
Virtual Laboratory

January 19, 2011

Contents

1 Introduction 4

2 VMware as bridge to virtualization 5
2.1 Introduction to virtualization . 5

2.1.1 Benefits of virtualization . 6
2.1.2 Virtualization programs . 7

2.2 Definition of VMware Server . 7
2.2.1 Introduction . 7
2.2.2 How VMware Server works . 8
2.2.3 VMware Server Virtual Switch . 8

2.2.3.1 VMware Network element . 8
2.2.3.2 The Virtual Switch . 10

3 Quagga: Routing Software Suite 12
3.1 Introduction . 12
3.2 System Architecture . 13
3.3 Supported Platform . 14
3.4 Installation . 15

3.4.1 Installation by source codes . 15
3.4.1.1 The Configure script and its options 15
3.4.1.2 Build the Software . 17
3.4.1.3 Install the Software . 17
3.4.1.4 Checking Quagga files after installation 17

3.4.2 Installing by terminal . 18
3.5 Using Quagga . 18

3.5.1 Quagga daemons . 18
3.5.2 Configuration files . 19
3.5.3 VTYSH . 20
3.5.4 Routers functionality comparison . 22
3.5.5 Commands . 23

3.5.5.1 Basic Commands . 23
3.5.5.2 Terminal Mode Commands . 25

3.5.6 Zebra . 25
3.5.6.1 Virtual Terminal Interfaces . 25
3.5.6.2 Interface Command . 26

1

CONTENTS 2

3.5.7 RIP . 28
3.5.7.1 Virtual Terminal Interfaces . 29
3.5.7.2 RIP configuration . 29
3.5.7.3 RIP Version Control . 30
3.5.7.4 Access list RIP Routes . 31
3.5.7.5 RIP Authentication . 32
3.5.7.6 RIP Timers . 32
3.5.7.7 Show RIP Information . 33

3.5.8 OSPFv2 . 33
3.5.8.1 Virtual Terminal Interfaces . 33
3.5.8.2 OSPFv2 Configuration . 34
3.5.8.3 OSPF router . 34
3.5.8.4 OSPF area . 37
3.5.8.5 OSPF interface . 40
3.5.8.6 Showing OSPF information . 42

3.5.9 BGP . 42
3.5.9.1 Virtual Terminal Interfaces . 42
3.5.9.2 Configuring BGP . 43
3.5.9.3 BGP router . 43
3.5.9.4 BGP network . 44

4 Generating traffic and monitoring 45
4.1 Generating traffic . 45

4.1.1 Introduction to Generating Traffic . 45
4.1.2 Iperf . 45

4.1.2.1 What Iperf is . 45
4.2 Monitoring Traffic . 46

4.2.1 Introduction to Monitoring Traffic . 46
4.2.2 Wireshark . 47

4.2.2.1 What Wireshark is . 47
4.3 SNMP: Simple Network Management Protocol . 47

4.3.1 Introduction to SNMP . 47
4.3.2 SNMP and Quagga . 49

5 Configuring a virtual laboratory (Testing) 50
5.1 Case Study 1: Lan with static routes . 50

5.1.1 Scenario . 50
5.1.2 Configuration . 51

5.1.2.1 How to Create VMware Virtual Switch 51
5.1.2.2 How to configure Quagga . 52

5.1.3 Testing . 55
5.1.3.1 Ping . 55

5.2 Case Study 2: Lan with RIP dynamic routing protocol 57
5.2.1 Scenario . 57
5.2.2 Configuration . 58

5.2.2.1 How to Create VMware Virtual Switch 58

CONTENTS 3

5.2.2.2 How to configure Quagga . 58
5.2.3 Testing LAN . 64

5.2.3.1 Ping . 64
5.2.3.2 Wireshark . 66
5.2.3.3 Iperf . 67

5.3 Case study: Lan with OSPF . 67
5.3.1 Scenario . 68
5.3.2 Configuration . 68

5.3.2.1 How to Create VMware Virtual Switch 69
5.3.2.2 How to configure Quagga . 69

5.3.3 Testing . 73
5.3.3.1 Ping . 73
5.3.3.2 Wireshark . 75
5.3.3.3 Iperf . 77
5.3.3.4 SNMP: SMUX configuration . 77

5.4 Case study 4: Advanced Lan with OSPF . 78
5.4.1 Scenario . 79
5.4.2 Configuration . 80

5.4.2.1 How to Create VMware Virtual Switch 80
5.4.2.2 How to configure Quagga . 80
5.4.2.3 Configuring Cisco routers . 82

5.4.3 Testing . 84

6 Conclusion 89
6.1 Virtual Network Laboratory Environment as Learing Enviroment 89
6.2 Virtual Network Laboratory Environment as Working Enviroment 91

7 Future Implementation 93

Chapter 1

Introduction

The purpose of these thesis is to built a virtual networking laboratory environment for University
of Evtek in Finland.

The use of it is to offer additional learning environment for studying various topics on computers
network. It is not going to substitute a real laboratory, but actually it is going to use for amending.

We can catch the meaning of this thesis analysing directly from this words: Virtual Network
Laboratory Environment.

Environment is a set of component, hardware, software that are connected in the same system.
Network Laboratory is a place where it is possible to manage and configure network device like
router, switch, hubs and creating either a Local Area Network (LAN) or Wide Area Network
(WAN). Virtual means one or more software that execute programs like a real machine.

Combine these knowledge together allows to built a system in which it possible to create, modify,
remove, a LAN, Subnet, o configure routers, switches, executing software like a real laboratory.

This document is going to show all the steps necessary to built this virtual laboratory.
As first step it is about to explain in deep all the software component. It starts introducing the

VMware in Chapter 2, why it is necessary and its rules in the system. Here it will be introduce the
concept of Layer 2 switching with its concerning application like Virtual VMware switches.

In the 3 Chapter it is going to describe Quagga. It is the main software of all the virtual
lab. It provides implementations of OSPFv2, OSPFv3, RIP v1 and v2, RIPng and BGP-4 for
Unix platforms. In that chapter is about to describe how to install and what zebra is, the routing
protocols running in it, and it is going to give different example.

In the Chapter 4 it will be described the use of packet generator using to test with real traffic
the created network. As probably every network administrator knows there is no working network
without monitoring. For that reason it is very usuful to have a software for network monitoring to
provide SNMP (Simple Network Managing Protocol). It will discuss as well in this chapter.

In the Chapter 5 it will be showed how to create a Virtual Network Laboratory Environment.
There will be studied four case study of different level of difficult to test them. This chapter is
important because it will demonstrate if it possible to reach the purpose of this thesis, how and the
results obtained.

This thesis is going to conclude with future implementation and a take look closer to virtual lab
as learning enviroment and virtual lab as working enviroment.

4

Chapter 2

VMware as bridge to virtualization

2.1 Introduction to virtualization

The term of virtualization is often used in this thesis. There is different definition about it, in this
session it has choosen ones that it could be the more appropriate to indicate the role of virtualization
in this contest.

It can be defined as a framework or methodology of dividing the resources of a computer into
multiple execution environments, by applying one or more concepts or technologies such as hardware
and software partitioning, time-sharing, partial or complete machine simulation, emulation, and
many others.

Virtualization allows to run multiple virtual machines on a single physical machine, with each
virtual machine sharing the resources of that one physical computer across multiple environments.
Different virtual machines can run different operating systems and multiple applications on the
same physical computer.

Virtualization is a combination of software and hardware engineering that creates Virtual Ma-
chines (VMs), an abstraction of the computer hardware that allows a single machine to act as if it
where many machines.

A virtual machine can be defined as software container that can run its own operating systems
and applications as if it were a physical computer. A virtual machine behaves exactly like a physical
computer and contains it own virtual CPU, RAM hard disk and network interface card (NIC).

A virtual machine is exactly the tool needed to implement the virtual lab implemented in this
project.

5

CHAPTER 2. VMWARE AS BRIDGE TO VIRTUALIZATION 6

Figure 2.1: Non Virtual Machine and VM Configurations

As it has showed in the previous picture, a machine without virtual machine has its Operating
System that owns all hardware resources.

Instead, a machine with a virtual machine installed on it can have multiple operating systems,
each running its own virtual machine, share hardware resources. Virtualization enables multiple
operating systems to run on the same physical platform.

A machine with a virtual machine has a new layer of software called Virtual Machine Monitor
(VMM).

The VMM is the control system at the core of virtualization. It acts as the control and translation
system between the VMs and the hardware.

The follows chapter it will explain the benefits of virtualization, which virtualization programs
it has used and why.

2.1.1 Benefits of virtualization

Today’s computer hardware was designed to run a single operating system and a single application.
Virtualization allows to run multiple virtual machines on a single physical machine, with each
virtual machine sharing the resources of that one physical computer across multiple environments.
Therefore, different virtual machines can run different operating systems and multiple applications
on the same physical computer.

These is a list of main advantages of using virtualization[1]:

• Testing and development: use of a VM enables rapid deployment by isolating the applica-
tion in a known and controlled environment. Unknown factors such as mixed libraries caused
by numerous installs can be eliminated. Severe crashes that required hours of re-installation
now take moments by simply copying a virtual image.

• Compatibility: just like a physical computer, a virtual machine hosts its own guest operating
system and applications, and has all the components found in a physical computer (mother-
board, VGA card, network card controller, etc). As a result, virtual machines are completely
compatible with all standard x86 operating systems, applications and device drivers, so you

CHAPTER 2. VMWARE AS BRIDGE TO VIRTUALIZATION 7

can use a virtual machine to run all the same software that you would run on a physical x86
computer.

• Isolation: while virtual machines can share the physical resources of a single computer, they
remain completely isolated from each other as if they were separate physical machines. If,
for example, there are four virtual machines on a single physical server and one of the virtual
machines crashes, the other three virtual machines remain available. Isolation is an important
reason why the availability and security of applications running in a virtual environment is
far superior to applications running in a traditional, non-virtualized system.

• Encapsulation: a virtual machine is essentially a software container that bundles or “encap-
sulates” a complete set of virtual hardware resources, as well as an operating system and all
its applications, inside a software package. Encapsulation makes virtual machines incredibly
portable and easy to manage. For example, you can move and copy a virtual machine from
one location to another just like any other software file, or save a virtual machine on any
standard data storage medium, from a pocket-sized USB flash memory card to an enterprise
storage area networks (SANs).

• Hardware Independence: virtual machines are completely independent from their un-
derlying physical hardware. For example, you can configure a virtual machine with virtual
components (e.g., CPU, network card, SCSI controller) that are completely different from the
physical components that are present on the underlying hardware. Virtual machines on the
same physical server can even run different kinds of operating systems (Windows, Linux, etc).

2.1.2 Virtualization programs

Virtualization programs are software that can enable to create and run Virtual Machines. Among
different products it has chosen VMware server 2.0.2.

The reason of this choice are that a VMware server offers a list of benefits that match with the
needed of this project. First of all VMware Server provides multiple ways to configure a virtual
machine for virtual networking1. Another reason is that it offers a Vitual Network Switch, and it
works like a physical switch. So it offers an additional component for building a Virtual Laboratory.

Therefore WMware is a free use software and it is possible to download and install after registered
in WMware site.

2.2 Definition of VMware Server

2.2.1 Introduction

VMware Server is a hosted virtualization platform that installs an application on a host and it
allows to partition a physical host into multiple virtual machines.

A virtual machine is a isolated software container that can run its own operating systems and
applications as if it were a physical computer. A virtual machine behaves exactly like a physical
computer and contains its own virtual CPU, RAM hard disk and network interface card (NIC).

1VMware Server functions will be described deeply in the chapter 2.2

CHAPTER 2. VMWARE AS BRIDGE TO VIRTUALIZATION 8

2.2.2 How VMware Server works

VMware Server installs and runs as an application on top of a host Windows or Linux operating
system. A thin virtualization layer partitions the physical server so that multiple virtual machines
can be run simultaneously on a single server. Computing resources of the physical server are treated
as a uniform pool of resources that can be allocated to virtual machines in a controlled manner.
VMware Server isolates each virtual machine from its host and other virtual machines, leaving it
unaffected if another virtual machine crashes. Data does not leak across virtual machines and appli-
cations can only communicate over configured network connections. VMware Server encapsulates
a virtual machine environment as a set of files, which are easy to back-up, move and copy.

To perform host and virtual machine configuration for VMware Server is used VMware Infras-
tructure Web Access (VI Web Access) 2.0[2]. It is a intuitive web-based interface that provides a
simple and flexible tool for virtual machine management.

With a Web Access is possible to:

• Create, configure, and delete virtual machines.

• Add and remove virtual machines from the inventory.

• Perform power operations (start, stop, reset, suspend, and resume) on virtual machines.

• Monitor the operation of virtual machines.

• Generate a Web shortcut to customize the VI Web Access user interface for users, with the
option to limit their view to the console or a single virtual machine.

• Generate a VMware Remote Console desktop shortcut that allows virtual machine users to
interact directly with the guest operating system outside of a Web browser.

Therefore, VMware supports different Operating Systems like Windows (also the new Windows
Server 2008), Linux (Red Hat, Ubuntu,Cent OS...).

2.2.3 VMware Server Virtual Switch

VMware Server has been chosen in this project also because it offers Virtual Switch and a set of
features to manage it.

First of all it will explain the component and the way to manage network connection for Virtual
Machines.

2.2.3.1 VMware Network element

VMware Server provides[?] multiple ways you can configure a virtual machine for virtual networking:

• Bridged networking.

• Network address translation (NAT).

• Host-only networking.

On a Windows host, the software needed for bridged, NAT, and host-only networking configurations
is installed when you install VMware Server. The New Virtual Machine wizard connects the virtual
machine to the virtual network selected.

Now it will discuss the meaning and how the virtual networking components work.

CHAPTER 2. VMWARE AS BRIDGE TO VIRTUALIZATION 9

Bridged Networking It configures a virtual machine as a unique identity on the network, sep-
arate from and unrelated to its host. Other computers on the network can communicate directly
with the virtual machine. The virtual network adapter in the virtual machine connects to the
physical network adapter in your host computer, allowing it to connect to the LAN used by the
host computer.

Using bridged networking, a virtual machine must have its own identity on the network. For
example, on a TCP/IP network, the virtual machine needs its own IP address.

Figure 2.2: Bridged Networking Setup

Network Address Translation (NAT) NAT gives a virtual machine access to network re-
sources by using the host computer’s IP address. NAT is the easiest way to give a virtual machine
access to the Internet or other TCP/IP network. NAT uses the host computer’s dial-up networking
or broadband connection. Therefore, a virtual machine shares the IP and MAC addresses of the
host.

Figure 2.3: Network Address Translation Setup

Using, a virtual machine does not have its own IP address on the external network. Instead,
a separate private network is set up on the host computer. A virtual machine gets an address on
that network from the VMware internal DHCP server. The VMware NAT device passes network
data between one or more virtual machines and the external network, using a host network adapter
that is visible to the host operating system. It identifies incoming data packets intended for each
virtual machine and sends them to the correct destination.

CHAPTER 2. VMWARE AS BRIDGE TO VIRTUALIZATION 10

Host-Only Networking It allows to configure a virtual machine to allow network access only to
a private network on the host. Host-only networking creates a network that is completely contained
within the host computer. With host-only networking, the virtual machine can communicate only
with the host and other virtual machines in the host-only network. This can be useful if it is needed
to set up an isolated virtual network.

Figure 2.4: Host-Only Networking Setup

2.2.3.2 The Virtual Switch

In a physical network configuration, a switch is typically a hardware device which is used to provide
a central point of network connectivity for network clients. The devices on a physical network are
connected to a switch using twisted pair cabling. When a client sends a network packet to another
device on the network, the switch checks the packet for the MAC address of the destination device
and forwards the packet to the port to which that device is connected.

VMware Server includes a virtual network switch which, although entirely software based, per-
forms the same task as physical switch, in that it allows virtual devices, such as virtual machines
and other virtual network components, to be connected together to form a virtual network.

The virtual switch works like a physical switch, but it is used by virtual machines. Like a physical
switch, a virtual switch allows to connect other networking components together. Virtual switches
are created as needed by VMware Server, up to a total of 10 virtual switches on Windows and 255
on Linux. Virtual switches can be used in bridged, host-only, and NAT network configurations. It
has possible to connect one or more virtual machines to a switch.

For that reasons, in this project, virtual switch are used to create switch-to-router connections,
switch-to-switch connections and switch-to-host connections.

A few networks have default names and switches associated with them:

• The Bridged network uses VMnet0.

• The HostOnly network uses VMnet1.

• The NAT network uses VMnet8.

Additional virtual switches may be added, up to the allowed host platform maximum, using the
names VMnet2, VMnet3, VMnet4, and so on to custom for the own needs.

A list of currently configured networks, and the switches to which they are assigned may viewed
via the VI Web Access management interface to VMware Server 2.0 by selecting the host system

CHAPTER 2. VMWARE AS BRIDGE TO VIRTUALIZATION 11

from the Inventory panel and locating the Networks panel in the Summary workspace. The following
figure illustrates the Networks panel with five virtual switches configured.

