infinite path, then

$$T(n,\overline{L})=rac{n!}{2^{\lfloorrac{n}{2}
floor}}$$

Proof (\leq) For any π a permutation of [*n*] define a set $C(\pi)$:

- *π* : **231456**
- 1 ↔ 2 : **132**456
- $\mathbf{3} \leftrightarrow \mathbf{4}: \mathbf{241356}$

 $1 \leftrightarrow 2, 5 \leftrightarrow 6: 132465$

•
$$|C(\pi)| = 2^{\lfloor \frac{n}{2} \rfloor}$$

• If π, ρ are \overline{L} -different then $C(\pi) \cap C(\rho) = \emptyset.$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

A precise Result Shannon Zero–Error Capacity Difference and Similarity

Proof (\geq)

A precise Result Shannon Zero–Error Capacity Difference and Similarity

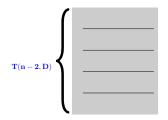
Proof (\geq)

IDEA:

A precise Result Shannon Zero–Error Capacity Difference and Similarity

Proof (\geq)

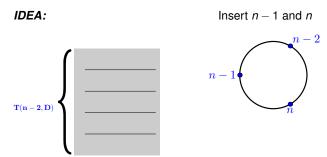
IDEA:



<□> <回> <回> <回> <回> <回> <回> <回> <<□> <□> <<□</p>

A precise Result Shannon Zero–Error Capacity Difference and Similarity

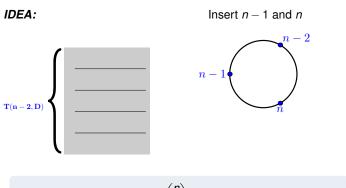
Proof (\geq)



◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ◆ ○ ◆ ○ ◆

A precise Result Shannon Zero–Error Capacity Difference and Similarity

Proof (\geq)



$$T(n,\overline{L}) \ge {n \choose 2}T(n-2,\overline{L})$$

A precise Result Shannon Zero–Error Capacity Difference and Similarity

Asymptotic Growth T(n,D)

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

A precise Result Shannon Zero–Error Capacity Difference and Similarity

Asymptotic Growth T(n,D)

• Exponential $\sim \exp(n)$:

A precise Result Shannon Zero–Error Capacity Difference and Similarity

Asymptotic Growth T(n,D)

• Exponential $\sim \exp(n)$:

 $1.8155^n \le T(n,L) \le \binom{n}{\lfloor \frac{n}{2} \rfloor}$

イロト 不得 とくほ とくほ とうほ

A precise Result Shannon Zero–Error Capacity Difference and Similarity

Asymptotic Growth T(n,D)

• Exponential $\sim \exp(n)$:

 $1.8155^n \le T(n,L) \le \binom{n}{\lfloor \frac{n}{2} \rfloor}$

イロト 不得 とくほ とくほ とうほ

• Super-Exponential $\sim \frac{n!}{\exp(n)}$:

A precise Result Shannon Zero–Error Capacity Difference and Similarity

イロト 不得 とくほ とくほ とうほ

Asymptotic Growth T(n,D)

• Exponential ~ exp(n): $1.8155^n \le T(n,L) \le \binom{n}{\lfloor \frac{n}{2} \rfloor}$

• Super-Exponential
$$\sim \frac{n!}{\exp(n)}$$
: $T(n,\overline{L}) = \frac{n!}{2\lfloor \frac{n}{2} \rfloor}$

A precise Result Shannon Zero–Error Capacity Difference and Similarity

イロト 不得 とくほ とくほ とうほ

Asymptotic Growth T(n,D)

• Exponential ~ exp(n): $1.8155^n \le T(n, L) \le \binom{n}{\lfloor \frac{n}{2} \rfloor}$

• Super-Exponential
$$\sim \frac{n!}{\exp(n)}$$
: $T(n,\overline{L}) = \frac{n!}{2^{\lfloor \frac{n}{2} \rfloor}}$

Other?

A precise Result Shannon Zero–Error Capacity Difference and Similarity

Asymptotic Growth T(n,D)

• Exponential ~ exp(n): $1.8155^n \le T(n,L) \le \binom{n}{\lfloor \frac{n}{n} \rfloor}$

• Super-Exponential
$$\sim \frac{n!}{\exp(n)}$$
: $T(n,\overline{L}) = \frac{n!}{2^{\lfloor \frac{n}{2} \rfloor}}$

• Other? $(\sqrt{n})!^{\sqrt{n}} \leq T(n, F) \leq \frac{n!}{(\sqrt{n})!^{\sqrt{n}}}$

A precise Result Shannon Zero–Error Capacity Difference and Similarity

Asymptotic Growth T(n,D)

• Exponential ~ exp(n): $1.8155^n \le T(n,L) \le \binom{n}{\lfloor \frac{n}{n} \rfloor}$

• Super-Exponential
$$\sim \frac{n!}{\exp(n)}$$
: $T(n,\overline{L}) = \frac{n!}{2^{\lfloor \frac{n}{2} \rfloor}}$

