
Background
G–different permutations

Forbiddance Problems
2–Cancellative Families

Conclusion

Structures of Diversity

Blerina Sinaimeri

Computer Science Department
Sapienza University of Rome

ICTCS 2010



Background
G–different permutations

Forbiddance Problems
2–Cancellative Families

Conclusion

Zero–Error Capacity

Zero–Error Capacity

Shannon 1956*
Suppose we want to transmit messages across a
channel (where some symbols may be distorted) to a
receiver: What is the maximum rate of transmission such
that the receiver may recover the original message
without errors?

Channel

Alphabet V = {1, 2, 3, 4, 5}

1

2

3

4

5

Distinguishable symbols

Transmission Rate: The maximum number of bits that
can be transmitted without errors per channel use.

Single symbols: log 2

[Sha56] C. E. Shannon,The zero-error capacity of a noisy channel, IRE Trans. Inform. Theory 2, 1956
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Shannon 1956*
Suppose we want to transmit messages across a
channel (where some symbols may be distorted) to a
receiver: What is the maximum rate of transmission such
that the receiver may recover the original message
without errors?

Channel

Alphabet V = {1, 2, 3, 4, 5}
1

2

3

4

5

Distinguishable symbols

Transmission Rate: The maximum number of bits that
can be transmitted without errors per channel use.

Single symbols: log ω(G)

[Sha56] C. E. Shannon,The zero-error capacity of a noisy channel, IRE Trans. Inform. Theory 2, 1956
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Zero-error capacity
... and if we use larger strings in place of single symbols ...

x1x2 e y1y2

Graph G2:

V (G2) = V × V = {11,12, . . . ,55}

{v,w} ∈ E(G2)⇒ ∃i : {vi ,wi} ∈ E(G)

ω(G2) =?

C = {11,23,35,42,54}

Transmission Rate: 1
2 log 5 > log 2

C a clique in Gn then

x,y ∈ C ⇒ ∃i ∈ [n], {xi , yi} ∈ E(G).
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Zero–Error Capacity

Definition
The Shannon zero-error capacity of G is

C(G) = lim
n→+∞

1
n

logω(Gn)

C(C5) =?

Lovász ’79 : C(C5) = 1
2 log 5

Determining the value of C(C7) is still open!

[Lov79] L. Lovász,On the Shannon capacity of a graph, IEEE Trans. Inform. Theory 25, 1979
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Zero–Error Capacity

Generalizations

Graphs [Sha56]
Directed Graphs [KS92, GKV92]
Graph Families [CKS90, GKV94]
Uniform Hypergraphs [KM90]

Connections

Extremal Combinatorics

Perfect Graphs [Ber62]
Qualitative Independence [Rén71, GKV93]

Information Theory

Perfect hashing [FK84]
Zero error list decoding [Eli57]
Zero error capacity of compound channels
[BBT59, Dob59, Wol60, NR05]
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A precise Result
Shannon Zero–Error Capacity
Difference and Similarity

G–different Permutations.

[KSS09] J. Körner, G. Simonyi and B.Sinaimeri, On types of growth for graph–different permutations,J. Combin.

Theory Ser. A, 116, 713–723, 2009.
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A precise Result
Shannon Zero–Error Capacity
Difference and Similarity

π = π(1)π(2) . . . π(n)

Definition
G an infinite graph with V (G) = N. Two permutations π, ρ of [n]
are said G–different if ∃i ∈ [n] such that {π(i), ρ(i)} ∈ E(G).

Example

1 2 3 4G :

n = 5

π = 12345
ρ = 13245

G–different.

π = 12345
ρ = 34125

Not G–different.
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Problem
T (G,n) the maximum cardinality of a set of pairwise
G–different permutations of [n].

T (G,n) =?

The semi–infinite path L

Conjecture
[KM06]

T (L,n) =

(
n⌊n
2

⌋)

Best upper and lower bounds in [BCF+]

Surprisingly for the complement graph of L an exact formula is
found ...
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Theorem

Let L be the complement graph of semi-infinite path, then

T (n,L) =
n!

2b
n
2c

Proof (≤)
For any π a permutation of [n] define a set C(π):

π : 231456

1↔ 2 : 132456
3↔ 4 : 241356

1↔ 2,5↔ 6 : 132465

|C(π)| = 2b
n
2c

If π, ρ are L–different then
C(π) ∩ C(ρ) = ∅.
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Asymptotic Growth T(n,D)

Exponential ∼ exp (n): 1.8155n ≤ T (n,L) ≤
(

n⌊n
2

⌋)

Super-Exponential ∼ n!

exp (n)
: T (n,L) =

n!