Figure 2.5: Virtual Switch

In the above example, there are five networks named Bridged, HostOnly and NAT. These are
assigned to virtual switched vmnet0, vmnet1, vmnet8, vmnet2 and vmnet3 respectively.

The first three virtual switches are created by default by VMware Server, the others are created
by administrator.

It has to remind that a virtual switch allows connection between one or more virtual machines.
But virtual switch doesn’t manage and route any traffic. For that reasons Quagga is a added value.

Chapter 3

Quagga: Routing Software Suite

3.1 Introduction

Quagga is actually the most important part of the project. It plays a central rule : it is the core of
the project. In fact all the functionality of this project works thanks to Quagga.

The concept of virtualization in this project is just beyond applications and operating systems,
it will cover a new notion: network virtualization. And the tool to realize it is Quagga.

The concept of network virtualization can be defined as the process of combining hardware
network resources and software network resources into a single environment. In a real network en-
vironment hardware network are routers, switches and workstations with their NIC, while software
network are the OS of the hardware network. In a virtual network environment hardware network
are workstations with their NIC, while software network is a container of software that can act and
perform routing functionality.

Nowadays, in a real network environment TCP/IP networks are covering all of the world. The
Internet has been deployed in many countries, companies, and to the home. The packets will pass
many routers which have TCP/IP routing functionality.

In a virtual environment, Quagga installed acts as a dedicated router. With Quagga, the machine
exchanges routing information with real routers (e.g. Cisco...) using routing protocols.

Quaggais a routing software package that provides a suite of TCP/IP based routing protocols.
Precisely it provides implementations of OSPFv2, OSPFv3, RIP v1 and v2, RIPng and BGP-4 for
Unix platforms, particularly FreeBSD, Linux, Solaris and NetBSD[4]. Quagga is a fork of GNU
Zebra which was developed by Kunihiro Ishiguro.

It also supports special BGP Route Reflector and Route Server behavior. In addition to tradi-
tional IPv4 routing protocols, Quagga also supports IPv6 routing protocols. With SNMP daemon
which supports SMUX protocol, Quagga provides routing protocol MIBs. Currently, Quagga sup-
ports common unicast routing protocols. Multicast routing protocols such as BGMP, PIM-SM,
PIM-DM may be supported in Quagga 2.0. MPLS support is going on. In the future, TCP/IP
filtering control, QoS control, diffserv configuration will be added to Quagga. Quagga project’s
final goal is making a productive, quality, free TCP/IP routing software

A router can be generally defined as a protocol independent networking device that routes IP
packets between IP subnets. Quagga can be considered a router because, as a router, is able to
perform the following operations:

12

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 13

• It keeps a local routing table containing information about destination networks and the way
they are reached. The incoming packet is analyzed and the destination address on the packet
is compared to the routing table entries and the one with the longest match. A routing
table entry includes destination network, subnet mask, next hop address, output interface
and metric information.

• Routing table entries are either locally configured static routes or dynamically learned from
other routers with a routing protocol. On large networks with altering states, dynamic routing
is normally used. Routing protocol defines the message discussion and format, and decision
methodology for routing table alterations.

• As a router has physical interfaces, quagga has his interface (physical if quagga is running
on a real machine, virtual if quagga is running on virtual machine), using different data link
layer encapsulation methods. Layer 2 header is stripped from the incoming frame to expose
the network layer packet (containing the destination address). After the routing decision
the packet should be send to the next hop address, using the data link layer encapsulation
configured for the interface the packet is send by. Routers decapsulate and encapsulate packets
from/to data link layer frames.

• For configuration purposes, a router offers a user interface for configuration download, updates
and uploads.

Quagga uses routing information to update the kernel routing table so that the right data goes to
the right place. The configuration can be dynamically changed and routing table information can
be viewed from the Quagga terminal interface.

Therefor, it uses an advanced software architecture to provide multi server routing engine.
Quagga has an interactive user interface for each routing protocol and supports common client
commands.

3.2 System Architecture

Traditional routing software is made as a one process program which provides all of the routing
protocol functionality. Quagga takes a different approach. It is made from a collection of several
daemons that work together to build the routing table. There may be several protocol-specific
routing daemons and zebra the kernel routing manager.

The ripd daemon handles the RIP protocol, while ospfd is a daemon which supports OSPF
version 2. The bgpd supports the BGP-4 protocol. For changing the kernel routing table and for
redistribution of routes between different routing protocols, there is a kernel routing table manager
zebra daemon. It is possible to add a new routing protocol daemons to the entire routing system
without affecting any other software. It is just necessary to run only the protocol daemon associated
with routing protocols in use. Thus, user may run a specific daemon and send routing reports to a
central routing console.

There is no need for these daemons to be running on the same machine. It is even possible to
run several same protocol daemons on the same machine. This architecture creates new possibilities
for the routing system.

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 14

Figure 3.1: Quagga System Architecture

Multi-process architecture brings extensibility, modularity and maintainability. At the same
time it also brings many configuration files and terminal interfaces. Each daemon has it’s own
configuration file and terminal interface. When a static route is configured, it must be done in
zebra configuration file. When BGP network is configured, it must be done in bgpd configuration
file. This can be a very annoying thing. To resolve the problem, Quagga communities recently
integrated user interface shell called vtysh. Vtysh connects to each daemon with UNIX domain
socket and then works as a proxy for user input.

3.3 Supported Platform

Currently Quagga supports GNU/Linux, BSD and Solaris. Porting Quagga to other platforms is
not too difficult. Protocol daemons are mostly platform independent.

The list of officially supported platforms are listed below. Note that Quagga may run correctly
on other platforms, and may run with partial functionality on further platforms.

• GNU/Linux 2.4.x and higher.

• FreeBSD 4.x and higher.

• NetBSD 1.6 and higher.

• OpenBSD 2.5 and higher.

• Solaris 8 and higher.

In this project it has been used two distribution, CentOS (based on Red Hat Enterprise Linux) and
Ubuntu server (based on Debian Linux).

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 15

3.4 Installation

There are two ways to install Quagga in a machine. The first by source codes which is suggested
by Quagga support. The second is made by precompiled codes using the terminal.

3.4.1 Installation by source codes

There are three steps for installing the software:

• configuration

• compilation

• installation

The easiest way to get Quagga running is to issue the following commands:

% configure

% make

% make install

It the follows steps will be describe how to use these script.

3.4.1.1 The Configure script and its options

Quagga has an excellent configure script which automatically detects most host configurations.
There are several additional configure options you can use to turn off IPv6 support, to disable the
compilation of specific daemons, and to enable SNMP support.

‘–enable-guile’ Turn on compilation of the zebra-guile interpreter. You will need the guile library
to make this. zebra-guile implementation is not yet finished. So this option is only useful for
zebra-guile developers.

‘–disable-ipv6’Turn off IPv6 related features and daemons. Quagga configure script automati-
cally detects IPv6 stack. But sometimes you might want to disable IPv6 support of Quagga.

‘–disable-zebra’ Do not build zebra daemon.

‘–disable-ripd’ Do not build ripd.

‘–disable-ripngd’ Do not build ripngd.

‘–disable-ospfd’ Do not build ospfd.

‘–disable-ospf6d’ Do not build ospf6d.

‘–disable-bgpd’ Do not build bgpd.

‘–disable-bgp-announce’ Make bgpd which does not make bgp announcements at all. This
feature is good for using bgpd as a BGP announcement listener.

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 16

‘–enable-netlink’ Force to enable GNU/Linux netlink interface. Quagga configure script detects
netlink interface by checking a header file. When the header file does not match to the current
running kernel, configure script will not turn on netlink support.

‘–enable-snmp’ Enable SNMP support. By default, SNMP support is disabled.

‘–enable-opaque-lsa’ Enable support for Opaque LSAs (RFC2370) in ospfd.

‘–disable-ospfapi’ Disable support for OSPF-API, an API to interface directly with ospfd. OSPF-
API is enabled if -enable-opaque-lsa is set. ‘–disable-ospfclient’ Disable building of the exam-
ple OSPF-API client.

‘–enable-ospf-te’ Enable support for OSPF Traffic Engineering Extension (Internet-draft) this
requires support for Opaque LSAs. ‘–enable-multipath=ARG’ Enable support for Equal
Cost Multipath. ARG is the maximum number of ECMP paths to allow, set to 0 to allow
unlimited number of paths.

‘–enable-rtadv’ Enable support IPV6 router advertisement in zebra.

It could possible to specify any combination of the above options to the configure script. By default,
the executable are placed in ‘/usr/local/sbin’ and the configuration files in ‘/usr/local/etc’. The
‘/usr/local/’ installation prefix and other directories may be changed using the following options
to the configuration script.

‘–prefix=prefix’Install architecture-independent files in prefix [/usr/local].

‘–sysconfdir=dir’ Look for configuration files in dir [prefix/etc]. Note that sample configuration
files will be installed here.

‘–localstatedir=dir’ Configure zebra to use dir for local state files, such as pid files and unix
sockets.

This is an example how to configure quagga disabling ipv6:

./configure --disable-ipv6

Least-Privilege support Additionally, it is possible to configure zebra to drop its elevated
privileges shortly after start up and switch to another user. The configure script will automatically
try to configure this support. There are three configure options to control the behavior of Quagga
daemons.

‘–enable-user=user’ Switch to user ARG shortly after start up, and run as user ARG in normal
operation.

‘–enable-group=group’ Switch real and effective group to group shortly after start up.

‘–enable-vty-group=group’ Create Unix Vty sockets (for use with vtysh) with group ownership
set to group. This allows one to create a separate group which is restricted to accessing only
the Vty sockets, hence allowing one to delegate this group to individual users, or to run vtysh
setgid to this group.

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 17

The default user and group which will be configured is ’quagga’ if no user or group is specified.
Note that this user or group requires write access to the local state directory and requires at least
read access, and write access if you wish to allow daemons to write out their configuration, to the
configuration directory (see -sysconfdir).

On systems which have the ’libcap’ capabilities manipulation library (currently only Linux),
the quagga system will retain only minimal capabilities required, further it will only raise these
capabilities for brief periods. On systems without libcap, quagga will run as the user specified and
only raise its uid back to uid 0 for brief periods.

3.4.1.2 Build the Software

After configuring the software, it is necessary to compile it for the system. Simply issue the
command make in the root of the source directory and the software will be compiled. This is the
command:

% make

3.4.1.3 Install the Software

Installing the software to the system consists of copying the compiled programs and supporting files
to a standard location. After the installation process has completed, these files have been copied
from your work directory to ‘/usr/local/bin’, and ‘/usr/local/etc’.

To install the Quagga suite, issue the following command at your shell prompt:

% make install

3.4.1.4 Checking Quagga files after installation

Quagga daemons have their own terminal interface or VTY. After installation, in /etc/services file
there are the following entries.

Figure 3.2: /etc/services

The daemons are placed in /usr/local/sbin. To start the daemons it is necessary to perform the
follow task:

#zebra -d

#ripd -d

#ospfd -d

The configure files about the daemons are placed in /usr/local/etc.

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 18

3.4.2 Installing by terminal

This way to install Quagga is the suggestion way also better the installation guide obtaining from
Quagga official website.

The first step is to open the Terminal, login as super-user and then is to follow the next steps.

• to see the Quagga version available:

• To download and install Quagga:

• To see the Quagga dependencies:

3.5 Using Quagga

3.5.1 Quagga daemons

Before start using quagga is necessary to know that Quagga is composed of several daemons, one
per routing protocol and another one called Zebra acting as the kernel routing manager. Each
daemon has its own configuration file and terminal interface which can be accessed by telnet.

The following list are the daemons:

zebra: Interface declaration and static routing.

bgpd : BGP routing protocol.

ospfd : OSPF routing protocol.

ospf6d : OSPF IPv6 routing protocol.

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 19

ripd : RIP v2 routing protocol.

ripngd : RIP Ipv6 routing protocol.

It is important to know that the daemons must be activated after installing. In the following
example there are been activated zebra and rip daemons:

• from the terminal perform this command

• from the file remove the word “no” with “yes” to activate daemons as shown in the following
imagine

After made this changing is necessary restart the Quagga service typing from terminal the
command:

You can check the Quagga daemons status:

#ps -ef | grep quagga

This is the output:

If a Quagga daemon doesn’t stop properly, it is possible to kill it manually and start the quagga
service:

#kill -9 "UID number"

#/etc/init.d/quagga start

3.5.2 Configuration files

It is necessary to create a configuration file to activate Quagga daemon.
Each daemon is associated with a specific file name:

zebra: zebra.conf.

bgpd: bgpd.conf.

ospfd: ospfd.conf.

ospf6d: ospf6d.conf.

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 20

ripd: ripd.conf.

ripngd: ripngd.conf.

This files are placed in /etc/quagga/. In this folder there are already created some daemons
configuration sample.

To create the config files, it is necessary to copy the sample config files as follows: In this
example, to activate zebra and ospfd daemons it is needed to create the zebra.conf and ospfd.conf
files.

#cp /usr/share/doc/quagga/examples/zebra.conf.sample /etc/quagga/zebra.conf

#cp /usr/share/doc/quagga/examples/ospfd.conf.sample /etc/quagga/ospfd.conf

Another way it is to create two empty files called /etc/quagga/ospfd.conf and /etc/quagga/zebra.conf.
But in this case will not possible to telnet a daemon, and it will necessary to configure the telnet
permissions with vtsh.

Finally, give user and group ownership to respectively quagga and quaggavty to the files inside
the /etc/quagga directory:

#chown quagga.quaggavty /etc/quagga/*.conf #chmod 640 /etc/quagga/*.conf

Restart the Quagga service:

#/etc/init.d/quagga restart

3.5.3 VTYSH

The way to access the daemons starting to configure the routing protocols is by telnetting the port
number of each daemons . Each daemon has its configuration file and terminal interface.

zebra: 2601

ripd: 2602

ripng: 2603

ospfd: 2604

bgpd: 2605

ospf6d: 2606

This is the command to access , for example, the ospfd daemon:

#telnet localhost 2604

To be very honesty it is not practical to configure every router by telnetting its daemons separately.
For this reasons recentely it has been created VTYSH to configure every daemons in one single
interface.

To use vtysh, it is necessary first to create its configuration file as follows:

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 21

#cp /usr/share/doc/quagga/examples/vtysh.conf.sample /etc/quagga/vtysh.conf

Apply correct permissions and restart Quagga:

#chown quagga.quaggavty /etc/quagga/*.conf

#chmod 640 /etc/quagga/*.conf

#/etc/init.d/quagga restart

This is an example of vtysh.conf:

In the example above the ”service integrated-vtysh-config” setting has been disabled (recom-
mended). In this case, when you save the config under vtysh, it will be stored in separate files
depending on the protocols you activated. Below, an example where the Quagga configuration is
saved under vtysh. (The zebra and ospfd daemons have been enabled).

#vtysh quagga-router

#write

Configuration saved to /etc/quagga/zebra.conf Configuration saved to /etc/quagga/ospfd.conf
If you activate ”service integrated-vtysh-config”, the configuration under vtysh will be saved in

one file called Quagga.conf in the /etc/quagga/ directory. With this setting, when you access a
daemon via telnet, the daemon will look first to the Quagga.conf file before looking for its own file.
This means that, when you telnet a device, there can be a difference between what you see after
the ”show run” command and the content of the associated file, for example zebra.conf.

#vtysh quagga-router

#write

Configuration saved to /etc/quagga/Quagga.conf

It is recommended to disable ”service integrated-vtysh-config” because if this setting is enabled and
in case of a syntax error in the Quagga.conf file, this can lead to all your daemons being unable
to start up. This will not be case when ”service integrated-vtysh-config” is disabled because the
configurations are stored in separate files.

Check that the default ”vtysh enable=yes” setting are configured in your /etc/quagga/debian.conf
file.

Then it’s useful to add the ”VTYSH PAGER=more” setting in your /etc/environment file,
otherwise the screen will show an unfriendly ”(END)” blinking in the left-down corner of the screen
each time your enter a command and will need to press the ”q” key to continue. Here what to do:

#echo VTYSH PAGER=more > /etc/environment

Log off and log on to enable the environment setting. Now it possible to access to the Quagga
router with the vtysh command:

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 22

#vtysh

Hello, this is Quagga(version 0.99.6).

Copyright 1996-2005 Kunihiro Ishiguro, et al.

quagga-router#

To run a Quagga command from the Linux shell:

#vtysh -c "command"

For instance, vtysh -c ”show ip route” will display the Quagga routing table.
To use Ping and traceroute to perform connectivity checks from the vtysh prompt. Of course,

these two programs need to be installed on the Linux machine. Ping is generally installed by default
but traceroute often not. To install traceroute:

#apt-get install traceroute

IP forwarding is required to transfer packets between the network interfaces of a Linux system. See
a picture of the Linux kernel routing.