• Other? $(\sqrt{n})!^{\sqrt{n}} \leq T(n, F) \leq \frac{n!}{(\sqrt{n})!^{\sqrt{n}}}$

Study the relations between T(n, G) and $T(n, \overline{G})$

A precise Result Shannon Zero–Error Capacity Difference and Similarity

Asymptotic Growth T(n,D)

• Exponential ~ exp(n): $1.8155^n \le T(n,L) \le \binom{n}{\lfloor \frac{n}{n} \rfloor}$

• Super-Exponential
$$\sim \frac{n!}{\exp(n)}$$
: $T(n,\overline{L}) = \frac{n!}{2^{\lfloor \frac{n}{2} \rfloor}}$

• Other? $(\sqrt{n})!^{\sqrt{n}} \le T(n, F) \le \frac{n!}{(\sqrt{n})!^{\sqrt{n}}}$

Study the relations between T(n, G) and $T(n, \overline{G})$

Study the asymptotic of

$$\frac{T(n,F)T(n,G)}{T(n,F\cup G)}$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ♥ ◆ ○ ♥

A precise Result Shannon Zero–Error Capacity Difference and Similarity

The Shannon zero–error capacity is a special case of the problem of determining the asymptotic growth of T(n, G).

A precise Result Shannon Zero–Error Capacity Difference and Similarity

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

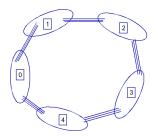
Example

Consider G with $V(G) = \mathbb{N}$ and $\{a, b\} \in E(G)$ if $|a - b| \equiv 1 \text{ o } 4 \pmod{5}$.

A precise Result Shannon Zero-Error Capacity Difference and Similarity

Example

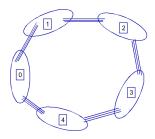
Consider G with $V(G) = \mathbb{N}$ and $\{a, b\} \in E(G)$ if $|a - b| \equiv 1 \text{ o } 4 \pmod{5}$.



A precise Result Shannon Zero–Error Capacity Difference and Similarity

Example

Consider G with $V(G) = \mathbb{N}$ and $\{a, b\} \in E(G)$ if $|a - b| \equiv 1 \text{ o } 4 \pmod{5}$.



$$\lim_{n \to +\infty} \frac{1}{n} \log T(n,G) = C(C_5)$$

A precise Result Shannon Zero–Error Capacity Difference and Similarity

Difference and Similarity

G-difference

A precise Result Shannon Zero–Error Capacity Difference and Similarity

Difference and Similarity

- **G-difference**
 - Irreflexive relation

A precise Result Shannon Zero–Error Capacity Difference and Similarity

Difference and Similarity

G-difference

- Irreflexive relation
- Locally verifiable

A precise Result Shannon Zero–Error Capacity Difference and Similarity

Difference and Similarity

G-difference

- Irreflexive relation
- Locally verifiable

The "opposite" of a difference relation

A precise Result Shannon Zero–Error Capacity Difference and Similarity

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ○ ○

Difference and Similarity

G-difference

- Irreflexive relation
- Locally verifiable

The "opposite" of a difference relation

Similarity relation

A precise Result Shannon Zero–Error Capacity Difference and Similarity

イロン 不得 とくほ とくほ とうほ

Difference and Similarity

G-difference

- Irreflexive relation
- Locally verifiable

The "opposite" of a difference relation

Similarity relation

Reflexive relation

A precise Result Shannon Zero–Error Capacity Difference and Similarity

イロン 不得 とくほ とくほ とうほ

Difference and Similarity

G-difference

- Irreflexive relation
- Locally verifiable

The "opposite" of a difference relation

Similarity relation

- Reflexive relation
- Locally verifiable

A precise Result Shannon Zero–Error Capacity Difference and Similarity

Difference and Similarity

G-difference

- Irreflexive relation
- Locally verifiable

The "opposite" of a difference relation

Similarity relation

- Reflexive relation
- Locally verifiable

Intersection Problems

A precise Result Shannon Zero–Error Capacity Difference and Similarity

Difference and Similarity

G-difference

- Irreflexive relation
- Locally verifiable

The "opposite" of a difference relation

Similarity relation

- Reflexive relation
- Locally verifiable

Erdős–Ko–Rado [EKR61]

Intersection Problems

A precise Result Shannon Zero–Error Capacity Difference and Similarity

Difference and Similarity

G-difference

- Irreflexive relation
- Locally verifiable

The "opposite" of a difference relation

Similarity relation

- Reflexive relation
- Locally verifiable

Intersection Problems

- Erdős–Ko–Rado [EKR61]
- Intersection theorems for permutations [EFP]

イロン 不得 とくほ とくほ とうほ

A precise Result Shannon Zero–Error Capacity Difference and Similarity

Difference and Similarity

G-difference

- Irreflexive relation
- Locally verifiable

The "opposite" of a difference relation

Similarity relation

- Reflexive relation
- Locally verifiable

Intersection Problems

Similarity relation

- Erdős–Ko–Rado [EKR61]
- Intersection theorems for permutations [EFP]

A precise Result Shannon Zero–Error Capacity Difference and Similarity

Difference and Similarity

G-difference

- Irreflexive relation
- Locally verifiable

The "opposite" of a difference relation

Similarity relation

- Reflexive relation
- Locally verifiable

Intersection Problems

Similarity relation

The G-difference property is never satisfied!!

