Hermes: Agent-based Middleware for
Mobile Computing *

Flavio Corradini and Emanuela Merelli

Universita di Camerino, Dipartimento di Matematica e Informatica
Camerino, 62032, Italy,
{flavio .corradini,emanuela .merelli}@unicam. it

Abstract. Hermes is a middleware system for design and execution of
activity-based applications in distributed environments. It supports mo-
bile computation as an application implementation strategy. While mid-
dleware for mobile computing has typically been developed to support
physical and logical mobility, Hermes provides an integrated environ-
ment where application domain experts can focus on designing activity
workflow and ignore the topological structure of the distributed envi-
ronment. Generating mobile agents from a workflow specification is the
responsibility of a context-aware compiler.

Hermes is structured as a component-based, agent-oriented system with
a 3-layer software architecture. It can be configured for specific applica-
tion domains by adding domain-specific component libraries. The Hermes
middleware layer, compilers, libraries, services and other developed tools
together result in a very general programming environment, which has
been validated in two quite disparate application domains, one in indus-
trial control and the other in bioinformatics. In the industrial control
domain, embedded systems with scarce computational resources control
product lines. Mobile agents are used to trace products and support self-
healing. In the bionformatics domain, mobile agents are used to support
data collection and service discovery, and to simulate biological system
through autonomous components interactions.

1 Introduction

Industrial production processes, the in-silico daily work of bio-scientists, and
many other jobs are usually performed by executing a set of distinct, some-
times repetitive, activities [54]. Automating such an application process in a
distributed environment requires coordination of these activities, but also lower
level implementation support in sharing of data, localization of reliable resources,
retrieval of suitable information, integration of heterogeneous tools, discovery
and selection of the best available services, and mobility of computational units.

* This work was supported by the Fulbright grants, by the Center of Excellence for Re-
search “DEWS: Architectures and Design Methodologies for Embedded Controllers,
Wireless Interconnect and System-on-chip” and by Italian CIPE project “Sistemi
Cooperativi Multiagente”

The application designer, whose primary expertise is in the application domain,
should be free to focus on coordinating domain activities rather than being con-
cerned with the distributed computational environment.

In the domain of production processes control, for example, supply chain
management [33] has been developed mainly with workflow-oriented technology
for networks of fixed distributed systems. The present need to trace products
1 and to extend the chain with customers (e.g. domestic appliances, items of
clothing, food), requires flexible workflow management systems encompassing
embedded systems and mobile devices (e.g. PDAs for technical assistance), and
supporting code mobility (e.g. for traceability and self-healing) [41, 52].

In the bioinformatics domain, a flexible workflow management system could
be used to carry out many activities whose execution environment is the Web,
which is distributed and dynamic in nature, with large amounts of highly dy-
namic data and proliferation of (often redundant) tools. In fact, many bio-
scientists aspire to automate some of the time-consuming activities to the base
of wet-lab procedures, as browsing, searching and selecting resources [37, 50] so
as to use flexible and expandable computational analysis and simulation tools
during their in-vitro exeperiments. Advantages of moving computational “bio-
instruments” over data, by delegating a mobile agent, include decentralizing
execution of local activities, avoiding the warehousing of highly dynamic data,
reducing network traffic, and freeing researchers from network faults and from
the need to be continuously connected to a laptop. Mobile devices could also
support a bio-scientist moving among different laboratories during his experi-
ment.

Experience with these two, quite different domains suggests that applica-
bility of Hermes-like systems is quite wide, and that many other application
domains could take advantage of flexible, modular, expandable, easily config-
urable and scalable middleware which supports workflow management and uses
mobile computation as activity implementation strategy.

Middleware technology is an emerging and promising technology that pro-
vides application designers with a high level of abstraction, hiding the complexity
introduced by distribution (Figure 1)[57]. Middleware for mobile computing, in
particular, is becoming a widespread technology [51, 38]. Mobile computing sys-
tems, in the sense of computing systems that can be easily moved physically and
whose computing capability may be used while they are being moved, have been
empowered by the diffusion of satellites and cellular technology][3].