#echo "1" > /proc/sys/net/ipv4/ip forward

The command above will add the ”1” value inside the /proc/sys/net/ipv4/ip forward file and thus
activate the IP forwarding. To keep the IP forwarding after a Linux reboot:

#echo "net.ipv4.ip forward = 1" >> /etc/sysctl.conf

It is possible to check the ip forwarding status under the Quagga router:

#show ip forwarding

IP forwarding is on

In this case the IP forwarding is activated.
For the project in this thesis it has been used vtysh configuration.

3.5.4 Routers functionality comparison

This section will show a comparison of some characteristics among four routers: the first two are
the best open source routers available, Quagga and Vyatta1 and the remaining two are commercial
devices and best-sellers from Cisco: a standard router from the 26xx family and a Layer Three
Switch 3750.

1Vyatta is an open source routing software which is developed by the Vyatta company created in 2005. Vyatta’s
open, software-based approach to networking has created a complete network OS that can connect and secure physical
networks as well as virtual and cloud computing infrastructures. Vyatta software and appliances offer users a flexible,
affordable alternative to proprietary, hardware-based routers, firewalls, VPN concentrators and intrusion prevention
devices.

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 23

Figure 3.3: Routers functionality comparison

3.5.5 Commands

3.5.5.1 Basic Commands

In this session it is explained the basic command to use quagga and configure it as a real router.
Once inside the terminal it is possible to invoke the following commands.

hostname hostname. Set hostname of the router.

password password. Set password for vty interface. If there is no password, a vty won’t accept
connections.

enable password password. Set enable password.

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 24

log trap level. These commands are deprecated and are present only for historical compatibility.
The log trap command sets the current logging level for all enabled logging destinations, and
it sets the default for all future logging commands that do not specify a level. The normal
default logging level is debugging. The no form of the command resets the default level for
future logging commands to debugging, but it does not change the logging level of existing
logging destinations.

log stdout level. Enable logging output to stdout. If the optional second argument specifying the
logging level is not present, the default logging level (typically debugging, but can be changed
using the deprecated log trap command) will be used. The no form of the command disables
logging to stdout. The level argument must have one of these values: emergencies, alerts,
critical, errors, warnings, notifications, informational, or debugging. Note that the existing
code logs its most important messages with severity errors.

log file filename. If you want to log into a file, please specify filename as in this example: log
file /var/log/quagga/bgpd.log informational. If the optional second argument specifying the
logging level is not present, the default logging level (typically debugging, but can be changed
using the deprecated log trap command) will be used. The no form of the command disables
logging to a file. Note: if do not configure any file logging, and a daemon crashes due to a
signal or an assertion failure, it will attempt to save the crash information in a file named
/var/tmp/quagga.<daemon name>.crashlog. For security reasons, this will not happen if the
file exists already, so it is important to delete the file after reporting the crash information.

log syslog. Enable logging output to syslog. If the optional second argument specifying the logging
level is not present, the default logging level (typically debugging, but can be changed using
the deprecated log trap command) will be used. The no form of the command disables logging
to syslog.

log monitor. Enable logging output to vty terminals that have enabled logging using the termi-
nal monitor command. By default, monitor logging is enabled at the debugging level, but
this command (or the deprecated log trap command) can be used to change the monitor
logging level. If the optional second argument specifying the logging level is not present, the
default logging level (typically debugging, but can be changed using the deprecated log trap
command) will be used. The no form of the command disables logging to terminal monitors.

log facility facility. This command changes the facility used in syslog messages. The default
facility is daemon. The no form of the command resets the facility to the default daemon
facility.

log record-priority. To include the severity in all messages logged to a file, to stdout, or to a
terminal monitor (i.e. anything except syslog), use the log record-priority global configuration
command. To disable this option, use the no form of the command. By default, the severity
level is not included in logged messages. Note: some versions of syslogd (including Solaris)
can be configured to include the facility and level in the messages emitted.

service password-encryption. Encrypt password.

line vty. Enter vty configuration mode.

banner motd default. Set default motd string.

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 25

access-class access-list. Restrict vty connections with an access list.

3.5.5.2 Terminal Mode Commands

In this section there are a list of common commands used in Terminal Mode.

write terminal. Displays the current configuration to the vty interface.

write file. Write current configuration to configuration file.

configure terminal. Change to configuration mode. This command is the first step to configura-
tion.

terminal length <0-512>. Set terminal display length to <0-512>. If length is 0, no display
control is performed.

who. Show a list of currently connected vty sessions.

list. List all available commands.

show version. Show the current version of Quagga and its build host information.

show logging. Shows the current configuration of the logging system. This includes the status of
all logging destinations.

logmsg level message. Send a message to all logging destinations that are enabled for messages
of the given severity.

3.5.6 Zebra

In this section it will explain how to access to zebra daemon configure terminal and a list of basic
commands used to start configuring routers.

3.5.6.1 Virtual Terminal Interfaces

Virtual Terminal Interface (VTY) is a command line interface (CLI) for user interaction with the
routing daemon. VTY stands for Virtual TeletYpe interface. It means it could possible to connect
to the daemon via the telnet protocol.

To enable a VTY interface, a VTY password has to be setup. If there is no VTY password, one
cannot connect to the VTY interface at all.

This is an example how to connect, for example, to zebra. It shows that the only way to connect
directly to this daemon is by telnetting the port 2601.

Therefore, the VTY ask the User Access Verification saved in zebra.conf file. After this, like a
real Cisco router, typing the question mark it will shows a list of command that a standard user
can invoke. Then, typing the enable command and inserting the password is possible to access to
the core to configure the virtual router.

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 26

Figure 3.4: zebra VTY

3.5.6.2 Interface Command

In this session it will shows a list if command used in configure terminal mode like a Cisco router.

Figure 3.5: example of sample interface configuration

The previous commands set up or down the current interface. The IPv4, the description are set
for the interface.

Therefore it is possible to configure static routing. Static routing is a very fundamental feature
of routing technology. It defines static prefix and gateway.

ip route network gateway. Network is destination prefix with format of A.B.C.D/M. Gateway
is gateway for the prefix. It is taken as a IPv4 address gateway. Otherwise it is treated as an
interface name.

Here some example of this command.

#ip route 10.0.0.0/8 10.0.0.2

#ip route 10.0.0.0/8 ppp0

#ip route 10.0.0.0/8 null0

First example defines 10.0.0.0/8 static route with gateway 10.0.0.2. Second one defines the same
prefix but with gateway to interface ppp0. The third install a blackhole route.

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 27

ip route network netmask gateway. This is alternate version of above command. When net-
work is A.B.C.D format, user must define netmask value with A.B.C.D format. gateway is
same option as above command

#ip route 10.0.0.0 255.255.255.0 10.0.0.2

#ip route 10.0.0.0 255.255.255.0 ppp0

#ip route 10.0.0.0 255.255.255.0 null0

These statements are equivalent to those in the previous example.

ip route network gateway distance. This command installs the route with the specified dis-
tance.

Multiple next hop static route

#ip route10.0.0.1/32 10.0.0.2

#ip route 10.0.0.1/32 10.0.0.3

#ip route 10.0.0.1/32 eth0

If there is no route to 10.0.0.2 and 10.0.0.3, and interface eth0 is reachable, then the last route is
installed into the kernel.

If zebra has been compiled with multipath support, and both 10.0.0.2 and 10.0.0.3 are reachable,
zebra will install a multipath route via both next hops, if the platform supports this. This is the
command:

#show ip route

And this is the output:

S> 10.0.0.1/32 [1/0] via 10.0.0.2 inactive

via 10.0.0.3 inactive

* is directly connected, eth0

#ip route 10.0.0.0/8 10.0.0.2

#ip route 10.0.0.0/8 10.0.0.3

#ip route 10.0.0.0/8 null0 255

This will install a multiform route via the specified next-hops if they are reachable, as well as a
high-metric blackhole route, which can be useful to prevent traffic destined for a prefix to match
less-specific routes (eg default) should the specified gateways not be reachable. For example:

#show ip route 10.0.0.0/8

And this is the output:

Routing entry for 10.0.0.0/8

Known via "static", distance 1, metric 0

10.0.0.2 inactive

10.0.0.3 inactive

Routing entry for 10.0.0.0/8

Known via "static", distance 255, metric 0

directly connected, Null0

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 28

This is the command to set ipv6:

#ipv6 route network gateway

#ipv6 route network gateway distance

These behave similarly to their ipv4 counterparts.
The follows command are about the Cisco command “show”

show ip route

Display current routes which zebra holds in its database.

#show ipv6 route

#show interface

#show ip forward

Display whether the host’s IP forwarding function is enabled or not. Almost any UNIX kernel can
be configured with IP forwarding disabled. If so, the box can’t work as a router.

#show ipv6forward

Display whether the host’s IP v6 forwarding is enabled or not.

3.5.7 RIP

In this section it will explain how to access to ripd daemon configure terminal and a list of basic
commands used to start configuring routing.

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 29

3.5.7.1 Virtual Terminal Interfaces

Very similar how explained in the section 3.5.6.1, the only way to connect directly to this daemon
is by telnetting the port 2602.

Therefore, the VTY ask the User Access Verification saved in ripd.conf file. After this, like a
real Cisco router, typing the question mark it will shows a list of command that a standard user
can invoke. Then, typing the enable command and inserting the password is possible to access to
the core to configure the virtual router.

Figure 3.6: ripd VTY

3.5.7.2 RIP configuration

Routing Information Protocol (RIP) is widely deployed interior gateway protocol. RIP was devel-
oped in the 1970s at Xerox Labs as part of the XNS routing protocol. RIP is a distance-vector
protocol and is based on the Bellman-Ford algorithms. As a distance-vector protocol, RIP router
send updates to its neighbors periodically, thus allowing the convergence to a known topology. In
each update, the distance to any given network will be broadcasted to its neighboring router.

The daemon ripd supports RIP version 2 as described in RFC2453 and RIP version 1 as described
in RFC1058.

The netmask features of ripd support both version 1 and version 2 of RIP. Version 1 of RIP
originally contained no netmask information. In RIP version 1, network classes were originally used
to determine the size of the netmask. Class A networks use 8 bits of mask, Class B networks use
16 bits of masks, while Class C networks use 24 bits of mask. Today, the most widely used method
of a network mask is assigned to the packet on the basis of the interface that received the packet.
Version 2 of RIP supports a variable length subnet mask (VLSM). By extending the subnet mask,
the mask can be divided and reused. Each subnet can be used for different purposes such as large
to middle size LANs and WAN links. Quagga ripd does not support the non-sequential netmasks
that are included in RIP Version 2.

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 30

quagga-router(config)#router rip

The router rip command is necessary to enable RIP. To disable RIP, use the no router rip command.
RIP must be enabled before carrying out any of the RIP commands.

quagga-router(config)#no router rip

Set the RIP enable interface by network. The interfaces which have addresses matching with
network are enabled.

quagga-router(config)#network network

quagga-router(config)#no network network

Set the RIP enable interface by network. The interfaces which have addresses matching with
network are enabled.

This group of commands either enables or disables RIP interfaces between certain numbers
of a specified network address. For example, if the network for 10.0.0.0/24 is RIP enabled, this
would result in all the addresses from 10.0.0.0 to 10.0.0.255 being enabled for RIP. The no network
command will disable RIP for the specified network.

quagga-router(config)#network ifname

quagga-router(config)#no network ifname

Set a RIP enabled interface by ifname. Both the sending and receiving of RIP packets will be
enabled on the port specified in the network ifname command. The no network ifname command
will disable RIP on the specified interface.

quagga-router(config)#neighbor a.b.c.d

quagga-router(config)#neighbor a.b.c.d

Specify RIP neighbor. When a neighbor doesn’t understand multicast, this command is used to
specify neighbors. In some cases, not all routers will be able to understand multicasting, where
packets are sent to a network or a group of addresses. In a situation where a neighbor cannot
process multicast packets, it is necessary to establish a direct link between routers. The neighbor
command allows the network administrator to specify a router as a RIP neighbor. The no neighbor
a.b.c.d command will disable the RIP neighbor.

Below is very simple RIP configuration. Interface eth0 and interface which address match to
10.0.0.0/8 are RIP enabled.

quagga-router(config)#router rip

quagga-router(config-router)#network 10.0.0.0/8 network eth0

3.5.7.3 RIP Version Control

RIP can be configured to send either Version 1 or Version 2 packets. The default is to send RIPv2
while accepting both RIPv1 and RIPv2 (and replying with packets of the appropriate version for
REQUESTS / triggered updates). The version to receive and send can be specified globally, and
further overridden on a per-interface basis if needs be for send and receive separately (see below).

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 31

It is important to note that RIPv1 can not be authenticated. Further, if RIPv1 is enabled then
RIP will reply to REQUEST packets, sending the state of its RIP routing table to any remote
routers that ask on demand. For a more detailed discussion on the security implications of RIPv1
see RIP Authentication.

quagga-router(config)# version version

Set RIP version to accept for reads and send. version can be either ‘1” or ‘2”.
Disabling RIPv1 by specifying version 2 is strongly encouraged, see section RIP Authentication.

This may become the default in a future release.
Default: send Version 2, and accept either version.

quagga-router(config)#no version

Reset the global version setting back to the default.

quagga-router(config)#ip rip send version [1-2]

This interface command overrides the global rip version setting, and selects which version of RIP
to send packets with, for this interface specifically. Choice of RIP Version 1, RIP Version 2, or both
versions. In the latter case, where ‘1 2’ is specified, packets will be both broadcast and multicast.

3.5.7.4 Access list RIP Routes

RIP routes can be filtered by a distribute-list.

quagga-router(config)#distribute-list access list direct ifname

To apply access lists to the interface with a distribute-list command; access list is the access list
name. While direct is ‘in’ or ‘out’. If direct is ‘in’ the access list is applied to input packets.

The distribute-list command can be used to filter the RIP path. distribute-list can apply access-
lists to a chosen interface. First, one should specify the access-list. Next, the name of the access-list
is used in the distribute-list command. For example, in the following configuration ‘eth0’ will permit
only the paths that match the route 10.0.0.0/8

distribute-list can be applied to both incoming and outgoing data.

distribute-list prefix prefix list (in|out) ifname

To apply prefix lists to the interface with a distribute-list command; prefix list is the prefix list
name. Next is the direction of “in” or “ou”’. If direct is ‘in’ the access list is applied to input
packets.

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 32

3.5.7.5 RIP Authentication

RIPv2 allows packets to be authenticated via either an insecure plain text password, included with
the packet, or via a more secure MD5 based HMAC (keyed-Hashing for Message Authentication),
RIPv1 can not be authenticated at all, thus when authentication is configured ripd will discard
routing updates received via RIPv1 packets.

However, unless RIPv1 reception is disabled entirely, see section RIP Version Control, RIPv1
REQUEST packets which are received, which query the router for routing information, will still be
honored by ripd, and ripd WILL reply to such packets. This allows ripd to honour such REQUESTs
(which sometimes is used by old equipment and very simple devices to bootstrap their default route),
while still providing security for route updates which are received.

In short: enabling authentication prevents routes being updated by unauthenticated remote
routers, but still can allow routes (I.e. the entire RIP routing table) to be queried remotely,
potentially by anyone on the Internet, via RIPv1.

To prevent such unauthenticated querying of routes disable RIPv1, See section RIP Version
Control.

quagga-router(config)#interface eth0

quagga-router(config-if)#ip rip authentication mode md5

quagga-router(config-if)#no ip rip authentication mode md5

Set the interface with RIPv2 MD5 authentication.

quagga-router(config-if)#ip rip authentication mode text

quagga-router(config-if)#no ip rip authentication mode text

To set the interface with RIPv2 simple password authentication.

quagga-router(config-if)#ip rip authentication string string

quagga-router(config-if)#no ip rip authentication string string

RIP version 2 has simple text authentication. This command sets authentication string. The string
must be shorter than 16 characters.

quagga-router(config-if)#ip rip authentication key-chain key-chain

quagga-router(config-if)#no ip rip authentication key-chain key-chain

3.5.7.6 RIP Timers

RIP protocol has several timers. User can configure those timer’s values by timers basic command.

quagga-router(config-router)#timers basic [update timeout garbage]

The default settings for the timers are as follows:

• The update timer is 30 seconds. Every update timer seconds, the RIP process is awakened to
send an unsolicited Response message containing the complete routing table to all neighboring
RIP routers.

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 33

• The timeout timer is 180 seconds. Upon expiration of the timeout, the route is no longer
valid. However, it is retained in the routing table for a short time so that neighbors can be
notified that the route has been dropped.

• The garbage collect timer is 120 seconds. Upon expiration of the garbage-collection timer,
the route is finally removed from the routing table.

The timers basic command allows the the default values of the timer listed above to be changed.

quagga-router(config-router)#no timers basic

The no timers basic command will reset the timers to the default settings listed above.

3.5.7.7 Show RIP Information

This is the command to display RIP routes:

quagga-router#show ip rip

This is the output:

The command displays all RIP routes. For routes that are received through RIP, this command
will display the time the packet was sent and the tag information. This command will also display
this information for routes redistributed into RIP.

quagga-router#show ip protocols

The previous command displays current RIP status. It includes RIP timer, filtering, version,RIP
enabled interface and RIP peer information.