- Erdős–Ko–Rado [EKR61]
- Intersection theorems for permutations [EFP]

A precise Result Shannon Zero–Error Capacity Difference and Similarity

Difference and Similarity

G-difference

- Irreflexive relation
- Locally verifiable

The "opposite" of a difference relation

Similarity relation

- Reflexive relation
- Locally verifiable

Intersection Problems

Similarity relation

The G-difference property is never satisfied!!

Reflexive relation

- Erdős–Ko–Rado [EKR61]
- Intersection theorems for permutations [EFP]

A precise Result Shannon Zero–Error Capacity Difference and Similarity

Difference and Similarity

G-difference

- Irreflexive relation
- Locally verifiable

The "opposite" of a difference relation

Similarity relation

- Reflexive relation
- Locally verifiable

Intersection Problems

Similarity relation

The G-difference property is never satisfied!!

- Reflexive relation
- Not locally verifiable

- Erdős–Ko–Rado [EKR61]
- Intersection theorems for permutations [EFP]

Forbiddance of a graph family Reverse-free triples

Forbiddance Problems

[FKMS] Z. Füredi, I. Kantor, A. Monti and B. Sinaimeri, On sets of pairwise reverse free ordered triples, SIAM J. Discrete Math. Volume 24, Issue 3, pp. 964-978 (2010)

Forbiddance of a graph family Reverse-free triples

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

For *G*, denote by $\vec{\mathcal{G}}(G)$ the family of all the orientations of *G*.

Forbiddance of a graph family Reverse-free triples

Definition

For *G*, denote by $\vec{\mathcal{G}}(G)$ the family of all the orientations of *G*.

A capacity type problem

Find the maximum cardinality of $C \subseteq [V(G)]^n$ such that $\mathbf{x}, \mathbf{y} \in C$ and for any $G' \in \vec{\mathcal{G}}(G) \exists i, j$ for which (x_i, y_i) and (y_j, x_j) are in E(G').

Forbiddance of a graph family Reverse-free triples

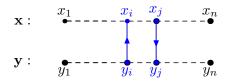
イロト 不得 とくほと くほとう

Definition

For G, denote by $\vec{\mathcal{G}}(G)$ the family of all the orientations of G.

A capacity type problem

Find the maximum cardinality of $C \subseteq [V(G)]^n$ such that $\mathbf{x}, \mathbf{y} \in C$ and for any $G' \in \vec{\mathcal{G}}(G) \exists i, j$ for which (x_i, y_i) and (y_j, x_j) are in E(G').



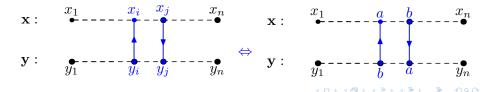
Forbiddance of a graph family Reverse-free triples

Definition

For G, denote by $\vec{\mathcal{G}}(G)$ the family of all the orientations of G.

A capacity type problem

Find the maximum cardinality of $C \subseteq [V(G)]^n$ such that $\mathbf{x}, \mathbf{y} \in C$ and for any $G' \in \vec{\mathcal{G}}(G) \exists i, j$ for which (x_i, y_i) and (y_j, x_j) are in E(G').



Forbiddance of a graph family Reverse-free triples

•
$$G = K_{\mathbb{N}}$$

• permutations

Forbiddance of a graph family Reverse-free triples

• $G = K_{\mathbb{N}}$ • permutations

Capacity

Reverse-different

Forbiddance of a graph family Reverse-free triples

• $G = K_{\mathbb{N}}$ • permutations

Capacity

Reverse-different

 $1\quad 2\quad 5\quad 4\quad 3\quad 6$

 $1\quad 3\quad 4\quad 6\quad 2\quad 5$

Forbiddance of a graph family Reverse-free triples

• $G = K_{\mathbb{N}}$ • permutations

Capacity

Reverse-different

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

Forbiddance of a graph family Reverse-free triples

• $G = K_{\mathbb{N}}$ • permutations

Capacity

Reverse-different

Forbiddance

Reverse–Free

Forbiddance of a graph family Reverse-free triples

• $G = K_{\mathbb{N}}$ • permutations

Capacity

Reverse-different

Forbiddance

Reverse–Free

1	2	5	4	3	6

 $1 \ 5 \ 4 \ 3 \ 6 \ 2$

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

Forbiddance of a graph family Reverse-free triples

• $G = K_{\mathbb{N}}$ • permutations

Capacity

Reverse-different

Forbiddance

Reverse-Free

1	2	5	4	3	6

 $1 \ 5 \ 4 \ 3 \ 6 \ 2$

$$2^{\lfloor \frac{n}{2} \rfloor} \leq T(n) \leq \frac{n!}{3^{\lfloor \frac{n}{2} \rfloor}}$$