The wide range of different developers of mobile devices has led to develop-
ment of many different middleware systems, which differ in the type of computa-
tional loading (heavyweight, lightweight) of the mobile unit, the type of commu-
nication paradigm (synchronous, asynchronous) used among distributed units,
and the type of context representation (transparency, awareness) provided to the
mobile application. In general, a mobile system can be characterized by mobile
device executing on a light computational load, by a intermittent connection with
asynchronous communication, and by a dynamic context with awareness of re-

! European Community Directive 2001/18/EC

Machine A Machine B Machine C

Distributed applications

Middleware services

Network OS Network OS Network OS
services services services
Kernel Kernel Kernel

Network

Fig. 1. A Distributed System organized as middleware [57]

source distribution. Mascolo et al [38] provide a comprehensive survey of mobile
computing middleware; B’Far [3] gives an overview of principles of mobile com-
puting. Further distinction can be found between middleware systems developed
only to support physical mobility (which are traditionally application-centred
[51]) and more general middleware systems [43, 45, 31, 32] developed especially
to support the coordination of mobile components, most of which are based on
tuple spaces of the Linda model [28] to support decoupled communication.

In this work, we exploit mobile agents as computational units that logically
move to support execution of a distributed application. Consistent with B’Far
[3] we see mobile agent particularly suitable for the following reasons:

1. mobile agents are inherently active because of their autonomous nature,
2. mobile agents use less network bandwidth in comparison to RPC or RMI,

3. mobile agents can display better response times owing to reduced effect of
network latency on the application,

4. mobile agents are inherently heterogeneous,

5. mobile agents are autonomous and asynchronous and so can deal with inter-
mittent network connectivity gracefully,

6. mobile agents can adapt extremely well.

Providing an application designer with a transparent global view of the dis-
tributed environment, with a user-friendly programming environment and exe-
cuting distributed applications exploiting mobile computation, through a light

Machine A Machine B Machine C Machine D
Workflow A Workflow B Application B
on Domain D, | | on Domain D, on Domain D,
Optional :-_----_--_- — -_--_-_--_--_----_--_--_--.i
Components E Contgxt-aware Compiler Hermes Middleware !
for Domain D, || for Mobile User Agents on D, !
' i
1 1
i Mobile Services Agents on D, i
1
i Hermes Mobile Computing Platform E
1
__ 1
Required
Components ‘ JVM ‘ ‘ JVM ‘ ‘ JVM ‘ ‘ JYM ‘
for
Interoperability Local OS Local OS Local OS Local OS
Network

Fig. 2. A Distributed System over Hermes Middleware in heterogeneous environment.
Only the Hermes mobile platform (dark layer) is required for interoperability, but
additional components can be added to support workflow

and flexible mobile middleware, is the aim of Hermes 2. Hermes is a component-
based, agent-oriented system with a 3-layer software architecture [9, 15]: user
layer, system layer and run-time layer. At the user layer, it allows designers to
specify their applications as a workflow of activities using the graphical notation
provided by JaWE editor [21]. At the system layer, it provides a context-aware
compiler to generate a pool of user mobile agents from the workflow specification.
At the run-time layer, it supports the activation of a set of specialized service
agents, and it provides all necessary to support agent mobility.

One of the main features of Hermes middleware is its scalability. The present
version, HermesV2 [29], is a pure Java application whose kernel requires about
80KB of memory and interoperates across a systems ranging from microproces-
sors to very power workstations (Figure 2). The lightness of its core is based on
the unique class Agent, which assigns the basic features to each agent, including
mobility. Agent is an abstract class, with two associated extensions UserAgent
and ServiceAgent (Figure 3).

The main difference between run-time layer and system layer is how agents
function in each. ServiceAgents in the run-time layer are localized to one platform

2 In Greek mythology, Hermes is the son of Zeus and Maia. He is also known as Mercury
to the Romans. Hermes is Zeus’s messenger, the fastest of the gods, recognizable by
his winged sandals.

to interface with the local execution environment. UserAgents in the system
layer are workflow executors, created for a specific goal that, in theory, can be
reached in a finite time by interacting with other agents, afterwards the agent
die. Furthermore, for security UserAgents can access a local resource only by
interacting with a ServiceAgent that is the “guard” of the resource (Figure 4).