3.5.8 OSPFv2

In this section it will explain how to access to ospfv2 daemon configure terminal and a list of basic
commands used to start configuring routing.

3.5.8.1 Virtual Terminal Interfaces

Very similar how explained in the section 3.5.6.1, the only way to connect directly to this daemon
is by telnetting the port 2604.

Therefore, the VTY ask the User Access Verification saved in ospfd.conf file. After this, like a
real Cisco router, typing the question mark it will shows a list of command that a standard user
can invoke. Then, typing the enable command and inserting the password is possible to access to
the core to configure the virtual router.

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 34

Figure 3.7: Ospfd VTY

3.5.8.2 OSPFv2 Configuration

OSPF (Open Shortest Path First) version 2 is a routing protocol which is described in RFC2328,
OSPF Version 2. OSPF is an IGP (Interior Gateway Protocol). Compared with RIP, OSPF can
provide scalable network support and faster convergence times. OSPF is widely used in large
networks such as ISP (Internet Service Provider) backbone and enterprise networks.

3.5.8.3 OSPF router

To start OSPF process you have to specify the OSPF router. As of this writing, ospfd does not
support multiple OSPF processes.

quagga-router(config)#router ospf

quagga-router(config)#: no router ospf

Enable or disable the OSPF process. Ospfd does not yet support multiple OSPF processes. So it
is not possible to specify an OSPF process number.

quagga-router(config-router)#ospf router-id a.b.c.d

quagga-router(config-router)#no ospf router-id

This sets the router-ID of the OSPF process. The router-ID may be an IP address of the router.
However it must be unique within the entire OSPF domain to the OSPF speaker, bad things will
happen if multiple OSPF speakers are configured with the same router-ID. If one is not specified
then ospfd will obtain a router-ID automatically from zebra.

quagga-router(config-router)#ospf abr-type type

quagga-router(config-router)#no ospf abr-type type

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 35

The key-word type can be cisco|ibm|shortcut|standard. The ”Cisco” and ”IBM” types are equiva-
lent.

The OSPF standard for ABR behavior does not allow an ABR to consider routes through
non-backbone areas when its links to the backbone are down, even when there are other ABRs in
attached non-backbone areas which still can reach the backbone - this restriction exists primarily
to ensure routing-loops are avoided.

With the ”Cisco” or ”IBM” ABR type, the default in this release of Quagga, this restriction
is lifted, allowing an ABR to consider summaries learned from other ABRs through non-backbone
areas, and hence route via non-backbone areas as a last resort when, and only when, backbone links
are down.

Note that areas with fully-adjacent virtual-links are considered to be ”transit capable” and
can always be used to route backbone traffic, and hence are unaffected by this setting (see OSPF
virtual-link).

More information regarding the behavior controlled by this command can be found in RFC
3509. Alternative implementations of OSPF Area Border Routers.

Moreover though the definition of the ABR (Area Border Router) in the OSPF specification
does not require a router with multiple attached areas to have a backbone connection, it is actually
necessary to provide successful routing to the inter-area and external destinations. If this require-
ment is not met, all traffic destined for the areas not connected to such an ABR or out of the OSPF
domain, is dropped. This document describes alternative ABR behaviors implemented in Cisco and
IBM routers.

quagga-router(config-router)#ospf rfc1583compatibility

quagga-router(config-router)#no ospf rfc1583compatibility

RFC2328, the successor to RFC1583, suggests according to section G.2 (changes) in section 16.4 a
change to the path preference algorithm that prevents possible routing loops that were possible in
the old version of OSPFv2. More specifically it demands that inter-area paths and intra-area path
are now of equal preference but still both preferred to external paths.

This command should not be set normally.

quagga-router(config-router)#log-adjacency-changes [detail]

quagga-router(config-router)#no log-adjacency-changes [detail]

Configures ospfd to log changes in adjacency. With the optional detail argument, all changes in
adjacency status are shown. Without detail, only changes to full or regressions are shown.

quagga-router(config-router)#passive-interface interface

quagga-router(config-router)#no passive-interface interface

Do not speak OSPF interface on the given interface, but do advertise the interface as a stub link in
the router-LSA (Link State Advertisement) for this router. This allows one to advertise addresses
on such connected interfaces without having to originate AS-External/Type-5 LSAs (which have
global flooding scope), as would occur if connected addresses were redistributed into OSPF (see
section Redistribute routes to OSPF). This is the only way to advertise non-OSPF links into stub
areas.

quagga-router(config-router)#timers throttle spf delay

quagga-router(config-router)#no timers throttle spf

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 36

This command sets the initial delay, the initial-holdtime and the maximum-holdtime between when
SPF is calculated and the event which triggered the calculation. The times are specified in millisec-
onds and must be in the range of 0 to 600000 milliseconds.

The delay specifies the minimum amount of time to delay SPF calculation (hence it affects how
long SPF calculation is delayed after an event which occurs outside of the holdtime of any previous
SPF calculation, and also serves as a minimum holdtime).

Consecutive SPF calculations will always be separated by at least ’hold-time’ milliseconds.
The hold-time is adaptive and initially is set to the initial-holdtime configured with the above
command. Events which occur within the holdtime of the previous SPF calculation will cause the
holdtime to be increased by initial-holdtime, bounded by the maximum-holdtime configured with
this command. If the adaptive hold-time elapses without any SPF-triggering event occurring then
the current holdtime is reset to the initial-holdtime. The current holdtime can be viewed with show
ip ospf, where it is expressed as a multiplier of the initial-holdtime.

quagga-router(config)#router ospf

quagga-router(config-router)#timers throttle spf 200 400 10000

In this example, the delay is set to 200ms, the initial holdtime is set to 400ms and the maximum
holdtime to 10s. Hence there will always be at least 200ms between an event which requires SPF
calculation and the actual SPF calculation. Further consecutive SPF calculations will always be
separated by between 400ms to 10s, the hold-time increasing by 400ms each time an SPF-triggering
event occurs within the hold-time of the previous SPF calculation.

This command super cedes the timers spf command in previous Quagga releases.

quagga-router(config-router)#max-metric router-lsa [on-startup|on-shutdown]
quagga-router(config-router)#max-metric router-lsa administrative

quagga-router(config-router)#no max-metric router-lsa [on-startup|on-shutdown]

This enables RFC3137, OSPF Stub Router Advertisement support, where the OSPF process de-
scribes its transit links in its router-LSA as having infinite distance so that other routers will avoid
calculating transit paths through the router while still being able to reach networks through the
router.

This support may be enabled administratively (and indefinitely) or conditionally. Conditional
enabling of max-metric router-lsas can be for a period of seconds after start up and/or for a period
of seconds prior to shutdown.

Enabling this for a period after start up allows OSPF to converge fully first without affecting
any existing routes used by other routers, while still allowing any connected stub links and/or
redistributed routes to be reachable. Enabling this for a period of time in advance of shutdown
allows the router to gracefully excuse itself from the OSPF domain.

Enabling this feature administratively allows for administrative intervention for whatever reason,
for an indefinite period of time. Note that if the configuration is written to file, this administrative
form of the stub-router command will also be written to file. If ospfd is restarted later, the command
will then take effect until manually reconfigured.

Configured state of this feature as well as current status, such as the number of second remaining
till on-startup or on-shutdown ends, can be viewed with the show ip ospf command.

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 37

quagga-router(config-router)#auto-cost reference-bandwidth <1-4294967>
quagga-router(config-router)#no auto-cost reference-bandwidth

This sets the reference bandwidth for cost calculations, where this bandwidth is considered equiva-
lent to an OSPF cost of 1, specified in Mbits/s. The default is 100Mbit/s (i.e. a link of bandwidth
100Mbit/s or higher will have a cost of 1. Cost of lower bandwidth links will be scaled with reference
to this cost).

This configuration setting MUST be consistent across all routers within the OSPF domain.

quagga-router(config-router)#network a.b.c.d/m area a.b.c.d

quagga-router(config-router)#network a.b.c.d/m area <0-4294967295>
quagga-router(config-router)#no network a.b.c.d/m area a.b.c.d

quagga-router(config-router)#no network a.b.c.d/m area <0-4294967295>

This command specifies the OSPF enabled interface(s). If the interface has an address from range
192.168.1.0/24 then the command below enables ospf on this interface so router can provide network
information to the other ospf routers via this interface.

quagga-router(config)#router ospf

quagga-router(config-router)#network 192.168.1.0/24 area 0.0.0.0

Prefix length in interface must be equal or bigger (ie. smaller network) than prefix length in
network statement. For example statement above doesn’t enable ospf on interface with address
192.168.1.1/23, but it does on interface with address 192.168.1.129/25.

3.5.8.4 OSPF area

This section will explain other command to set ospf area.

quagga-router(config-router)#area a.b.c.d range a.b.c.d/m

quagga-router(config-router)#area <0-4294967295> range a.b.c.d/m

quagga-router(config-router)#no area a.b.c.d range a.b.c.d/m

quagga-router(config-router)#no area <0-4294967295> range a.b.c.d/m

Summarize intra area paths from specified area into one Type-3 summary-LSA announced to other
areas. This command can be used only in ABR and ONLY router-LSAs (Type-1) and network-
LSAs (Type-2) (ie. LSAs with scope area) can be summarized. Type-5 AS-external-LSAs can’t
be summarized, their scope is AS. Summarizing Type-7 AS-external-LSAs isn’t supported yet by
Quagga.

quagga-router(config)#router ospf

quagga-router(config-router)#network 192.168.1.0/24 area 0.0.0.0

quagga-router(config-router)#network 10.0.0.0/8 area 0.0.0.10

With configuration above one Type-3 Summary-LSA with routing info 10.0.0.0/8 is announced into
backbone area if area 0.0.0.10 contains at least one intra-area network (ie. described with router
or network LSA) from this range.

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 38

quagga-router(config-router)#area a.b.c.d range IPV4 PREFIX not-advertise

quagga-router(config-router)#no area a.b.c.d range IPV4 PREFIX not-advertise

Instead of summarizing intra area paths filter them, intra area paths from this range are not
advertised into other areas. This command makes sense in ABR only.

quagga-router(config-router)#area a.b.c.d range IPV4 PREFIX substitute IPV4 PREFIX OSPF

quagga-router(config-router)#no area a.b.c.d range IPV4 PREFIX substitute IPV4 PREFIX

Substitute summarized prefix with another prefix.

quagga-router(config)#router ospf

quagga-router(config-router)#network 192.168.1.0/24 area 0.0.0.0

quagga-router(config-router)#network 10.0.0.0/8 area 0.0.0.10

quagga-router(config-router)#area 0.0.0.10 range 10.0.0.0/8

One Type-3 summary-LSA with routing info 11.0.0.0/8 is announced into backbone area if area
0.0.0.10 contains at least one intra-area network (ie. described with router-LSA or network-LSA)
from range 10.0.0.0/8. This command makes sense in ABR only.

quagga-router(config-router)#area a.b.c.d virtual-link a.b.c.d

quagga-router(config-router)#area <0-4294967295> virtual-link a.b.c.d

quagga-router(config-router)#no area a.b.c.d virtual-link a.b.c.d

quagga-router(config-router)#no area <0-4294967295> virtual-link a.b.c.d

quagga-router(config-router)#area a.b.c.d shortcut

quagga-router(config-router)#area <0-4294967295> shortcut

quagga-router(config-router)#no area a.b.c.d shortcut

quagga-router(config-router)#no area <0-4294967295> shortcut

Configure the area as Shortcut capable. See RFC3509. This requires that the ’abr-type’ be set to
’shortcut’.

quagga-router(config-router)#area a.b.c.d stub

quagga-router(config-router)#area <0-4294967295> stub

quagga-router(config-router)#no area a.b.c.d stub

quagga-router(config-router)#no area <0-4294967295> stub

Configure the area to be a stub area. That is, an area where no router originates routes external
to OSPF and hence an area where all external routes are via the ABR(s). Hence, ABRs for such
an area do not need to pass AS-External LSAs (type-5s) or ASBR-Summary LSAs (type-4) into
the area. They need only pass Network-Summary (type-3) LSAs into such an area, along with a
default-route summary.

quagga-router(config-router)#area a.b.c.d stub no-summary

quagga-router(config-router)#area <0-4294967295> stub no-summary

quagga-router(config-router)#no area a.b.c.d stub no-summary

quagga-router(config-router)#no area <0-4294967295> stub no-summary

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 39

Prevents an ospfd ABR from injecting inter-area summaries into the specified stub area.

quagga-router(config-router)#area a.b.c.d default-cost <0-16777215>
quagga-router(config-router)#no area a.b.c.d default-cost <0-16777215>

Set the cost of default-summary LSAs announced to stubby areas.

quagga-router(config-router)#area a.b.c.d export-list NAME

quagga-router(config-router)#area <0-4294967295> export-list NAME

quagga-router(config-router)#no area a.b.c.d export-list NAME

quagga-router(config-router)#no area <0-4294967295> export-list NAME

Filter Type-3 summary-LSAs announced to other areas originated from intra- area paths from
specified area.

quagga-router(config)#router ospf

quagga-router(config-router)#network 192.168.1.0/24 area 0.0.0.0

quagga-router(config-router)#network 10.0.0.0/8 area 0.0.0.10

quagga-router(config-router)#area 0.0.0.10 export-list foo

quagga-router(config)#access-list foo permit 10.10.0.0/16

quagga-router(config)#access-list foo deny any

With example above any intra-area paths from area 0.0.0.10 and from range 10.10.0.0/16 (for
example 10.10.1.0/24 and 10.10.2.128/30) are announced into other areas as Type-3 summary-
LSA’s, but any others (for example 10.11.0.0/16 or 10.128.30.16/30) aren’t.

This command is only relevant if the router is an ABR for the specified area.

quagga-router(config-router)#area a.b.c.d import-list NAME

quagga-router(config-router)#area <0-4294967295> import-list NAME

quagga-router(config-router)#no area a.b.c.d import-list NAME

quagga-router(config-router)#no area <0-4294967295> import-list NAME

Same as export-list, but it applies to paths announced into specified area as Type-3 summary-LSAs.

quagga-router(config-router)#area a.b.c.d filter-list prefix NAME in

quagga-router(config-router)#area a.b.c.d filter-list prefix NAME out

quagga-router(config-router)#area <0-4294967295> filter-list prefix NAME in

quagga-router(config-router)#area <0-4294967295> filter-list prefix NAME out

quagga-router(config-router)#no area a.b.c.d filter-list prefix NAME in

quagga-router(config-router)#no area a.b.c.d filter-list prefix NAME out

quagga-router(config-router)#no area <0-42949672> filter-list prefix NAME in

quagga-router(config-router)#no area <0-42949672> filter-list prefix NAME out

Filtering Type-3 summary-LSAs to/from area using prefix lists. This command makes sense in
ABR only.

quagga-router(config-router)#area a.b.c.d authentication

quagga-router(config-router)#area <0-4294967295> authentication

quagga-router(config-router)#no area a.b.c.d authentication

quagga-router(config-router)#no area <0-4294967295> authentication

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 40

Specify that simple password authentication should be used for the given area.

quagga-router(config-router)#area a.b.c.d authentication message-digest

quagga-router(config-router)#area <0-4294967295> authentication message

Specify that OSPF packets must be authenticated with MD5 HMACs within the given area. Keying
material must also be configured on a per-interface basis (see ip ospf message-digest-key).

MD5 authentication may also be configured on a per-interface basis (see ip ospf authentication
message-digest). Such per-interface settings will override any per-area authentication setting.

3.5.8.5 OSPF interface

Set OSPF authentication key to a simple password. After setting AUTH KEY, all OSPF packets
are authenticated. AUTH KEY has length up to 8 chars.

quagga-router(config)#interface eth0

quagga-router(config-if)#ip ospf authentication-key AUTH KEY

quagga-router(config-if)#no ip ospf authentication-key

Simple text password authentication is insecure and deprecated in favor of MD5 HMAC authenti-
cation (see ip ospf authentication message-digest).

quagga-router(config-if)#ip ospf authentication message-digest

Specify that MD5 HMAC authentication must be used on this interface. MD5 keying material
must also be configured (see ip ospf message-digest-key). Overrides any authentication enabled on
a per-area basis (see area authentication message-digest).

Note that OSPF MD5 authentication requires that time never go backwards (correct time is
NOT important, only that it never goes backwards), even across resets, if ospfd is to be able to
promptly reestablish adjacency with its neighbors after restarts/reboots. The host should have
system time be set at boot from an external or non-volatile source (eg battery backed clock, NTP,
etc.) or else the system clock should be periodically saved to non-volative storage and restored at
boot if MD5 authentication is to be expected to work reliably.

quagga-router(config-if)#ip ospf message-digest-key KEYID md5 KEY Interface

quagga-router(config-if)#no ip ospf message-digest-key

Set OSPF authentication key to a cryptographic password. The cryptographic algorithm is MD5.
KEYID identifies secret key used to create the message digest. This ID is part of the protocol

and must be consistent across routers on a link.
KEY is the actual message digest key, of up to 16 chars (larger strings will be truncated), and

is associated with the given KEYID.

quagga-router(config-if)#ip ospf cost <1-65535>
quagga-router(config-if)#no ip ospf cost

Set link cost for the specified interface. The cost value is set to router-LSA’s metric field and used
for SPF calculation.