Forbiddance of a graph family Reverse-free triples

• $G = K_{\mathbb{N}}$ • permutations

Capacity

Reverse-different

$$2^{\lfloor \frac{n}{2} \rfloor} \leq T(n) \leq \frac{n!}{3^{\lfloor \frac{n}{2} \rfloor}}$$

Forbiddance

Reverse–Free

1	2	5	4	3	6

 $1 \ 5 \ 4 \ 3 \ 6 \ 2$

$$3^{\lfloor \frac{n}{2} \rfloor} \leq T'(n) \leq \frac{n!}{2^{\lfloor \frac{n}{2} \rfloor}}$$

Forbiddance of a graph family Reverse-free triples

Reverse–free permutations

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○臣 ○ のへぐ

Forbiddance of a graph family Reverse-free triples

Reverse-free permutations

Partial permutations, i.e. ordered sets of k-elements.

Forbiddance of a graph family Reverse-free triples

イロン 不得 とくほ とくほ とうほ

Reverse–Free k-uples

Let $T_k(n)$ be the maximum cardinality of a set of reverse-free *k*-uples of [*n*].

Forbiddance of a graph family Reverse-free triples

イロン 不得 とくほ とくほ とうほ

Reverse–Free k-uples

Let $T_k(n)$ be the maximum cardinality of a set of reverse-free *k*-uples of [*n*].

$$t(k) = \limsup_{n \to \infty} \frac{T_k(n)}{k! \binom{n}{k}} = ?$$

Forbiddance of a graph family Reverse-free triples

イロン 不得 とくほ とくほ とうほ

Reverse–Free *k*-uples

Let $T_k(n)$ be the maximum cardinality of a set of reverse-free *k*-uples of [*n*].

$$t(k) = \limsup_{n \to \infty} \frac{T_k(n)}{k! \binom{n}{k}} = ?$$

If
$$k = 2$$
 then $T_2(n) = \binom{n}{2} \Rightarrow t(2) = \frac{1}{2}$

Forbiddance of a graph family Reverse-free triples

イロン 不得 とくほ とくほ とうほ

Reverse–Free k-uples

Let $T_k(n)$ be the maximum cardinality of a set of reverse-free *k*-uples of [*n*].

$$t(k) = \limsup_{n \to \infty} \frac{T_k(n)}{k! \binom{n}{k}} = ?$$

If
$$k = 2$$
 then $T_2(n) = \binom{n}{2} \Rightarrow t(2) = \frac{1}{2}$

If *k* = 3 ??

Forbiddance of a graph family Reverse-free triples

イロン 不得 とくほ とくほ とうほ

Reverse–Free k-uples

Let $T_k(n)$ be the maximum cardinality of a set of reverse-free *k*-uples of [*n*].

$$t(k) = \limsup_{n \to \infty} \frac{T_k(n)}{k! \binom{n}{k}} = ?$$

If
$$k = 2$$
 then $T_2(n) = \binom{n}{2} \Rightarrow t(2) = \frac{1}{2}$

If k = 3 ?? t(3) = 5/24

Forbiddance of a graph family Reverse–free triples

Case $\mathbf{k} = \mathbf{3}$

Forbiddance of a graph family Reverse–free triples

Case k = 3

Theorem

$$T_3(n) = \frac{5}{24}n^3 - \frac{1}{2}n^2 + \frac{5}{8}n$$

Forbiddance of a graph family Reverse–free triples

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○臣 ○ のへぐ

Case $\mathbf{k} = \mathbf{3}$

Theorem

$$T_3(n) = \frac{5}{24}n^3 - \frac{1}{2}n^2 + \frac{5}{8}n$$

Proof

Forbiddance of a graph family Reverse-free triples

Case k = 3

Theorem

$$T_3(n) = \frac{5}{24}n^3 - \frac{1}{2}n^2 + \frac{5}{8}n$$

Proof

 (\geq) Recursive construction. Tight when $n = 3^q$.

◆□ > ◆□ > ◆三 > ◆三 > 三 のへぐ

Forbiddance of a graph family Reverse-free triples

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Case k = 3

Theorem

$$T_3(n) = \frac{5}{24}n^3 - \frac{1}{2}n^2 + \frac{5}{8}n$$

Proof

 (\geq) Recursive construction. Tight when $n = 3^q$.

 (\leq)

Forbiddance of a graph family Reverse-free triples

イロン 不得 とくほ とくほ とうほ

Case k = 3

Theorem

$$T_3(n) = \frac{5}{24}n^3 - \frac{1}{2}n^2 + \frac{5}{8}n$$

Proof

 (\geq) Recursive construction. Tight when $n = 3^q$.