Mobile

Mobile

Agent
Abs
P\ ServiceAgent
‘ @) @
Instance v v

traction

Mobile
UserAgent

Fig. 3. Hermes agents hierarchy. The Java class “Agent” is extended with “UserAgent”
which is the prototype of the the workflow executor, and with ServiceAgent used to
interface local resources. Only ServiceAgent can invoke operating system functions

We can summarize that Hermes uses activity-based workflow modelling, as
an high-level programming language. It uses agent-based modelling as an in-
termediate programming language, and it uses mobile computing as run-time
support of the execution of mobile agent systems generated with respect to the
functional and non-functional requirements of the distributed application.

We have also developed a set of tools particularly meaningful for an effec-
tive implementation of Hermes middleware. Among these a generalize wrapper
[4] to support the extraction and the integration of heterogeneous resources, an
interface to dynamically access Web Services [60], an ontology manager which
supports the mapping among different resource schemas [18] and a matchmaker
to discover and select services [14]. Furthermore, we have defined a mapping
from UML Activity Diagram and CSP-like process algebra to allow the analysis
and verification of the behaviour of the workflow designed by the user [1].

We are also working on a graphical notation to represent the mobility and execu-
tion environment of a pool of agents, its mapping to Klaim, i.e. a process calculus
for mobile computing [19]. We would like to use Klaim language and Klava, i.e.

UserAgent

ServiceAgent)

Hermes Mobile Computing Platform

wrapper

|| Local Environment

"Database WebServer

Fig. 4. Access Control in Hermes Middleware is based on different access rights given
to two “Agent” extension. The instances of Service Agent act first as a barrier towards
the local resources then once the a User Agent has been identified as an interface

the implementation of Klaim in Java, into Hermes compiler to implement agent
level workflow.

Recently, Hermes has been used as simulation programming environment in
systems biology [17]. We have modelled and implemented a system to simulate
carbohydrate oxidation of a biological cell. The course-grain approach allowed
us to identify the autonomous computational units of the software system in
those cellular elements that exhibit the behavior of a computational environ-
ment (cytoplasm, mythocondrial matrix, etc.). While all elements are agents
whose activities were implemented for the case study, in future we aim to map
the abstract machines for systems biology provided by Luca Cardelli [10] to
Klaim within Hermes architecture. The agent mobility will characterize the real
movement, of cellular components within and through the cellular environments
(compartments and membranes).

In the remainder of this tutorial, in Section 2 we set the context in which
the Hermes middleware has been developed. In Section 3 we outline some of
the formalism, techniques and systems have been chosen to bear the design
of the global computing environment and we draw reader attention to Hermes

software architecture. Next, in Section 4 we propose some application examples
taken from our experience in designing and implementing applications within
specific application domains. Finally, in Section 5 we discuss future work and
conclude.

2 Setting the Context

Distributed Environment DFE

The distributed environment (DFE) for mobile computing we refer to consists
of collection of autonomous and mobile computational units interconnected by
a communication media. It can be distributed over a wide area network (as in
the bioinformatics case study), over a local area network (as in the production
plant) or it can be a simulation of a distributed system (the systems biology
example).

The first DE we consider is the Web. It is characterized by dynamic execution
context, intermittent connection, unpredictable congestion, faulty communica-
tion, presence of security barriers, and heterogeneous, distributed and unstable
resources. The second DF is characterized by permanent network connection,
but it still deals with the management of heterogeneous resources. The last DFE
is a virtual distribution. All the mobile computation can happen within a single
machine, or among homogeneous machines or heterogeneous ones (e.g. grid com-
puting). They vary in the way they hide and manage problems deriving from
the execution environment.

In our context, there are two different logical mobile computational units:
at the system level, there are flexible, autonomous, pro-active 2 units, situated
in a dynamic, sometimes open, unpredictable computational environment. We
call them User Agents; they are created in a specific computational environment
to solve problems in a certain application domain, they are coordinated by a
suitable communicate model, they can move to reach a different computational
environment to better fulfil the goal for which they have been created. At the run
time level, there are autonomous mobile units with the special task to manage
local and networks resources. We call them Service Agents, they are units created
any time a new resource becomes available in the distributed environment.

Distributed Applications DA

A distributed application (DA) consists of a set of coordinated activities
that use distributed resources. Workflow models are useful notations of coordi-
nation to link these activities together. If we consider a workflow as a distributed
program and a workflow management (WMS) as its run-time support, the func-
tionality provided by a WMS is similar to that offered by a middleware system
in a distributed environment.