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 41

quagga-router(config-if)#ip ospf dead-interval <1-65535>
quagga-router(config-if)#ip ospf dead-interval minimal hello-multiplier <2-20>
quagga-router(config-if)#no ip ospf dead-interval

Set number of seconds for RouterDeadInterval timer value used for Wait Timer and Inactivity
Timer. This value must be the same for all routers attached to a common network. The default
value is 40 seconds.

If ’minimal’ is specified instead, then the dead-interval is set to 1 second and one must specify a
hello-multiplier. The hello-multiplier specifies how many Hellos to send per second, from 2 (every
500ms) to 20 (every 50ms). Thus one can have 1s convergence time for OSPF. If this form is
specified, then the hello-interval advertised in Hello packets is set to 0 and the hello-interval on
received Hello packets is not checked, thus the hello-multiplier need not be the same across multiple
routers on a common link.

quagga-router(config-if)#ip ospf hello-interval <1-65535>
quagga-router(config-if)#no ip ospf hello-interval

Set number of seconds for HelloInterval timer value. Setting this value, Hello packet will be sent
every timer value seconds on the specified interface. This value must be the same for all routers
attached to a common network. The default value is 10 seconds.

This command has no effect if ip ospf dead-interval minimal is also specified for the interface.

quagga-router(config-if)#ip ospf network

quagga-router(config-if)#no ip ospf network

Set explicitly network type for specified interface.

quagga-router(config-if)#ip ospf priority <0-255>
quagga-router(config-if)#no ip ospf priority

Set RouterPriority integer value. The router with the highest priority will be more eligible to become
Designated Router. Setting the value to 0, makes the router ineligible to become Designated Router.
The default value is 1.

quagga-router(config-if)#ip ospf retransmit-interval <1-65535>
quagga-router(config-if)#no ip ospf retransmit interval

Set number of seconds for RxmtInterval timer value. This value is used when retransmitting
Database Description and Link State Request packets. The default value is 5 seconds.

quagga-router(config-if)#ip ospf transmit-delay

quagga-router(config-if)#no ip ospf transmit-delay

Set number of seconds for InfTransDelay value. LSAs’ age should be incremented by this value
when transmitting. The default value is 1 seconds.

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 42

3.5.8.6 Showing OSPF information

These are the command to get information from quagga vtysh about OSPF configurations.

quagga-router#show ip ospf

Show information on a variety of general OSPF and area state and configuration information.

quagga-router#show ip ospf interface [INTERFACE]

Show state and configuration of OSPF the specified interface, or all interfaces if no interface is
given.

quagga-router#show ip ospf neighbor

quagga-router#show ip ospf neighbor INTERFACE

quagga-router#show ip ospf neighbor detail

quagga-router#show ip ospf neighbor INTERFACE detail

quagga-router#show ip ospf database

quagga-router#show ip ospf database (asbr-summary|external|network|router)
quagga-router#show ip ospf database (asbr-summary|external|network|router)
quagga-router#show ip ospf database (asbr-summary|external|network|router)
quagga-router#show ip ospf database (asbr-summary|external|network|router)
quagga-router#show ip ospf database (asbr-summary|external|network|router)
quagga-router#show ip ospf database (asbr-summary|external|network|router)
quagga-router#show ip ospf database max-age

quagga-router#show ip ospf database self-originate

quagga-router#show ip ospf route

Show the OSPF routing table, as determined by the most recent SPF calculation

3.5.9 BGP

In this section it will explain how to access to bgpd daemon configure terminal and a list of basic
commands used to start configuring routing.

3.5.9.1 Virtual Terminal Interfaces

Very similar how explained in the section 3.5.6.1, the only way to connect directly to this daemon
is by telnetting the port 2605.

Therefore, the VTY ask the User Access Verification saved in ospfd.conf file. After this, like a
real Cisco router, typing the question mark it will shows a list of command that a standard user
can invoke. Then, typing the enable command and inserting the password is possible to access to
the core to configure the virtual router

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 43

Figure 3.8: bgpd VTY

3.5.9.2 Configuring BGP

BGP stands for a Border Gateway Protocol. The latest BGP version is 4. It is referred as BGP-4.
BGP-4 is one of the Exterior Gateway Protocols and de-fact standard of Inter Domain routing
protocol. BGP-4 is described in RFC1771, a Border Gateway Protocol 4 (BGP-4).

Many extensions have been added to RFC1771. RFC2858, Multiprotocol Extensions for BGP-4
provides multiprotocol support to BGP-4.

3.5.9.3 BGP router

First of all you must configure BGP router with router bgp command. To configure BGP router,
you need AS number. AS number is an identification of autonomous system. BGP protocol uses
the AS number for detecting whether the BGP connection is internal one or external one.

quagga-router(config)#router bgp asn

Enable a BGP protocol process with the specified asn. After this statement you can input any
BGP Commands. You can not create different BGP process under different asn without specifying
multiple-instance (see section Multiple instance).

quagga-router(config)#no router bgp asn

Destroy a BGP protocol process with the specified asn.

quagga-router(config-router)#bgp router-id A.B.C.D

This command specifies the router-ID. If bgpd connects to zebra it gets interface and address
information. In that case default router ID value is selected as the largest IP Address of the
interfaces. When router zebra is not enabled bgpd can’t get interface information so router-id is
set to 0.0.0.0. So please set router-id by hand.

CHAPTER 3. QUAGGA: ROUTING SOFTWARE SUITE 44

quagga-router(config-router)#distance bgp <1-255> <1-255> <1-255>

This command change distance value of BGP. Each argument is distance value for external routes,
internal routes and local routes.

quagga-router(config-router)#distance <1-255> A.B.C.D/M

quagga-router(config-router)#distance <1-255> A.B.C.D/M word

This command set distance value to

3.5.9.4 BGP network

This command adds the announcement network.

quagga-router(config-router)#network A.B.C.D/M

This configuration example says that network 10.0.0.0/8 will be announced to all neighbors. Some
vendors’ routers don’t advertise routes if they aren’t present in their IGP routing tables; bgp doesn’t
care about IGP routes when announcing its routes.

quagga-router(config)#router bgp 1

quagga-router(config-router)#network 10.0.0.0/8

quagga-router(config-router)#no network A.B.C.D/M

quagga-router(config-router)#aggregate-address A.B.C.D/M

This command specifies an aggregate address.

quagga-router(config-router)#aggregate-address A.B.C.D/M as-set

This command specifies an aggregate address. Resulting routes include AS set.

quagga-router(config-router)#aggregate-address A.B.C.D/M summary-only

This command specifies an aggregate address. Aggregated routes will not be announce.

quagga-router(config-router)#no aggregate-address A.B.C.D/M

Chapter 4

Generating traffic and monitoring

4.1 Generating traffic

4.1.1 Introduction to Generating Traffic

This section will describe what generating traffic means and his use in this project.
The next step after creating a virtual laboratory is to test that laboratory. In the previous

chapter it has been discussed how to build a virtual laboratory and the tools to realize it. Once
created a virtual lab it could be very useful to test it, to see what happen when there is traffic
incoming.

For this use it has been necessary to generate traffic that goes throw the virtual network. The
tool to realize it are called packet generator.

Packet generators create a diserate chunk of communication in a predifined format. A packet
is a data block containing a header that includes destination address. All network communication
that accur accross a packet-switched system trasmit packets. These packets are then reassembled
by a recurring system from at the destination.

The purpose of a packet generator is to permit users or network specialist to construct a packet
(e.g.: WAN packets, VOIP packets,...) from one or more specific protocol stack areas for the
purpose of testing security, communication affectiveness, or source-to-destination accurency.

A packet generator or packet builder is a type of software that generates random packets or
allows the user to construct detailed custom packets. This software sends specific packets out a
single or multiple network interfaces.

4.1.2 Iperf

4.1.2.1 What Iperf is

Iperf[?] is a commonly used network testing tool that can create TCP and UDP data streams and
measure the throughput of a network that is carrying them. Iperf allows the user to set various
parameters that can be used for testing a network, or alternately for optimizing or tuning a network.
So it can be defined as a tool to measure bandwidth and the quality of a network link. The network
link is delimited by two hosts running Iperf. Iperf has a client and server functionality,so means
that the hosts of this link acts as client and server respectively. Therefore, it can measure the

45

CHAPTER 4. GENERATING TRAFFIC AND MONITORING 46

throughput between the two ends, either unidirectional or bi-directional. It is open source software
and runs on various platforms including Linux, Unix and Windows.

Iperf is a modern tool for network performance measurement written in C++.
The quality of a link can be tested as follows:

• Latency (response time or RTT): can be measured with the Ping command.

• Jitter (latency variation): can be measured with an Iperf UDP test.

• Datagram loss: can be measured with an Iperf UDP test.

• The bandwidth: can be measured through TCP tests.

In additional, the difference between TCP (Transmission Control Protocol) and UDP (User Data-
gram Protocol) is that TCP use processes to check that the packets are correctly sent to the receiver
whereas with UDP the packets are sent without any checks but with the advantage of being quicker
than TCP. Iperf uses the different capacities of TCP and UDP to provide statistics about network
links.

When used for testing UDP capacity, Iperf allows the user to specify the datagram size and
provides results for the datagram throughput and the packet loss.

When used for testing TCP capacity, Iperf measures the throughput of the payload. One thing
to note is that Iperf uses 1024*1024 for megabytes and 1000*1000 for megabits.

There is a Graphical user interface (GUI) front end available called jperf , it can be associated
with Iperf to provide a graphical frontend written in Java.

Typical Iperf output contains a timestamped report of the amount of data transferred and the
throughput measured.

Iperf is significant as it is a standardized tool that can be run over any network and output
standardized performance measurements. Thus it can be used for comparison of wired and wireless
networking equipment and technologies in an unbiased way. As it is open source, the measurement
methodology can be scrutinized by user.

4.2 Monitoring Traffic

4.2.1 Introduction to Monitoring Traffic

This section will explain why it is important to monitor traffic and which tool has been used to
perform it.

After creating a virtual network is really useful to monitor traffic that Quagga his routing
protocol have generated to detect network connections and bandwidth usages. This approach
allows users to learn for example TCP/IP protocols.

The tool used to perform the monitoring is Wireshark[?]. The following section is going to
describe it.

CHAPTER 4. GENERATING TRAFFIC AND MONITORING 47

4.2.2 Wireshark

4.2.2.1 What Wireshark is

Wireshark (formerly known as Ethereal1) is a free and open-source software protocol analyzer,
or “packet sniffer” application, used for network troubleshooting, analysis, software and protocol
development, and education. Wireshark has all of the standard features of a protocol analyzer.

It runs on various Unix-like operating system including Linux, Mac OS, BSD , and Microsoft
Windows. Wireshark is very similar to tcpdump, but has a graphical front-end, and many more
information sorting and filtering options. Wireshark allows the user to see all traffic being passed
over the network by putting the network interface into promiscuous mode.

4.3 SNMP: Simple Network Management Protocol

4.3.1 Introduction to SNMP

SNMP[7] is a protocol for network management. It is used for collecting information from, and
configuring, network devices, such as servers, printers, hubs, switches, and routers on an Internet
Protocol (IP) network. SNMP can collect information such as a server’s CPU level, Server chassis
Temperature. The SNMP protocol was designed to provide a simple method of centralizing the
management of TCP/IP-based networks .

SNMP[8] is based on the manager/agent model consisting of an SNMP manager, an SNMP
agent, a database of management information, managed SNMP devices and the network protocol.
The SNMP manager provides the interface between the human network manager and the man-
agement system. The SNMP agent provides the interface between the manager and the physical
device(s) being managed.

Figure 4.1: SNMP uses a manager/agent architecture. Alarm messages (Traps) are sent by the
agent to the manager.

The manager and agent use a Management Information Base (MIB) and a relatively small set
of commands to exchange information. The MIB is organized in a tree structure with individual
variables, such as point status or description, being represented as leaves on the branches. A long
numeric tag or object identifier (OID) is used to distinguish each variable uniquely in the MIB and
in SNMP messages.

Snmp uses five basic messages to communicate between the manager and the agent:

1Originally named Ethereal, in May 2006 the project was renamed Wireshark due to trademark issues.

CHAPTER 4. GENERATING TRAFFIC AND MONITORING 48

• Get.

• GetNext.

• GetResponse.

• Set and Trap.

The Get and GetNext messages allow the manager to request information for a specific variable.
The agent, upon receiving a Get or GetNext message, will issue a GetResponse message to the
manager with either the information requested or an error indication as to why the request cannot
be processed.

A Set message allows the manager to request a change be made to the value of a specific
variable in the case of an alarm remote that will operate a relay. The agent will then respond with
a GetResponse message indicating the change has been made or an error indication as to why the
change cannot be made.

The Trap is a change-of-state message allows the agent to spontaneously inform the manager in
case of event.

This messages are issued by the SNMP manager; only the trap message is initiated by an agent.
Each snmp element manages specific objects with each object having specific characteristics.

Each object/characteristic has a unique object identifier (OID) consisting of numbers separated by
decimal points (e.g., 1.3.6.1.4.1.). These object identifiers naturally form a tree as shown in the
below illustration. The MIB lists the unique object identifier (OID) of each managed element in an
SNMP network.

Figure 4.2: The branch of the MIB object identifier tree

When an SNMP manager wants to know the value of an object/characteristic, such as the
state of an alarm point, the system name, or the element uptime, it will assemble a GET packet
that includes the OID for each object/characteristic of interest. The element receives the request
and looks up each OID in its code book (MIB). If the OID is found (the object is managed by the
element), a response packet is assembled and sent with the current value of the object / characteristic
included. If the OID is not found, a special error response is sent that identifies the unmanaged
object.

CHAPTER 4. GENERATING TRAFFIC AND MONITORING 49

UDP2 is the IP transport layer protocol that supports SNMP messages. Unlike TCP, UDP is
a connectionless protocol. A UDP host places messages on the network without first establishing
a connection with the recipient. UDP does not guarantee message delivery, but it’s a lightweight
protocol that can transport a large number of status messages without using too many network
resources.

4.3.2 SNMP and Quagga

In the chapter 3 it has been explained that Quagga acts as a router. Every router can be imple-
mented with SNMP. Quagga itself does not support SNMP agent (server daemon) functionality but
is able to connect to a SNMP agent using the SMUX protocol[9] and make the routing protocol
MIBs available through it.

There are several SNMP agent which support SMUX. In this paper it will use the latest version of
net-snmp which was formerly known as ucd-snmp. It is free and open software and as binary package
for most Linux distributions. The net-snmp has to be compiled with –with-mib-modules=smux to
be able to accept connections from Quagga.

A separate connection has then to be established between between the SNMP agent (snmpd)
and each of the Quagga daemons. This connections each use different OID numbers and pass-
words. This OID number is not the one that is used in queries by clients, it is solely used for the
intercommunication of the daemons.

The following OID numbers are used for the interprocess communication of snmpd and the
Quagga daemons. SNMP has not been implemented in all daemons yet.

Figure 4.3: OID number for communication with Quagga daemons

The following OID numbers are used for querying the SNMP daemon by a client:

Figure 4.4: OID numbers for querying SNMP daemons

The following syntax is understood by the Quagga daemons for configuring SNMP:

quagga-router#smux peer oid

quagga-router#smux peer oid

quagga-router#smux peer oid password

quagga-router#no smux peer oid password

2UDP stands for User Datagram Protocol

Chapter 5

Configuring a virtual laboratory
(Testing)

This section will show different scenario how to configure a virtual labs. There will be different case
study for different level of difficult.

To perform all the labs it has been used one physical machine with the following requisites:

• Windows XP operating System

• Service Pack 3

• Pentium Dual-Core 2.60 GHz

• 2 GB Ram

5.1 Case Study 1: Lan with static routes

In this section it will be shown a case study where the connection among routers is allowed config-
uring static routing protocol.

First of all it will be described the scenario, after how to configure Quagga to work as router
and then it will be tested the Lan.

5.1.1 Scenario

The following figure will shows the scenario that it will be created using quagga software. In this
virtual laboratory there are three routers. To do that it is necessary three virtual machines, one
for each router. Notice that to perform this Lan in a real environment they are necessary three
physical router, two physical switch plus four cables. In a virtual network environment only one
physical PC is needed.

50

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 51

Figure 5.1: scenario with static routes

The virtual machines are created using VMware Server 2.0. They are three and the operating
system running are Ubuntu Server 8.04 for Quagga A and Quagga B and CentOS for Quagga C.

Every virtual machines have one processor with 2.6 GHz, 256 MB of RAM and 8 GB of Hard
Disk.