 (\leq) For any $a, b, c \in [n]$

Forbiddance of a graph family Reverse-free triples

イロト イポト イヨト イヨト 三日

$\text{Case } \boldsymbol{k} = \boldsymbol{3}$

Theorem

$$T_3(n) = \frac{5}{24}n^3 - \frac{1}{2}n^2 + \frac{5}{8}n$$

Proof

 (\geq) Recursive construction. Tight when $n = 3^q$.

 (\leq) For any $a, b, c \in [n]$

a b c b c a c a b b a c a c b c b a

Forbiddance of a graph family Reverse-free triples

Case k = 3

Theorem

$$T_3(n) = \frac{5}{24}n^3 - \frac{1}{2}n^2 + \frac{5}{8}n$$

Proof

 (\geq) Recursive construction. Tight when $n = 3^q$.

 (\leq) For any $a, b, c \in [n]$

a b c b c a c a b b a c a c b c b a

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Forbiddance of a graph family Reverse-free triples

イロン 不得 とくほ とくほ とうほ

Case k = 3

Theorem

$$T_3(n) = \frac{5}{24}n^3 - \frac{1}{2}n^2 + \frac{5}{8}n$$

Proof

 (\geq) Recursive construction. Tight when $n = 3^q$.

 (\leq) For any $a, b, c \in [n]$

а	b	С	
b	С	а	
С	а	b	
b	а	С	
а	С	b	
С	b	а	

Forbiddance of a graph family Reverse–free triples

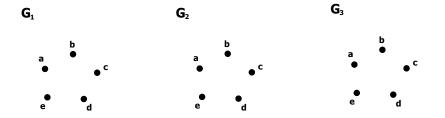
IDEA

 $\textit{abc} \in \textit{C}$

Forbiddance of a graph family Reverse-free triples

IDEA

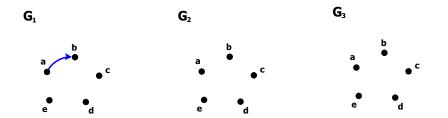
 $\textit{abc} \in \textit{C}$



Forbiddance of a graph family Reverse-free triples

IDEA

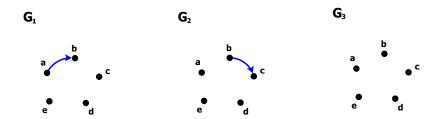
$abc \in C$



Forbiddance of a graph family Reverse-free triples

IDEA

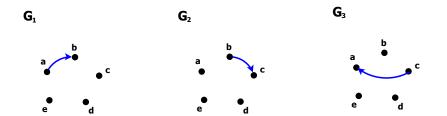
$abc \in C$



Forbiddance of a graph family Reverse-free triples

IDEA

$abc \in C$



Forbiddance of a graph family Reverse–free triples

IDEA

Forbiddance of a graph family Reverse–free triples

(日)(四)(日)(日)(日)(日)

IDEA

D with $E(D) = E(G_1) \cap E(G_2) \cap E(G_3)$

Forbiddance of a graph family Reverse-free triples

IDEA

D with $E(D) = E(G_1) \cap E(G_2) \cap E(G_3)$

 $\begin{array}{ccc} a & b & c & \\ b & c & a & \\ c & a & b & \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet & \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet & \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet & \bullet \end{array}$ \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet & \bullet & \end{array} \xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet & \bullet & \end{array}\xrightarrow{} & \begin{array}{c} & & \\ \bullet & \bullet & \bullet & \\ \bullet & \bullet & \bullet & \end{array}

■▶ ■ のへで

Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

Cancellative Families

[KS07] J. Körner and B.Sinaimeri, On cancellative set families, Combinatorics, Prob. Computing, 16, 767–773, 2007.

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

イロト 不得 とくほ とくほ とうほ

Capacity of a k-uniform hypergraph

G–difference: from binary relations to relations involving k-sets of strings

Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

イロト 不得 とくほ とくほ とうほ

Capacity of a k-uniform hypergraph

G-difference: from binary relations to relations involving k-sets of strings

∜

Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

イロン 不良 とくほう 不良 とうほ

Capacity of a k-uniform hypergraph

G-difference: from binary relations to relations involving k-sets of strings

₩

Capacity of a k-uniform hypergraph

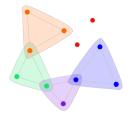
Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

Capacity of a *k*-uniform hypergraph

G–difference: from binary relations to relations involving k-sets of strings

₩

Capacity of a k-uniform hypergraph



Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

H is a complete **k–uniform** hypergraph

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

イロン 不良 とくほう 不良 とうほ

H is a complete **k–uniform** hypergraph

Problem [KS88]

Let $C \subseteq [V]^n$ such that for any *k* strings $\exists I_{m,|V|} \subseteq [n]$ where the projections of the strings are all different.

Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

イロト 不得 とくほ とくほ とうほ

H is a complete **k–uniform** hypergraph

Problem [KS88]

Let $C \subseteq [V]^n$ such that for any *k* strings $\exists I_{m,|V|} \subseteq [n]$ where the projections of the strings are all different.

First case to consider : $V = \{0, 1\} e k = 4$

Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

イロン 不良 とくほう 不良 とうほ

H is a complete **k–uniform** hypergraph

Problem [KS88]

Let $C \subseteq [V]^n$ such that for any *k* strings $\exists I_{m,|V|} \subseteq [n]$ where the projections of the strings are all different.

First case to consider :
$$V = \{0, 1\} e k = 4$$

1 0

Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

イロン 不良 とくほう 不良 とうほ

H is a complete **k–uniform** hypergraph

Problem [KS88]

Let $C \subseteq [V]^n$ such that for any *k* strings $\exists I_{m,|V|} \subseteq [n]$ where the projections of the strings are all different.

First case to consider :
$$V = \{0, 1\} e k = 4$$

1 0
1 1

Variations:

Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

H is a complete **k–uniform** hypergraph

Problem [KS88]

Let $C \subseteq [V]^n$ such that for any *k* strings $\exists I_{m,|V|} \subseteq [n]$ where the projections of the strings are all different.

First case to consider :
$$V = \{0, 1\}$$
 e $k = 4$
1 0

Variations:

One column of weight two

Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

H is a complete **k–uniform** hypergraph

Problem [KS88]

Let $C \subseteq [V]^n$ such that for any *k* strings $\exists I_{m,|V|} \subseteq [n]$ where the projections of the strings are all different.

First case to consider :
$$V = \{0, 1\} e k = 4$$

1 0
1 1
1 0

Variations:

• One column of weight two (two columns?)

Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

ヘロン 不通 とくほ とくほ とう

H is a complete **k–uniform** hypergraph

Problem [KS88]

Let $C \subseteq [V]^n$ such that for any *k* strings $\exists I_{m,|V|} \subseteq [n]$ where the projections of the strings are all different.

First case to consider :
$$V = \{0, 1\}$$
 e $k = 4$
1 0
1 1
1 0

Variations:

- One column of weight two (two columns?)
- One column of weight one

Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

H is a complete **k–uniform** hypergraph

Problem [KS88]

Let $C \subseteq [V]^n$ such that for any *k* strings $\exists I_{m,|V|} \subseteq [n]$ where the projections of the strings are all different.

First case to consider :
$$V = \{0, 1\}$$
 e $k = 4$
1 0
1 1

Variations:

- One column of weight two (two columns?)
- One column of weight one

(two columns?) (two?, three? ...)

Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

(two?, three? ...)

H is a complete **k–uniform** hypergraph

Problem [KS88]

Let $C \subseteq [V]^n$ such that for any *k* strings $\exists I_{m,|V|} \subseteq [n]$ where the projections of the strings are all different.

First case to consider :
$$V = \{0, 1\} e k = 4$$

1 0
1 1

Variations:

- One column of weight two (two columns?)
- One column of weight one

・ロ・・西・・ヨ・・日・・日・

Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

(two?, three? ...)

H is a complete **k–uniform** hypergraph

Problem [KS88]

Let $C \subseteq [V]^n$ such that for any *k* strings $\exists I_{m,|V|} \subseteq [n]$ where the projections of the strings are all different.

First case to consider :
$$V = \{0, 1\}$$
 e $k = 4$
1 0

Variations:

- One column of weight two (two columns?)
- One column of weight one

Open Problems!!

Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

・ロット (雪) (日) (日)

Requirements over three strings

Problem

Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

ヘロン 不通 とくほ とくほ とう

Requirements over three strings

Problem

Determine the maximum cardinality of $C \subseteq [V]^n$ such that for any 3 of its elements there exists *r* coordinates in which the respective columns of the strings are all different and of weight 1.

• *r* = 1 : Δ–systems [ES78, Kos00]

Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Requirements over three strings

Problem

- *r* = 1 : Δ–systems [ES78, Kos00]
- r = 2 : Cancellative Families [Tol00, Kat75]

Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

Requirements over three strings

Problem

- *r* = 1 : Δ–systems [ES78, Kos00]
- *r* = 2 : Cancellative Families [Tol00, Kat75] Tolhuizen's solution concerning codes for a multiplying channel (2000).

Requirements over three strings

イロン 不得 とくほ とくほ とうほ

Requirements over three strings

Problem

- r = 1: Δ -systems [ES78, Kos00]
- r = 2 : Cancellative Families [Tol00, Kat75] Tolhuizen's solution concerning codes for a multiplying channel (2000).
- r = 3 : Selective sets [EFF85]

Requirements over three strings

Requirements over three strings

Problem

- r = 1: Δ -systems [ES78, Kos00]
- r = 2 : Cancellative Families [Tol00, Kat75] Tolhuizen's solution concerning codes for a multiplying channel (2000).
- r = 3 : Selective sets [EFF85]
 - Conflict resolution in multiacess channel

Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

Requirements over three strings

Problem

- *r* = 1 : Δ–systems [ES78, Kos00]
- *r* = 2 : Cancellative Families [Tol00, Kat75] Tolhuizen's solution concerning codes for a multiplying channel (2000).
- r = 3 : Selective sets [EFF85]
 - Conflict resolution in multiacess channel
 - Superimposed codes

Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

Requirements over three strings

Problem

Determine the maximum cardinality of $C \subseteq [V]^n$ such that for any 3 of its elements there exists *r* coordinates in which the respective columns of the strings are all different and of weight 1.