3 For proactive, we mean controlling a situation by causing something to happen rather
than waiting to respond to it after it happens.

Workflow models are supported by a number of systems for business process
automation and process control, but typically the model is fixed and hard-wired
in the application, or configurable only through a very heavyweight customiza-
tion process. In contrast, our approach makes specifying, modifying, and exe-
cuting workflow a very lightweight. In the bioscience domain, for example, it is
practical to develop workflow support for the varied idiosyncratic processes of
individual scientists, and so free the bioscientist from from repetitive interactions
with the execution environment. To the extent that workflow specifications are
shared, it is also possible to incrementally support standardization of protocols
and creation of a transparent analysis environment.

Workflow is specified abstractly in a graphical notation and mapped to a set
of autonomous computational units (UserAgents) interacting through a commu-
nication medium. The mapping is achieved by a compiler that is aware not only
of the contents of a library of implemented user activities but also the software
and hardware environment for executing them. In our case, information available
to the compiler includes available hosts and their connection topology, available
services (ServiceAgents), the kinds of information available at different locations,
and additional domain-dependent parameters. Application-independent rules for
dealing with connectivity failure, service access failures, etc., are embedded in
UserAgents and ServiceAgents. A user specifying workflow need not be concerned
with where to search for information, in what form the information is stored, the
protocols for interacting with each service, or a host of other low-level details
that can be left to the context-aware compiler.

Mobile Computing

In the above described scenario, we said that user activities are mapped into
system activities, by User Agents. The pool of agents must coordinate to execute
user level workflow, possibly by migrating from one environment to another and
coping with any of the unpredictable phenomena due to distribution. The agent
mobility is supported by a light platform that characterizes the middleware.

This approach to exploiting mobile computing during the development leads
to the definition of a (new methodology) to guide software development, from
analysis and specification, design and validation, coding and testing, deployment
and maintenance. In particular, the analysis phase imposes the choice of applica-
tion domain (e.g. bioinformatics), identification of common user activities (e.g.
sequence similarity search, functional motif search, protein analysis, etc. [54]).

Next, the design phase concerns specification of workflow of activities and its
validation by suitable tools [1]. The coding phase is linked to the engineering of
the layer below.

At the system layer, the main component is the context-aware compiler,
whose engineering depends on both the application domain and the execution
environment requirements. The design phase of the compiler relies in a two steps:
step 1: the User Level Workflow (ULW) (Figure 6) is mapped to Agent Level
Workflow (ALW); step 2: the ALW is coded in a pool of mobile Workflow Execu-
tors (WEs) the User Agents. The generation of a ALW also implies the choice of
suitable coordination model, i.e the communication media used among agents.

Also this choice is conditioned by the application domain features. The first
step will generate a specification of agent level workflow whose validity must be
checked. Thus, tools different from those in the upper layer will be required since
the mobility is also included [42, 11, 19]. Then, the coding phase is linked to the
engineering of the layer below as well.

Implementation of system activities is based on the services offered by the
run-time layer, including both those belonging to the kernel and those offered
by the execution environment of the application domain. In the run-time layer
the use of mobility is tied to the physical distribution of resources. In the layered
architecture, mobility can play a twofold role. At user agent abstract levels it
fulfills a modelling function while at service agent level it fulfills a reliability
function.

In the Section 4, we describe two applications developed for two different
application domains: functional testing and self healing in domestic appliance
manufacturing [8]; medical bioinformatics [2, 39, 4, 5, 40] and systems biology
[17]. We outline how mobility covers different and distinct aspects of the imple-
mentation in each of these domains and finally we describe a set of services and
tools we have developed for Hermes.

In the next section, first we describe the functionalities of Hermes 3-layer
architecture, then we describe a methodology to develop the Hermes mobile
platform for an given application domain.

3 The Hermes Software Architecture

We now describe the general software architecture of Hermes, a middleware sys-
tem for the design and development of distributed applications upon a mobile
computing platform. This architecture has been successfully used to design an
agent-based tool integration system [16]. The architecture consists of three con-
ceptual layers as shown in Figure 5.

A User Layer, on the top of the architecture, where the user specifies his
application as a workflow of activities with the features described above. Since
our potential users may not be computer practitioners, the specification language
must be simple and intuitive to use as, in most cases, graphical notations are.