The next section will explain how to configure the virtual machines to build a Lan.

5.1.2 Configuration

This section will show how to configure the virtual machines to create a simple Lan. After installing
the Linux operating system1, the steps to create a virtual laboratory are :

• create a VMware virtual switch and configure it

• configure Quagga

Now it’s time to perform the previous two points explaining in detail what to do.

5.1.2.1 How to Create VMware Virtual Switch

In this section it will be described how to create a Virtual Switch using VMware.
The Virtual Switch is set using the application Manage Virtual Switch. It is an editor that

allows to create a new Network Adapter and associate it to a virtual switch.

1Quagga runs only on Linux system, so the Virtual Machines have to use Linux Operating System

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 52

Figure 5.2: Virtual Switch Editor

To do that it is necessary to go to “Host Virtual Adapters”, click on “Add”, go to Host “Virtual
Network Mapping” and associate one of the VMnet to the adapter created.

By default there are already three Virtual Swithes : VMnet0, VMnet1 and VMnet8.
For this labs it has been used the VMnet1 to connect QuaggaA to QuaggaB and VMnet2 to

connect QuaggaB to QuaggaC

5.1.2.2 How to configure Quagga

This section will start explaining how to configure Quagga.
First of all to set the hostname of the Quagga routers2 it is necessary to access to the file in this

way:

root@ubuntu:/#vim /etc/quagga/vtysh.con

And add this sentence to the file of each Quagga routers:

hostname QuaggaA

To configure Quagga on QuaggaA it is necessary to open the terminal, then execute this command
from super user :

root@ubuntu:/#vtysh

This command allows to access to the terminal of the router.
To set the ip address of QuaggaA :

2The term Quagga router is used in this thesis to specify the virtual machine where quagga software is running
and is working as router.

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 53

QuaggaA#configute terminal

QuaggaA(config)#interface eth0

QuaggaA(config-if)#ip address 192.168.10.2/27

QuaggaA(config-if)#no shutdown

QuaggaA(config-if)#link-detect

QuaggaA(config-if)#interface eth1

QuaggaA(config-if)#ip address 192.168.10.65/27

QuaggaA(config-if)#no shutdown

QuaggaA(config-if)#link-detect

QuaggaA(config-if)#end

QuaggaA#

To configure Quagga on QuaggaB it is necessary to open the terminal, then execute this command
from super user :

root@ubuntu:/#vtysh

This command allows to access to the terminal of the router.
To set the ip address of QuaggaB :

QuaggaB#configute terminal

QuaggaB(config)#interface eth0

QuaggaB(config-if)#ip address 192.168.10.1/27

QuaggaB(config-if)#no shutdown

QuaggaB(config-if)#link-detect

QuaggaB(config-if)#interface eth1

QuaggaB(config-if)#ip address 192.168.10.33/27

QuaggaB(config-if)#no shutdown

QuaggaB(config-if)#link-detect

QuaggaB(config-if)#end

QuaggaB#

To configure Quagga on QuaggaC it is necessary to open the terminal, then execute this command
from super user :

root@ubuntu:/#vtysh

This command allows to access to the terminal of the router.
To set the ip address of QuaggaC :

QuaggaC#configute terminal

QuaggaC(config)#interface eth0

QuaggaC(config-if)#ip address 192.168.10.34/27

QuaggaC(config-if)#no shutdown

QuaggaC(config-if)#link-detect

QuaggaC(config-if)#end

QuaggaC#

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 54

In this situation it is possible for QuaggaA to reach the interface eth0 of QuaggaB but not the
interface eth1 of the same router. Moreover QuaggaB cannot reach the interface eth0 of QuaggaA
but not the interface eth1of QuaggaA. This means that each router can reach each other only if
they are directly connected. Otherwise a router does not know how to reach a router not connected
with him. For that reason it is necessary to set ip route static. This means that, like a Cisco router,
it needs to specify in which interface forward traffic to reach onother network. All this information
must be set manually from netowork administrator, in fact a routing table of a router will not
update dinamically in every change of network.

The following command will specify to Quagga A that to reach the network 192.168.10.32/27
has to forward packets to 192.168.10.1:

QuaggaA#configure terminal

QuaggaA(config)#ip route 192.168.10.32/27 192.168.10.1

The following command will specify to Quagga B that to reach the network 192.168.10.64/27 has
to forward packets to 192.168.10.2:

QuaggaB#configure terminal

QuaggaB(config)#ip route 192.168.10.64/27 192.168.10.2

In this situation, on QuaggaC doen not need to set any ip static routing. That because QuaggaC
han only one interface and it will forward all the packet to QuaggaB.

Doing what described before allows all the router to reach each other.
Now it’s useful to watch all the configuration of the routers or their routing table in case of

troubleshooting. Now there will show a set of instruction to perform troubleshooting.
To see the routing table, for example of QuaggaB, this is the command:

QuaggaB#show ip route

And this is the output:

Figure 5.3: Output show ip route

It is really interesting to know that in the routing table appear that QuaggaB reaches the
network 192.168.10.64/27 forwarding packets through 192.168.10.2 and its configuration was set
with a static configuration.

To see the status of the interfaces:

QuaggaB#show interface eth0

And this is the output:

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 55

Figure 5.4: Output show ip interface

5.1.3 Testing

This section will try exaplain wich test has been performed to test the functionality of the case
study previouosly described. In other words the Lan that it has been created can amend a Lan
configured with real Cisco device. And this project try to ask itself if this Lan can offers features
like all the other Lans created with real devices. To try to answer these questions it has used the
ping utility. It tests the reachability among the virtual machine.

5.1.3.1 Ping

This section will show the reachability among the virtual machines, actually among the Quagga
routers using ping3 utility. In other words if a Quagga router cannot reach onother router something
on the its configuretion or on the purpose of the project are wrong.

For that reason from each virtual machine is used to ping all the other virtual machines. First
of all it will be showed the ping results of the Quagga routers directly connected.

The first test show the ping between eth0 of QuaggaA and eth0 of QuaggaB from vtysh console.
This is the command:

QuaggaA#ping 192.168.10.1

And this is the output.

Figure 5.5: Ping Output

3Ping is a computer network administration utility used to test the reachability of a host on an Internet Protocol
(IP) network and to measure the round-trip time for messages sent from the originating host to a destination
computer.

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 56

The figure above shows that the eth0 of both QuaggaA and QuaggaB can reach each other.
This output establish that the connection works correctly. Moreover, it is possible to notice that
the round-trip time4 has 0.160 as min value, 0.247 as average value and 0.442 as max value.

The following figure will show the reachability between eth1 of QuaggaB and eth0 of QuaggaC.
This is the command:

QuaggaB#ping 192.168.10.34

Figure 5.6: Ping Output

The figure above shows that eth1 of QuaggaB can reach the eth0 of QuaggaC. This establish
that the connection works properly.

Now it will show the ping results of the Quagga routers that are not directly connected. To
allow this ping it is necessary that in someway the Quagga routers exchange among them routing
information. To test it the ping will be done from eth0 of QuaggaA to eth1 to QuaggaB.

This is the command:

QuaggaA#ping 192.168.10.34

And this is the output:

Figure 5.7: Ping Output

The figure above shows that QuaggaA can reach QuaggaC. This means that the packets from
QuaggaA are forwarded through QuaggaB and it forward these packets to QuaggaC. A further and
useful tool to understand it is by traceroute5. This is the command:

QuaggaA#traceoute 192.168.10.34

4Round-trip time (RTT)[11], also called round-trip delay, is the time required for a signal pulse or packet to travel
from a specific source to a specific destination and back again.

5Traceroute is a computer network tool for measuring the route path and transit times of packets across an
Internet Protocol (IP) network. The traceroute tool is available on practically all Unix-like operating systems.

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 57

And this is the output:

Figure 5.8: Traceroute output

From the figure above it is possible to notice that the packets is sent to192.168.10.1 (Quag-
gaB) before reaching 192.168.10.34 (QuaggaC). This means that the static routing table has been
configured correctly and it is working properly.

5.2 Case Study 2: Lan with RIP dynamic routing protocol

In this section it will be shown a case study where the routing is done by RIP6 dynamic protocol.
First of all it will be described the scenario, after how to configure Quagga to work as router and
then it will be tested the Lan.

5.2.1 Scenario

The following picture shows the scenario that it will be created with Quagga. It is possible to notice
that it is a simple LAN configuration, in fact there are only three routers and one workstation. In
a real network environment7 to create this Lan are necessary three physical router, three physical
switch and one physical workstation plus six Ethernet cable to connect all the devices together. In
a virtual network environment only one physical PC is needed.

Figure 5.9: Scenario with RIP dynamic routing

6RIP is a dynamic routing protocol used in local and wide area networks.
7The concept of real and virtual network environment is explained in the Chapter 3.1

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 58

The virtual machines are created using VMware Server 2.0. They are four and the operating
system running are Ubuntu Server 8.04 for Quagga A and Quagga B, CentOS for Quagga C and
the Workstation.

Every virtual machines have one processor with 2.6 GHz, 256 MB of RAM and 8 GB of Hard
Disk.

The next section will explain how to configure the virtual machines to build a Lan.

5.2.2 Configuration

This section will show how to configure the virtual machines to create a simple Lan. After installing
the Linux operating system8, the steps to create a virtual laboratory are :

• create a VMware virtual switch and configure it

• configure Quagga

Now it’s time to perform the previous two points explaining in detail what to do.

5.2.2.1 How to Create VMware Virtual Switch

The Virtual Switch are the same as exaplained in the Chapter 5.1.2.1.
The virtual switch VMnet1 connects the workstation with QuaggaA, VMnet2 connects QuaggaA

and QuaggaB, VMnet3 QuaggaB and QuaggaC.

5.2.2.2 How to configure Quagga

After installed Quagga as explained in the section 3.4.2, it is going to explain how to configure
Quagga to acts as a real router.

Starting with the configuration of Quagga A, it will show how to set the different routers to
allow them to communicate each other.

To configure Quagga on QuaggaA it is necessary to open the terminal, then execute this com-
mand from super user :

root@ubuntu:/#vtysh

This command allows to access to the terminal of the router.
To set the hostname it is necessary to execute this command:

quagga-router#configure terminal

quagga-router(config)#hostname QuaggaA

QuaggaA(config)#

To set the ip address to the router it has been executed this command:

QuaggaA#configure terminal

QuaggaA(config)#interface eth0

QuaggaA(config-if)#ip address 192.168.10.2/27

8Quagga runs only on Linux system, so the Virtual Machines have to use Linux Operating System

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 59

QuaggaA(config-if)#link-detect9

QuaggaA(config-if)#no shutdown

QuaggaA(config-if)#exit

QuaggaA(config)#interface eth1

QuaggaA(config-if)#ip address 192.168.10.65/27

QuaggaA(config-if)#link-detect

QuaggaA(config-if)#no shutdown

To configure Quagga on QuaggaB it is necessary to open the terminal, then execute this command
from super user :

root@ubuntu:/#vtysh

This command allows to access to the terminal of the router.
To set the hostname it is necessary to execute this command:

quagga-router#configure terminal

quagga-router(config)#hostname QuaggaB

QuaggaB(config)#

To set the ip address to the router it has been executed this command:

QuaggaB#configure terminal

QuaggaB(config)#interface eth0

QuaggaB(config-if)#ip address 192.168.10.1/27

QuaggaB(config-if)#link-detect

QuaggaB(config-if)#no shutdown

QuaggaB(config-if)#exit

QuaggaB(config)#interface eth1

QuaggaB(config-if)#ip address 192.168.10.33/27

QuaggaB(config-if)#link-detect

QuaggaB(config-if)#no shutdown

To configure Quagga on Quagga C it is necessary to open the terminal, then execute this command
from super user :

root@localhost:/#vtysh

This command allows to access to the terminal of the router.
To set the hostname it is necessary to execute this command:

quagga-router#configure terminal

quagga-router(config)#hostname QuaggaC

QuaggaC(config)#

To set the ip address to the router it has been executed this command:

9This command allows protocol detection

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 60

QuaggaC#configure terminal

QuaggaC(config)#interface eth0

QuaggaC(config-if)#ip address 192.168.10.34/27

QuaggaC(config-if)#link-detect

QuaggaC(config-if)#no shutdown

In this case it is already possible to ping QuaggaB from QuaggaC or QuaggaA to QuaggaB because
they are on the same subnet and they are directly connect each other.

To ping QuaggaB from QuaggaC:

QuaggaC#ping 192.168.10.33

To ping QuaggaC from Quagga B:

QuaggaB#ping 192.168.10.34

The ping will be unsuccessful trying to ping QuaggaA10 or the eth0 of QuaggaB from QuaggaC.
That’s because they are not on the same network and QuaggaC does not know in which interface
to route traffic to reach QuaggaA. For that reason it is necessary to set a dynamic routing using
RIP protocol in every router.

To set RIP on QuaggaA:

QuaggaA#configure terminal

QuaggaA(config)#router rip

QuaggaA(config-router)#network 192.168.10.0/27

QuaggaA(config-router)#network 192.168.10.64/27

To set RIP on QuaggaB:

QuaggaB#configure terminal

QuaggaB(config)#router rip

QuaggaB(config-router)#network 192.168.10.0/27

QuaggaB(config-router)#network 192.168.10.32/27

To set RIP on Quagga C:

QuaggaA#configure terminal

QuaggaA(config)#router rip

QuaggaA(config-router)#network 192.168.10.32/27

Now it is necessary to ping the interfaces of the routers to see if they can reach each other. Actually
with this setting the ping test can work still if a router pings only the router directly connected.
That’s due to the virtual machine does not know where to route the packets.

In this situation, there are different task to solve this problem. Here a list :

10To ping Quagga means ping the interface (eth0, eth1,..) configured in that router

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 61

1. configure the network setting of virtual machines inserting the ip address, the netmask as-
signed to Quagga routers and as gateway the ip address of the interface of the router directly
connected to which forward the packets11.For example in case the case of QuaggaC these are
the network configuration :

• ip address: 192.168.10.34

• netmask: 255.255.255.224

• default gateway: 192.168.10.33

2. add on the routing table of the linux virtual machine the exactly route where to reach other
network.

3. add a static routing in which direction forward packets for the specific network

The easy way and less confusing is to perform the point 1 obtaining that the virtual interface of
the virtual machine and the interface of the Quagga router are set with the same value.

Doing what described before it is possible to reach network not directly connected with a router.
So for example, QuaggaC can reach QuaggaA and viceversa. In fact the QuaggaC knows that can
forward the traffic to reach. This is an output of a successful ping:

Figure 5.10: Output ping

It’s now really useful and common to check the configuration of the routers in case of trou-
bleshooting. The commands to perform it are similar to Cisco commands.

To see the configuration on for example Quagga B it is necessary to perform the following
command :

QuaggaB#show run

This is the output:

11On a Linux OS server Ubuntu it is not necessary to specify any gateway. On CentOS it is necessary.It could
depend of the distribution.

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 62

Figure 5.11: Output show run command

To see the routing table it is necessary to perform this command.

QuaggaB#show ip route

This is the output.

Figure 5.12: Output show ip route command

From the picture above it is possible to notice that the networks 192.168.10.0 and 192.168.10.32
are connected to the router QuaggaB, so it can reach this network directly. The network 192.168.10.64
is known to QuaggaB via the gateway 192.168.10.2 through the interface eth0. Notice also that
this information is gathered by RIP routing.

To understand further how quagga software works, it is possible to compare the route information
gathered from QuaggaB with the route information gathered from the Linux virtual machine (in
this case an Ubuntu Server 8.04). This is the output entering the command route -n on the terminal
of the virtual machine.

Figure 5.13: Output route -n command

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 63

From the figure above it is possible to notice that the information displayed are exactly the
same from QuaggaB routing table.

To check the information about interfaces it has been used the command:

QuaggaA#show interface eth0

And this is the output:

Table 5.1: Output show interface command

As a Cisco router command it is possible to perform the question mark to get help from the
console. Here a list of command executed in configuration terminal:

Figure 5.14: Output question mark

As everyone knows a Cisco router terminal has two level of authentication. Actually only
connecting with the daemons by telnet it is possible to perform the same level of access. With vtysh
itself does not offer any level of authentication. The login to vtysh is offered using the authentication
setting used in /etc/pam.d folder of a Linux operating system. The first step is to remove or
comment the line username root nopassword in the /etc/quagga/vtysh.conf file. This command
allows user to login to vtysh without a password. The second step is to go to /etc/pam.d/quagga

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 64

file and write there the favorite level of login. One easy way is to associate the login to vtysh
with the same credential of the login to the Linux virtual machine user. This is the commands to
perform this task:

account required pam unix.so

Writing the command above to /etc/pam.d/quagga file allows to write the same password of the
Linux login to vtysh login. This is an example of the obtaining output:

Figure 5.15: vtysh with authentication

5.2.3 Testing LAN

This section will try to test the functionality of the case study previouosly described. In other
words the Lan that it has been created can amend a Lan configured with real Cisco device. And
this project try to ask itself if this Lan can offers features like all the other Lans created with real
devices. To try to answer these questions it has used some tools to test and point out the Lan.
First of all it is going to check the reachability among the virtual machine using utility. Then other
tools like Wireshark and Iperf are used to check deeply the functionality of the network.