- *r* = 1 : Δ–systems [ES78, Kos00]
- *r* = 2 : Cancellative Families [Tol00, Kat75] Tolhuizen's solution concerning codes for a multiplying channel (2000).
- r = 3 : Selective sets [EFF85]
 - Conflict resolution in multiacess channel
 - Superimposed codes
 - Group Testing ...

Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

Requirements over three strings

Problem

Determine the maximum cardinality of $C \subseteq [V]^n$ such that for any 3 of its elements there exists *r* coordinates in which the respective columns of the strings are all different and of weight 1.

- *r* = 1 : Δ–systems [ES78, Kos00]
- *r* = 2 : Cancellative Families [Tol00, Kat75] Tolhuizen's solution concerning codes for a multiplying channel (2000).
- r = 3 : Selective sets [EFF85]
 - Conflict resolution in multiacess channel
 - Superimposed codes
 - Group Testing ...

Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

・ロット (雪) (日) (日)

Requirements over four strings

Problem

Find the maximum cardinality of $C \subseteq [V]^n$ such that for any 4 of its strings there are *r* coordinates in which the respective columns of the strings are all different and of weight 1.

Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

ヘロン 不通 とくほ とくほ とう

Requirements over four strings

Problem

Find the maximum cardinality of $C \subseteq [V]^n$ such that for any 4 of its strings there are *r* coordinates in which the respective columns of the strings are all different and of weight 1.

• *r* = 1 : 4–locally thin sets [FKM01]

Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

ヘロン 不通 とくほ とくほ とう

Requirements over four strings

Problem

Find the maximum cardinality of $C \subseteq [V]^n$ such that for any 4 of its strings there are *r* coordinates in which the respective columns of the strings are all different and of weight 1.

- r = 1: 4–locally thin sets [FKM01]
- *r* = 2 : 2–cancellative families[KS07]

Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

イロン 不得 とくほ とくほ とうほ

Requirements over four strings

Problem

Find the maximum cardinality of $C \subseteq [V]^n$ such that for any 4 of its strings there are *r* coordinates in which the respective columns of the strings are all different and of weight 1.

- *r* = 1 : 4–locally thin sets [FKM01]
- *r* = 2 : 2–cancellative families[KS07]
- r = 4 : Selective families

Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

2–Cancellative Families

Theorem

$$0.11 \leq \limsup_{n \to +\infty} \frac{1}{n} \log M(n) \leq 0.42$$

◆□ > ◆□ > ◆三 > ◆三 > 三 のへぐ

Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

2–Cancellative Families

Theorem

$$0.11 \leq \limsup_{n \to +\infty} \frac{1}{n} \log M(n) \leq 0.42$$

Proof

Upper Bound: Use Tolhuizen's result.

Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

イロン 不得 とくほ とくほ とうほ

2-Cancellative Families

Theorem

$$0.11 \leq \limsup_{n \to +\infty} \frac{1}{n} \log M(n) \leq 0.42$$

Proof

Upper Bound: Use Tolhuizen's result.

Lower Bound: Use random choice.

Capacity of a uniform hypergraph Requirements over three strings Requirements over four strings

イロン 不得 とくほ とくほ とうほ

2-Cancellative Families

Theorem

$$0.11 \leq \limsup_{n \to +\infty} \frac{1}{n} \log M(n) \leq 0.42$$

Proof

Upper Bound: Use Tolhuizen's result.

Lower Bound: Use random choice.

- G-differenti Permutation
- Forbiddance Problems
- Cancellativity

- G-differenti Permutation
- Forbiddance Problems
- Cancellativity

Extremal Combinatorics \Leftrightarrow Information Theory

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Bibliografia I

[BBT59]	D. Blackwell, L. Breiman, and A. J. Thomasian. The capacity of a class of channels. <i>Ann. of Math. Statist.</i> , 30:1229–1241, 1959.
[BCF ⁺]	G. Brightwell, G. Cohen, E. Fachini, M. Fairthorne, J. Körner, G. Simonyi, and Á. Tóth. Permutation capacities of families of oriented infinite paths. (submitted).
[Ber62]	C. Berge. Sur une conjecture relative au problème des codes optimaux. Communications 13ème Assemblée Générale de l'URSI, Tokyo, 1962.
[CKS90]	G. Cohen, J. Körner, and G. Simonyi. Zero-error capacities and very different sequences. "Sequences: Combinatorics, compression, security and transmission" (R. M. Capocelli, Ed.), Springer–Verlag, New York / Berlin:144–155, 1990.
[Dob59]	R. L. Dobrushin. Optimal information transfer over a channel with unknown parameters. <i>Radiotekhn. i Élektron.</i> , 4:1951–1956 [In Russian], 1959.
[EFF85]	P. Erdős, P. Frankl, and Z. Füredi. Families of finite sets in which no set is covered by the union of <i>r</i> others. <i>Israel J. Math.</i> , 51(1–2):75–89, 1985.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○臣 ○ のへぐ