2b
n
2c

Other? (
√

n)!
√

n ≤ T (n,F ) ≤ n!

(
√

n)!
√

n

Study the relations between T (n,G) and T (n,G)

Study the asymptotic of
T (n,F )T (n,G)

T (n,F ∪G)
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The Shannon zero–error capacity is a special case of the
problem of determining the asymptotic growth of T (n,G).



Background
G–different permutations

Forbiddance Problems
2–Cancellative Families

Conclusion

A precise Result
Shannon Zero–Error Capacity
Difference and Similarity

Example

Consider G with V (G) = N and {a,b} ∈ E(G) if
|a− b| ≡ 1 o 4 (mod 5).

lim
n→+∞

1
n

log T (n,G) = C(C5)
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The “opposite” of a difference relation

Similarity relation
Reflexive relation
Locally verifiable

Intersection Problems
Erdős–Ko–Rado [EKR61]
Intersection theorems for
permutations [EFP]

Similarity relation

The G–difference property is never satisfied!!

Reflexive relation
Not locally verifiable
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Erdős–Ko–Rado [EKR61]
Intersection theorems for
permutations [EFP]

Similarity relation

The G–difference property is never satisfied!!

Reflexive relation
Not locally verifiable



Background
G–different permutations

Forbiddance Problems
2–Cancellative Families

Conclusion

A precise Result
Shannon Zero–Error Capacity
Difference and Similarity

Difference and Similarity
G–difference

Irreflexive relation
Locally verifiable

The “opposite” of a difference relation

Similarity relation

Reflexive relation
Locally verifiable

Intersection Problems
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Forbiddance Problems

[FKMS] Z. Füredi, I. Kantor, A. Monti and B. Sinaimeri, On sets of pairwise reverse free ordered triples, SIAM J.
Discrete Math. Volume 24, Issue 3, pp. 964-978 (2010)
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Definition

For G, denote by ~G(G) the family of all the orientations of G.

A capacity type problem

Find the maximum cardinality of C ⊆ [V (G)]n such that x,y ∈ C
and for any G′ ∈ ~G(G) ∃i , j for which (xi , yi) and (yj , xj) are in
E(G′).

y1 yi yj yn
y :

x1x :
xi xj xn

⇔
y1 b a yn

y :

x1x : a b xn
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Capacity

Reverse–different
1 2 5 4 3 6

1 3 4 6 2 5

Forbiddance

Reverse–Free
1 2 5 4 3 6

1 5 4 3 6 2

2b
n
2c ≤ T (n) ≤ n!

3b
n
2c

3b
n
2c ≤ T ′(n) ≤ n!

2b
n
2c
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T3(n) =
5
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n3 − 1

2
n2 +

5
8

n

Proof
(≥) Recursive construction. Tight when n = 3q .

(≤) For any a,b, c ∈ [n]

a b c
b c a
c a b

b a c
a c b
c b a
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[KS07] J. Körner and B.Sinaimeri, On cancellative set families, Combinatorics, Prob. Computing, 16, 767–773, 2007.
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Problem [KS88]
Let C ⊆ [V ]n such that for any k strings ∃Im,|V | ⊆ [n] where the
projections of the strings are all different.

First case to consider : V = {0,1} e k = 4

i j
0 0
0 1
1 0
1 1

Variations:

One column of weight two (two columns?)
One column of weight one (two?, three? ...)
k = 3 ?

Open Problems!!
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Requirements over three strings

Problem
Determine the maximum cardinality of C ⊆ [V ]n such that for
any 3 of its elements there exists r coordinates in which the
respective columns of the strings are all different and of weight
1.

r = 1 : ∆–systems [ES78, Kos00]

r = 2 : Cancellative Families [Tol00, Kat75]
Tolhuizen’s solution concerning codes for a multiplying channel
(2000).

r = 3 : Selective sets [EFF85]
Conflict resolution in multiacess channel
Superimposed codes
Group Testing ...
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columns of the strings are all different and of weight 1.

r = 1 : 4–locally thin sets [FKM01]

r = 2 : 2–cancellative families[KS07]

r = 4 : Selective families
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2–Cancellative Families

Theorem

0.11 ≤ lim sup
n→+∞

1
n

log M(n) ≤ 0.42

Proof

Upper Bound: Use Tolhuizen’s result.

Lower Bound: Use random choice.
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