5.2.3.1 Ping

This section will show the reachability among the virtual machines, actually among the Quagga
routers using ping utility.

For that reason from each virtual machine is used to ping all the other virtual machines. First
of all it will be showed the ping results of the Quagga routers directly connected.

The first test show the ping between eth0 of QuaggaA and eth0 of QuaggaB from vtysh console.
This is the command:

QuaggaA#ping 192.168.10.1

And this is the output.

Figure 5.16: Ping Output

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 65

The figure above shows that the eth0 of both QuaggaA and QuaggaB can reach each other.
This output establish that the connection works correctly. Moreover, it is possible to notice that
the round-trip time has 0.195 as min value, 0.248 as average value and 0.394 as max value.

The following figure will show the reachability between eth1 of QuaggaB and eth0 of QuaggaC.
This is the command:

QuaggaB#ping 192.168.10.34

Figure 5.17: Ping Output

The figure above shows that eth1 of QuaggaB can reach the eth0 of QuaggaC. This establish
that the connection works properly.

Now it will show the ping results of the Quagga routers that are not directly connected. To
allow this ping it is necessary that in someway the Quagga routers exchange among them routing
information. To test it the ping will be done from eth0 of QuaggaA to eth1 to QuaggaB.

This is the command:

QuaggaA#ping 192.168.10.34

And this is the output:

Figure 5.18: Ping Output

The figure above shows that QuaggaA can reach QuaggaC. This means that the packets from
QuaggaA are forwarded through QuaggaB and it forward these packets to QuaggaC. A further and
useful tool to understand it is by traceroute. This is the command:

QuaggaA#traceoute 192.168.10.34

And this is the output:

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 66

Figure 5.19: Traceroute output

From the figure above it is possible to notice that the packets is sent to 200.0.0.1 (QuaggaB)
before reaching 10.2.0.3 (QuaggaC). This means that the RIP routing table is working properly.

5.2.3.2 Wireshark

Wireshark, as explained in the session 4.2.2, is a network packet analyzer. A network packet
analyzer will try to capture network packets and tries to display that packet data as detailed as
possible.

It could be considered as a measuring device used to examine what’s going on inside a network
cable.

Wireshark is used in this project to establish that the virtual network enviroment created in this
section works, and to evaluate its functions and if it has the requirement to be used for amending
in a real enviroment network.

Wireshark helps to evaluate a virtual network enviroment because it offers the following features:

• to troubleshoot network problems

• to examine security problems

• to debug protocol implementations

• to learn network protocol internals

First of all wireshark allows to see the OSPF traffic for udating the routing table of Quagga routers.
It confims that Quagga routers exchange OSPF information among them. The following picture
will show the OPSF packets captured on the interface eth0 of QuaggaA.

Figure 5.20: OSPF capture

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 67

This is the proof that the Quagga routers sends each other RIPv1 packets and this is the reason
that allows routers not directly connected to communiate.

Exploring the packets showed in the previous figure will appeare different kind of packet that
QuaggaA sends to Multicast group. Actually it is possible to notice that QuaggaA (ip: 192.168.10.2)
sends to broadcast information about routing table that inform the ip address 192.168.10.64 is out
one of its interface.

This information establish that the Quagga routers are working like real routers.

5.2.3.3 Iperf

Iperf is a program for measuring throughput, jitter and datagram loss. Iperf was developed to
simplify TCP performance tuning by making it easy to measure maximum throughput and band-
width. When used with UDP, iperf can also measure datagram loss and delay (jitter). Iperf can be
run over any kind of IP network, including local Ethernet LANs, Internet access links, and Wi-Fi
networks. To use iPerf, it is necessary to install two components: an iPerf server (which listens
for incoming test requests) and an iPerf client (which launches test sessions). Iperf is available as
open source or executable binaries for many operating systems, including Win32, Linux, FreeBSD,
MacOS X, OpenBSD, and Solaris.

To measure Lan performance, it has been installed Iperf on the Quagga routers. It has been
tested on QuaggaA and QuaggaC.

First it is necessary to start up iperf in server mode on QuaggaA, then run it from QuaggaC in
client mode with these commands from linux terminal:

root@QuaggaA:/# iperf -s

root@QuaggaC:/# iperf -c 200.0.0.2

By default, iperf clients establish a single TCP session to the iPerf server listening to Port 5001 at
the specified destination.

By default, Iperf runs a 10 second test, measuring total bytes transmitted (e.g., 270 megabytes)
and the resulting estimated bandwidth (e.g., 226 Mbps). Test length can be controlled by specifying
time (-t seconds) or number of buffers (-n buffers). You can also view test results at regular intervals
(-i seconds).To determine max TCP throughput, iPerf tries to send just data as quickly as it can
from client to server. Default data is sent from an 8 KB buffer, using the operating system’s
default TCP window size. To mimic a specific TCP application, you can tell your iPerf client to
send data from a specified file (-F filename) or enter it interactively (-I). iPerf can also be used to
measure UDP datagram throughput, loss, and delay. Unlike TCP tests, UDP tests do not send
traffic as quickly as possible. Instead, iPerf tries to send 1 Mbps of traffic, packaged in 1470 byte
UDP datagrams (fits into one Ethernet frame). This rate can be increased by supplying a target
bandwidth parameter, specified in Kbps or Mbps (-b #K or –b #M).

5.3 Case study: Lan with OSPF

In this section it will be shown a case study where the connection among routers is allowed config-
uring OSPF dynamic routing.

First of all it will be described the scenario, after how to configure Quagga to work as router
and then it will be tested the Lan.

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 68

5.3.1 Scenario

The following figure will shows the scenario that it will be created using quagga software. In this
virtual laboratory there are three routers plus a workstation. To do that it is necessary three
virtual machines, one for each router. Notice that to perform this Lan in a real environment they
are necessary three physical router, three physical switch plus six cables. In a virtual network
environment only one physical PC is needed.

Figure 5.21: Scenario with static routes

The virtual machines are created using VMware Server 2.0. They are four and the operating
system running are Ubuntu Server 8.04 for QuaggaA and QuaggaB, CentOS for QuaggaC and
Workstation.

Every virtual machines have one processor with 2.6 GHz, 256 MB of RAM and 8 GB of Hard
Disk.

The next section will explain how to configure the virtual machines to build a Lan.

5.3.2 Configuration

This section will show how to configure the virtual machines to create a simple Lan. After installing
the Linux operating system12, the steps to create a virtual laboratory are :

• create a VMware virtual switch and configure it

• configure Quagga

Now it’s time to perform the previous two points explaining in detail what to do.

12Quagga runs only on Linux system, so the Virtual Machines have to use Linux Operating System

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 69

5.3.2.1 How to Create VMware Virtual Switch

The Virtual Switch are the same as explained in the Chapter 5.1.2.1.
The virtual switch VMnet1 connects the workstation with QuaggaA, VMnet2 connects QuaggaA

and QuaggaB, VMnet3 QuaggaB and QuaggaC.

5.3.2.2 How to configure Quagga

This section will start explaining how to configure Quagga.
First of all to set the hostname of the Quagga routers it is necessary to access to the file in this

way:

root@ubuntu:/#vim /etc/quagga/vtysh.con

And add this sentence to the file of each Quagga routers:

hostname QuaggaA

To configure Quagga on QuaggaA it is necessary to open the terminal, then execute this command
from super user :

root@ubuntu:/#vtysh

This command allows to access to the terminal of the router.
To set the ip address of QuaggaA :

QuaggaA#configure terminal

QuaggaA(config)#interface eth0

QuaggaA(config-if)#ip address 200.0.0.2/24

QuaggaA(config-if)#no shutdown

QuaggaA(config-if)#link-detect

QuaggaA(config-if)#interface eth1

QuaggaA(config-if)#ip address 10.1.0.2/24

QuaggaA(config-if)#no shutdown

QuaggaA(config-if)#link-detect

QuaggaA(config-if)#end

QuaggaA#

To configure Quagga on QuaggaB it is necessary to open the terminal, then execute this command
from super user :

root@ubuntu:/#vtysh

This command allows to access to the terminal of the router.
To set the ip address of QuaggaB :

QuaggaB#configure terminal

QuaggaB(config)#interface eth0

QuaggaB(config-if)#ip address 200.0.0.1/24

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 70

QuaggaB(config-if)#no shutdown

QuaggaB(config-if)#link-detect

QuaggaB(config-if)#interface eth1

QuaggaB(config-if)#ip address 10.2.0.2/24

QuaggaB(config-if)#no shutdown

QuaggaB(config-if)#link-detect

QuaggaB(config-if)#end

QuaggaB#

To configure Quagga on QuaggaC it is necessary to open the terminal, then execute this command
from super user :

root@ubuntu:/#vtysh

This command allows to access to the terminal of the router.
To set the ip address of QuaggaC :

QuaggaC#configure terminal

QuaggaC(config)#interface eth0

QuaggaC(config-if)#ip address 10.2.0.3/24

QuaggaC(config-if)#no shutdown

QuaggaC(config-if)#link-detect

QuaggaC(config-if)#end

QuaggaC#

In this situation it is possible for QuaggaA to reach the interface eth0 of QuaggaB but not the
interface eth1 of the same router. Moreover QuaggaB cannot reach the interface eth0 of QuaggaA
but not the interface eth1of QuaggaA. This means that each router can reach each other only if
they are directly connected. Otherwise a router does not know how to reach a router not connected
with its. In this case study is chosen to test OPSF routing protocol. To semply the network only
one area is used.

The following command will specify to Quagga A that to reach the network 10.2.0.0/24 has to
forward packets to 200.0.0.1/24:

QuaggaA#configure terminal

QuaggaA(config)#router ospf

QuaggaA(config-router)#network 10.1.0.0/24 area 0

QuaggaA(config-rooter)#network 200.0.0.0/24 area 0

The following command will specify to Quagga B that to reach the network 10.1.0.0/24 has to
forward packets to 200.0.0.2/24:

QuaggaB#configure terminal

QuaggaB(config)#router ospf

QuaggaB(config-router)#network 10.2.0.0/24 area 0

QuaggaB(config-router)#network 200.0.0.0/24 area 0

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 71

In this situation, on QuaggaC does not need to set any ip static routing. That because QuaggaC
has only one interface and it will forward all the packet to QuaggaB.

Doing what described before allows all the router to reach each other.
Now it’s useful to watch all the configuration of the routers or their routing table in case of

troubleshooting. Now there will show a set of instruction to perform troubleshooting.
To see the routing table, for example of QuaggaB, this is the command:

QuaggaB#show ip route

And this is the output:

Figure 5.22: Output show ip route

It is really interesting to see that in the routing table above appear that for OSPF configuration
the network 10.1.0.0/24 is reached via 200.0.0.2, the network 10.2.0.0/24 is directly connected and
so on.

This description is really similar to any Cisco devices and clear to understand.
OSPF has further command. This is the command to see a router’s neighbor:

QuaggaB#show ip ospf neighbor

And this is the output:

Figure 5.23: Output show ip ospf neighbor

To see OSPF database information summery this is the command :

QuaggaB#show ip ospf database

And this is the output:

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 72

Figure 5.24: Output ip ospf database

A very interesting command is the following:

QuaggaB#show ip ospf route

The command above shows briefly the OSPF network routing table. This is the output:

Figure 5.25: Output show ip ospf route

The following command will show statics of the different interfaces to see if a interface is up or
down, the ip address, the cost, the delay, the designated router and so on.

QuaggaB#show ip ospf interface eth0

And this is the output:

Figure 5.26: Output show ip ospf interface

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 73

5.3.3 Testing

This section will try to test the functionality of the case study previously described. In other words
the Lan that it has been created can amend a Lan configured with real Cisco device. And this
project try to ask itself if this Lan can offers features like all the other Lans created with real
devices. To try to answer these questions it has used some tools to test and point out the Lan.
First of all it is going to check the reachability among the virtual machine using utility. Then other
tools like Wireshark, Iperf and SNMP are used to check deeply the functionality of the network.

5.3.3.1 Ping

This section will show the reachability among the virtual machines, actually among the Quagga
routers using ping utility. In other words if a Quagga router cannot reach another router something
on the its configuration or on the purpose of the project are wrong.

For that reason from each virtual machine is used to ping all the other virtual machines. First
of all it will be showed the ping results of the Quagga routers directly connected.

The first test show the ping between eth0 of QuaggaA and eth0 of QuaggaB from vtysh console.
This is the command:

QuaggaA#ping 200.0.0.1

And this is the output.

Figure 5.27: Ping Output

The figure above shows that the eth0 of both QuaggaA and QuaggaB can reach each other.
This output establish that the connection works correctly. Moreover, it is possible to notice that
the round-trip time13 has 0.188 as min value, 0.454 as average value and 1.210 as max value.

The following figure will show the reachability between eth1 of QuaggaB and eth0 of QuaggaC.
This is the command:

QuaggaB#ping 10.2.0.3

13Round-trip time (RTT)[11], also called round-trip delay, is the time required for a signal pulse or packet to travel
from a specific source to a specific destination and back again.

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 74

Figure 5.28: Ping Output

The figure above shows that eth1 of QuaggaB can reach the eth0 of QuaggaC. This establish
that the connection works properly.

Now it will show the ping results of the Quagga routers that are not directly connected. To
allow this ping it is necessary that in someway the Quagga routers exchange among them routing
information. To test it the ping will be done from eth0 of QuaggaA to eth1 to QuaggaB.

This is the command:

QuaggaA#ping 10.2.0.3

And this is the output:

Figure 5.29: Ping Output

The figure above shows that QuaggaA can reach QuaggaC. This means that the packets from
QuaggaA are forwarded through QuaggaB and it forward these packets to QuaggaC. A further and
useful tool to understand it is by traceroute14. This is the command:

QuaggaA#traceroute 10.2.0.3

And this is the output:

Figure 5.30: Traceroute output

From the figure above it is possible to notice that the packets is sent to 200.0.0.1 (QuaggaB)
before reaching 10.2.0.3 (QuaggaC). This means that the OSPF routing table is working properly.

14Traceroute is a computer network tool for measuring the route path and transit times of packets across an
Internet Protocol (IP) network. The traceroute tool is available on practically all Unix-like operating systems.

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 75

5.3.3.2 Wireshark

Wireshark, as explained in the session 4.2.2, is a network packet analyzer. A network packet
analyzer will try to capture network packets and tries to display that packet data as detailed as
possible.

It could be considered as a measuring device used to examine what’s going on inside a network
cable.

Wireshark is used in this project to establish that the virtual network environment created
in this section works, and to evaluate its functions and if it has the requirement to be used for
amending in a real environment network.

Wireshark helps to evaluate a virtual network environment because it offers the following fea-
tures:

• to troubleshoot network problems

• to examine security problems

• to debug protocol implementations

• to learn network protocol internals

First of all wireshark allows to see the OSPF traffic for updating the routing table of Quagga
routers. It confirms that Quagga routers exchange OSPF information among them. The following
picture will show the OPSF packets captured on the interface eth0 of QuaggaA.

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 76

Figure 5.31: OSPF capture

This is the proof that the Quagga routers sends each other OSPF Hello Packet and this is the
reason that allows routers not directly connected to communicate.

Exploring the packets showed in the previous figure will appear different kind of packet that
QuaggaA sends to Multicast group. The first series of packets are Hello packet and are showed in
the next figure.

Figure 5.32: OSPF Hello Packets

The Hello packet is used to discover neighbors and form DR/BDR15 relationship and exchange
neighbor capabilities[12].

The next figure will show another types of packets sent from Quagga router. They are LS
Update and LS Acknowledge.

15DR stands for Designated Router. BDR stands for Backup Designated Router

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 77

Figure 5.33: LS Update and LS acknowledge

LS Update is used to send the entire LSA to the neighbor who requested the particular LSA
through the link request packet. This packet is also used in flooding. LS Acknowledge is used to
acknowledge the receipt of the link-state update packet.

This information establish that the Quagga routers are working like real routers.

5.3.3.3 Iperf

Iperf is a program for measuring throughput, jitter and datagram loss. Iperf was developed to
simplify TCP performance tuning by making it easy to measure maximum throughput and band-
width. When used with UDP, iperf can also measure datagram loss and delay (jitter). Iperf can be
run over any kind of IP network, including local Ethernet LANs, Internet access links, and Wi-Fi
networks. To use iPerf, it is necessary to install two components: an iPerf server (which listens
for incoming test requests) and an iPerf client (which launches test sessions). Iperf is available as
open source or executable binaries for many operating systems, including Win32, Linux, FreeBSD,
MacOS X, OpenBSD, and Solaris.

To measure Lan performance, it has been installed Iperf on the Quagga routers. It has been
tested on QuaggaA and QuaggaC.