Bibliografia II

[EFP]	D. Ellis, E. Friedgut, and H. Pilpel. Intersection theorems for permutations. (<i>to appear</i>).
[EKR61]	P. Erdős, C. Ko, and R. Rado. Intersection theorems for systems of finite sets. <i>Quart. J. Math. Oxford Ser. 2</i> , 12:313–320, 1961.
[Eli57]	P. Elias. List decoding for noisy channels. Technical Report 335, Research Laboratory of Electronics, MIT, 1957.
[ES78]	P. Erdős and E. Szemerédi. Combinatorial properties of systems of sets. <i>JCT Ser. A</i> , 24:308–313, 1978.
[FK84]	M. Fredman and J. Komlós. On the size of separating systems and perfect hash functions. <i>SIAM J. Alg. Disc. Meth.</i> , 5(2):61–68, 1984.
[FKM01]	E. Fachini, J. Körner, and A. Monti. A better bound for locally thin set families. <i>J. Combin. Theory Ser. A</i> , 95:209–218, 2001.
[FKMS]	Z. Füredi, I. Kantor, A. Monti, and B. Sinaimeri. On sets of pairwise reverse free ordered triples. (<i>submitted</i>).

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○臣 ○ のへぐ

Bibliografia III

[GKV92]	L. Gargano, J. Körner, and U. Vaccaro. Sperner theorems on directed graphs and qualitative independence. <i>J. Comb. Theory A</i> , 61:173–192, 1992.
[GKV93	L. Gargano, J. Körner, and U. Vaccaro. Sperner capacities. <i>Graphs Combin.</i> , 9:31–46, 1993.
[GKV94	L. Gargano, J. Körner, and U. Vaccaro. Sperner capacities: from information theory to extremal set theory. <i>J. Comb. Theory A</i> , 68:296–316, 1994.
[Kat75]	G. O. H. Katona. Extremal problems for hypergraphs. Mathematical Center Tracts, Math. Centrum, Amsterdam, Part 2(56):13–42, 1975.
[KM90]	J. Körner and K. Marton. On the capacity of uniform hypergraphs. <i>IEEE Trans. Inf. Theory</i> , 36(1):153–156, 1990.
[KM06]	J. Körner and C. Malvenuto. Pairwise colliding permutations and the capacity of infinite graphs. <i>SIAM J. Discrete Math.</i> , 20(1):203–212, 2006.
[Kos00]	A. V. Kostochka. Extremal problems on delta-systems. "Numbers, Information and Complexity", Kluwer Acad. Publ., Boston, MA:143–150, 2000.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへぐ

Bibliografia IV

[KS88]	J. Körner and G. Simonyi. Separating partition systems and locally different sequences. <i>SIAM J. Disc. Math.</i> , 1(3):355–359, 1988.
[KS92]	J. Körner and G. Simonyi. A Sperner-type theorem and qualitative independence. <i>J. Comb. Theory</i> , 59:90–103, 1992.
[KS07]	J. Körner and B. Sinaimeri. On cancellative set families. <i>Combinatorics, Prob. Computing</i> , 16:767–773, 2007.
[KSS09]	J. Körner, G. Simonyi, and B. Sinaimeri. On types of growth for graph-different permutations. <i>J. Combin. Theory Ser. A</i> , 116:713–723, 2009.
[Lov79]	L. Lovász. On the Shannon capacity of a graph. <i>IEEE Trans. Inform. Theory</i> , 25:1–7, 1979.
[NR05]	J. Nayak and K. Rose. Graph capacities and zero-error transmission over compound channels. <i>IEEE Trans. Inform. Theory</i> , 51:4374–4378, 2005.
[Rén71]	A. Rényi. Foundations of Probability. John Wiley, New York, 1971.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○臣 ○ のへぐ

Bibliografia V

[Sha56] C. E. Shannon. The zero-error capacity of a noisy channel. IRE Trans. Inform. Theory, 2:8–19, 1956.

- [Tol00] L. M. Tolhuizen. New rate pairs in the zero-error capacity region of the binary multiplying channel without feedback. IEEE Trans. Inf. Theory, 46(3):1043–1046, 2000.
- [Wol60] J. Wolfowitz. Simultaneous channels. Arch. Rational Mech. Anal., 4:3711–386, 1960.

◆□ > ◆□ > ◆三 > ◆三 > 三 のへ⊙

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()