First it is necessary to start up iperf in server mode on QuaggaA, then run it from QuaggaC in
client mode with these commands from linux terminal:

root@QuaggaA:/# iperf -s

root@QuaggaC:/# iperf -c 200.0.0.2

By default, iperf clients establish a single TCP session to the iPerf server listening to Port 5001 at
the specified destination.

By default, Iperf runs a 10 second test, measuring total bytes transmitted (e.g., 270 megabytes)
and the resulting estimated bandwidth (e.g., 226 Mbps). Test length can be controlled by specifying
time (-t seconds) or number of buffers (-n buffers). You can also view test results at regular intervals
(-i seconds).To determine max TCP throughput, iPerf tries to send just data as quickly as it can
from client to server. Default data is sent from an 8 KB buffer, using the operating system’s
default TCP window size. To mimic a specific TCP application, you can tell your iPerf client to
send data from a specified file (-F filename) or enter it interactively (-I). iPerf can also be used to
measure UDP datagram throughput, loss, and delay. Unlike TCP tests, UDP tests do not send
traffic as quickly as possible. Instead, iPerf tries to send 1 Mbps of traffic, packaged in 1470 byte
UDP datagrams (fits into one Ethernet frame). This rate can be increased by supplying a target
bandwidth parameter, specified in Kbps or Mbps (-b #K or –b #M).

5.3.3.4 SNMP: SMUX configuration

To enable SMUX protocol support, Quagga must have been build with the –enable-snmp option.

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 78

A separate connection has then to be established between between the SNMP agent (snmpd)
and each of the Quagga daemons. This connections each use different OID numbers and passwords.
Be aware that this OID number is not the one that is used in queries by clients, it is solely used for
the intercommunication of the daemons.

In the following example the ospfd daemon will be connected to the snmpd daemon using the
password ”quagga ospfd”. For testing it is recommending to take exactly the below snmpd.conf as
wrong access restrictions can be hard to debug.

Figure 5.34: SNMP configuration

After restarting snmpd and quagga, a successful connection can be verified in the syslog and by
querying the SNMP daemon:

Figure 5.35: SNMP output

5.4 Case study 4: Advanced Lan with OSPF

In this section it will be shown a case study where will be tested the connection among Quagga
routers and Cisco routers[?]. The purpose of this case study is to verify the compatibility and the
effective exchange of packets between a Quagga routers and Cisco devices. This could allow to build
a laboratory that consists of a comminication between virtual environment and real environment.

The connections is allowed configuring OSPF dynamic routing in both Quagga routers and Cisco
devices.

First of all it will be described the scenario, after how to configure Cisco routers and Quagga.
Then the configuration files of the routers.

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 79

5.4.1 Scenario

The following figure will shows the scenario. In this virtual laboratory there are two Quagga routers,
a Cisco switch 3750 and a Cisco router 2651. The Cisco 3750 and QuaggaA are located in OSPF
area 0, while Cisco 2651 and QuaggaB are located in area 1. Quagga A is a border router because
it is in area 0 or backbone area and in area 1.

Figure 5.36: Scenario with static routes

In this labs there are two physical machines. In each machine there is configured a virtual
machine. The two virtual machines are created using VMware Server 2.0. The operating system
running in both machines are CentOS for QuaggaA and QuaggaB.

Every virtual machine has one processor with 2.6 GHz, 256 MB of RAM and 8 GB of Hard
Disk.

The next section will explain how to configure the virtual machines and the Cisco routers to
build a Lan.

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 80

5.4.2 Configuration

This section will show how to configure the virtual machines to create a simple Lan. After installing
the Linux operating system16, the steps to create a virtual laboratory are :

• create a VMware virtual switch and configure it

• configure Quagga

• configure Cisco devices

Now it’s time to perform the previous two points explaining in detail what to do.

5.4.2.1 How to Create VMware Virtual Switch

The Virtual Switch are created as exaplained in the Chapter 5.1.2.1.
The virtual switch VMnet1 connects the Cisco 3750 with QuaggaA, it’s configured as Bridged

Networking. This configuration allows a virtual machine to communicate with other machine using
the physical NIC of the host where it is running. In this case, it allows a virtual machine like Quag-
gaA to link a Cisco switch. VMnet2 connects QuaggaA and QuaggaB, it’s configured as Bridged
Networking as well because this two virtual machine are running on two different physical machines.
VMnet3 connects QuaggaB and QuaggaC using Bridged Networking for the same reasons.

5.4.2.2 How to configure Quagga

This section will start explaining how to configure Quagga.
First of all to set the hostname of the Quagga routers it is necessary to access to the file in this

way:

root@ubuntu:/#vim /etc/quagga/vtysh.con

And add this sentence to the file of each Quagga routers:

hostname QuaggaA

To configure Quagga on QuaggaA it is necessary to open the terminal, then execute this command
from super user :

root@ubuntu:/#vtysh

This command allows to access to the terminal of the router.
To set the ip address of QuaggaA :

QuaggaA#configute terminal

QuaggaA(config)#interface eth0

QuaggaA(config-if)#ip address 10.1.3.1/24

QuaggaA(config-if)#no shutdown

QuaggaA(config-if)#link-detect

QuaggaA(config-if)#interface eth1

16Quagga runs only on Linux system, so the Virtual Machines have to use Linux Operating System

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 81

QuaggaA(config-if)#ip address 10.1.1.1/24

QuaggaA(config-if)#no shutdown

QuaggaA(config-if)#link-detect

QuaggaA(config-if)#interface lo

QuaggaA(config-if)#ip address 10.200.1.2/32

QuaggaA(config-if)#no shutdown

QuaggaA(config-if)#link-detect

QuaggaA(config-if)#end

QuaggaA#

To configure Quagga on QuaggaB it is necessary to open the terminal, then execute this command
from super user :

root@ubuntu:/#vtysh

This command allows to access to the terminal of the router.
To set the ip address of QuaggaB :

QuaggaB#configute terminal

QuaggaB(config)#interface eth0

QuaggaB(config-if)#ip address 10.1.4.1/24

QuaggaB(config-if)#no shutdown

QuaggaB(config-if)#link-detect

QuaggaB(config-if)#interface lo

QuaggaB(config-if)#ip address 10.200.1.4/32

QuaggaB(config-if)#no shutdown

QuaggaB(config-if)#link-detect

QuaggaB(config-if)#end

QuaggaB#

The following command will specify OSPF networks on Quagga A :

QuaggaA#configure terminal

QuaggaA(config)#router ospf

QuaggaA(config-router)#network 10.1.1.0/24 area 0

QuaggaA(config-router)#network 10.1.3.0/24 area 1

QuaggaA(config-router)#network 10.200.1.2/32 area 0

QuaggaA(config-roouter)#area 1 stub

The following command will specify OSPF networks on Quagga B:

QuaggaB#configure terminal

QuaggaB(config)#router ospf

QuaggaB(config-router)#network 10.1.4.0/24 area 1

QuaggaB(config-router)#network 10.200.1.2/32 area 1

QuaggaB(config-roouter)#area 1 stub

Because of the stub area, the network 10.200.1.1 should not be propagated on the Quagga B router
and the Cisco 2651. For this reason it is redistributed into OSPF on the Quagga A router. This is
the command in QuaggaA :

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 82

QuaggaA#configute terminal

QuaggaA(config)#ip route 10.200.1.1/32 10.1.1.2

5.4.2.3 Configuring Cisco routers

The Cisco router 2651 is configured as showed in the following figure:

Figure 5.37: Cisco router 2651 configuration

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 83

The Cisco switch 3750 is configured as showed in the following figure:

Figure 5.38: Cisco switch 3750 configuration

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 84

5.4.3 Testing

Now it’s useful to watch all the configuration of the routers or their routing table in case of trou-
bleshooting. Now there will show a set of instruction to perform troubleshooting. These section
will demostrate that there is connectivity between Quagga routers and Cisco devices.

From QuaggaA, this is the command to see information about interface eth0

QuaggaA@#show interface eth0

And this is the output:

Figure 5.39: Output interface eth0

To see the routing table of QuaggaA, this is the command:

QuaggaB#show ip route

And this is the output:

Figure 5.40: Output show ip route

It is really interesting to see that in the routing table above appear that for OSPF configuration
the network 10.1.4.0/24 is reached via 10.1.3.2, the network 10.1.3.0/24 is directly connected and
so on.

This descrition is really similat to any Cisco devices and clear to understand.
OSPF has further command. This is the command to see OSPF information:

QuaggaB#show ip ospf interface

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 85

And this is the output:

Figure 5.41: Output show ip ospf interface

To see OSPF database information summery this is the command :

QuaggaB#show ip ospf database

And this is the output:

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 86

Figure 5.42: Output ip ospf database

A very interesting command is the following:

QuaggaB#show ip ospf route

The command above shows briefly the OSPF network routing table. This is the output:

Figure 5.43: Output show ip ospf route

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 87

From the Cisco device 2651 it is possible to see its routing table noticing that it has exchanged
information qith Quagga routers. This is the command to see the ip route:

CiscoRouter2651#show ip route

And this is the output:

Figure 5.44: Show ip route output

The figure above shows that the Cisco router can reach the network 10.1.1.0/24 via 10.1.3.1.
This means that there has been connection between Cisco router and QuaggaA.

To see OSPF database information summery this is the command :

CiscoRouter2651#show ip ospf database

And this is the output:

Figure 5.45: Ip ospf database output

A further and useful tool to understand it is by traceroute. This is the command:

QuaggaB#traceroute 10.200.1.1

CHAPTER 5. CONFIGURING A VIRTUAL LABORATORY (TESTING) 88

And this is the output:

Figure 5.46: Traceroute output

From the figure above it is possible to notice that the packets is sent to 10.1.4.2 (Cisco router
2651), then 10.1.3.1(QuaggaA), and then again 10.1.1.2 (Cisco Switch 3750) before reaching the
loopack interface 10.200.1.1 of Cisco Switch 3750. This means that the OSPF routing table is
working properly.

Chapter 6

Conclusion

The purpose of this thesis is to build a Virtual Network Laboratory Enviroment. This concept
has been realized with Quagga. It has reached it studing before all the component of this labs
like VMware, Quagga and the tools to test it like IPerf and Wireshark. Actually it has reached
that a virtual machine can act as router if there is installed Quagga, and more Quagga routers
can communicate among them using static routing or dynaminc routing protocol like RIP, OSPF.
Moreover, a Quagga router can communicate with a real Cisco device exchanged information. All
there results allow to wonder the following consideration:

1. Virtual Network Laboratory Environment can be used from any student to excercise their
networking skills.

2. Virtual Network Laboratory Environment can be used in a business system.

These two point will be discussed in the next sections.

6.1 Virtual Network Laboratory Environment as Learing
Enviroment

Nowadays a student that wants to exercise and learn how to configure routers has to use the
Cisco laboratory installed in a room of his/her University. Sometimes happen that the labs can be
busy because other student are using it, and the free routers available are not enough to perform
exercises. So the student must wait. The reasons can be different, one because a lab can host a
limit of router for space reasons and then because a router has a cost for a University. A Virtual
Network Laboratory Environment allow students to create and test Cisco labs in a single physical
machine. This allows student to save time and University to save money.

Using a Virtual Network Laboratory Environment a student can learn how to configure Cisco
routers, he/she can also learn how to set static routing and dynamic routing protocol like RIP,
OSPF and so on. A student can also learn how perform troubleshooting for networks. For example,
a teacher can use wireshark, which allows to see in detail the packets, on the implemented lab to
study TCP/IP protocols

But it is necessary to remark that a virtual labs cannot replace a laboratory and this is not its
purpose. The goal is to improve the ways a student can learn.

89

CHAPTER 6. CONCLUSION 90

Once a student has performed a labs, he has available a network. This means that he could
enhance his knowledge not only in networking but also in other matter. A network consists of
routers, workstation but also server. So a student can for example perform a server farm or starting
building a DMZ (demilitarized zone). This allows student for example to start configuring a web
server or a proxy server.

The following figure could be an example of advanced laboratory:

Figure 6.1: Advanced laboratory: DMZ

The figure above shows that ones a student has created a network, he/she can create and
configure for example a Firewall, or start a configure a web server, create some web pages using
php, asp and so on. It could for example configure a proxy that manage traffic trough Internet. A
student can do all this things using only one physical machine and two or three virtual machines.
He could use Quagga to manage the routing and VMware to configure the servers.

Once a student has created a DMZ, it can be tested using penetretion test. He/she could
perform some techniques of exploit of DB or some denial of services.

It is possible to notice that a student or a group of students can learn different level of knowl-
edge: he/she can start from networking, and then from server configuring, then again for web
programming and at the end for penetretion test.

Actually a Virtual Network Laboratory Environment has some limits. Its performance dipends
of its hardware capacity. For example a virtual machine with only 250 MB of RAM cannot execute

CHAPTER 6. CONCLUSION 91

quagga router and web server and proxy server and so on.
So the first limit of virtual machine is the hardware capacity of the physical machine.

6.2 Virtual Network Laboratory Environment as Working
Enviroment

In this section, the thesis tries to wonder if a Virtual Network Laboratory Environment can help
or give some advantages if used in working enviroment. This term is used to identify the all the
possible way to implement the lab in an enterprise or a company.

Honesty, it is difficult to think that a enterprise can needs to sustitute its Cisco router with
Quagga routers even it can save money. The reason is the heavy amount of traffic used in a big
company. It is not possible to say the same with a virtual machines yet. The main limit will be
how fast a machine can forward packets. But it could be used to help to manage traffic in a virtual
network in VMware Infrastructure or Xen.

Morover, processor speed can influence routing updates, routing convergence, route lookups.
This is one reason why Cisco, Juniper, Foundry cost because route lookups are cached in hardware
and take nanoseconds to find versus a PC which might take quite a few milliseconds.

In a small business that has a normal ADSL modem used to connect to Internet and some
workstation together, a Virtual Network Laboratory Environment could be useful. If this company
wants to manage its small traffic, enhance its security can implement a physical machine running for
example an Ubuntu Server. On this machine can run Quagga router to manage the traffic between
the workstation, and can run a Linux Firewall to protect the network and an ISP/IDS to verify
what kind of packets are entering in the network.

The following figure shows an indea how Quagga could be implemented in a small business
network. The roles Firewall, IPS/IDS, and Quagga router are performed from a single physical
workstation.

CHAPTER 6. CONCLUSION 92

Figure 6.2: Small business network

Chapter 7

Future Implementation

Actually Quagga still does not support MPLS, but MPLS support is going on. In the future, could
be implemented TCP/IP filtering control, QoS control, diffserv configuration to Quagga with the
purpose to make a productive, quality, free TCP/IP routing software. A MPLS support could be
very useful for student, which could learn how to build a MPLS network.

At the moment there is no VOIP support for Quagga router. It could be interesting for a student
to configure Quagga router to supoprt VOIP traffic, using for example same softphone for testing
calls.

Recently it has been implemented the Multi-Router Looking Glass. It is a Web-based utility
that can be used to display the interfaces and routes recognized by zebra. MRLG is really nothing
more then a Web Interface to the zebra shell with a limited set of command. In the features it
could be improved with more commands to execute by web-interface.

Today, there are no real performance comparison between Quagga router and other physical
router, so it could be interesting build two different networks, ones with Quagga router and the
other with for example Cisco router. Then tested the performance of the two networks to calculate
the throughput, packet loss and latency.

93

Bibliography

[1] Burger T., “The Advantages of Using Virtualization Technology in
the Enterprise”, 2008 http://software.intel.com/en-us/articles/

the-advantages-of-using-virtualization-technology-in-the-enterprise/

[2] “VMware Server 2.0 download”, http://downloads.vmware.com/d/info/datacenter_

downloads/vmware_server/2_0

[3] “VMware Server User’s Guide”,Chapter 11,http://www.vmware.com/pdf/vmserver2.pdf

[4] Kunihiro Ishiguro, “Quagga”, http://www.quagga.net/docs/docs-info.php

[5] XJperf, “Iperf”, http://code.google.com/p/xjperf/

[6] “Wireshark”, http://www.wireshark.org/

[7] RFC 1157, “A Simple Network Management Protocol (SNMP)”, http://tools.ietf.org/
html/rfc1157#page-2

[8] DenHartog M., “The Fast Track Introduction to SNMP Alarm Monitoring”, 2008, http:

//www.dpstele.com/white-papers/snmp-tutorial/index.php

[9] RFC1227, “SNMP MUX Protocol and MIB” , http://www.ietf.org/rfc/rfc1227.txt

[10] Net-SNMP home page, http://www.net-snmp.org/

[11] Definition of Round-trip time, http://searchnetworking.techtarget.com/definition/

round-trip-time

[12] “Troubleshooting IP Routing Protocols”, http://cisco.iphelp.ru/faq/5/ch08lev1sec1.

html

[13] “OSPF Advanced”, http://openmaniak.com/quagga_case3.php

[14] “Wireshark captures packets”, http://www.wireshark.org/docs/wsug_html_chunked/

ChapterIntroduction.html#ChIntroWhatIs

94