A System Layer, on the middle of the architecture, provides the needed en-
vironment to map a user-level workflow into a set of primitive (and already
implemented) activities. The execution of these latter is coordinated by suitable
model, they implement the activities at the user level and embed implemen-
tation details abstracted from the execution environment (fault tolerance, for
instance). These primitive activities are implemented by autonomous software
entities UserAgent able to react to the environment changes where they are
executed. The agent-based paradigm and technology, as argued several times in
the literature (see, for instance [34], and references therein), seem to be particu-
larly suitable for designing environments populated by entities that communicate
and coordinate their activities (as most of the applications of our interest are).
A particular significant ingredient at this layer is the compiler that maps user

10

User Application Workflow

--------------------- User Layer
Workflow Management

Workflow Executors
_____________________ System Layer
Agent Management System

Services

————————————————————— Run-Time Layer
Hermes mobile platform

Fig. 5. The 3-layer Software Architecture for Hermes Middleware. The User Layer
provides the editing workflow environment, the System Layer generate a mobile agent
system to support the execution of the workflow and the Run-Time Layer provides all
necessary to interact and move along the distributed environment

level activities into system level activities. The compiler must be aware of the
available a library of implemented activities but more significantly it must be
aware of the environment (software/hardware resources, knowledge, services...)

A Run-Time Layer, at the bottom of the architecture, provides primitives
and services essential for agent mobility and resources access. The kernel is the
platform for mobile computing which provides primitives for discovery, mobility,
communication, and security.

As the Figure 5 shows, the three layers, User Layer, System Layer and Run-
time Layer, are themselves split in two conceptual levels: - the type of application
running on each layer and - the infrastructure supporting the application. At the
user layer, the application is the workflow and the infrastructure is the workflow
management environment (editor, model checker, ...). At the system layer, the
application is a pool of running agents User Agents named Workflow Ezecutors
(WEs), and the infrastructure is given by the agent management system (com-
piler, model checker, query optimizer, ...). Finally, at the run-time layer, the
application is given by a set of services ServiceAgents and the infrastructure
consists of the mobile computing platform for agents mobility.

The Figure 6, moreover, presents the same architecture with the entities cre-
ated at each level of abstractions: the user defines a User-Level Workflow (ULW)
specification that is mapped to an Agent-Level Workflow (ALW) specification;
the ALW specification is then used to generate a pool of Workflow Executors
(WEs) implementing all specified activities; WEs interact with distributed en-

11

vironment through through service Agentss (SA).

3.1 Hermes Layers Functionalities

It follows a detailed description of the main components and functionalities of
each layer.

User Layer

The user layer is based on workflows and provides to users a set of programs
for interacting with the wokflow management system. There are two main fam-
ilies of programs: programs for specifying, managing and reusing existing work-
flow specifications, and programs enabling administration and direct interaction
with the workflow management system.

The workflow editor is the program that supports the workflows specifica-
tion by composing activities in a graphical environment. The editor enables the
specification of workflows complying with the WIMC reference model [30] and
is implemented by using the JaWE [21] editor. Activities used in a workflow are
configured by specifying input parameters and their effects are recognizable as
modification of state variables or modification on the environment’s status. The
workflow editor enables the composition of both primitive and complex activi-
ties. A primitive activity is an activity that can be directly executed. A complex
activity is an activity that must be specified before it can be used; the spec-
ification of a complex activity is a workflow of complex and simple activities.
By using complex activities the specification of workflows is simplified because
they enhance both hierarchical specification and reuse: we can use an already
existing complex activity without caring of its specification. Users can use com-
plex activities and stored workflows to increase productivity when specifying
new workflows. Moreover, large libraries of both domain specific primitives and
complex activities can be loaded to specialize the editor for a specific application
domain.

Each activity can be configured with four parameters: the input data for-
mat, the output data format, the environment and its description. The input
data format specifies which is the accepted input for a given activity. In similar
way, the output data format specifies the accepted output data formats. The
environment parameter is used to specify in which context an activity must be
performed, since the same activity with the same parameters can be performed
in different contexts. The environment is separated from the other input param-
eters because it can cause either the migration of a code or the selection of a
specific implementation of the activity, while input parameters denote only data
transferring. For example, consider an activity associated to the use of a specific
tool implementation available in a given repository, it implies the deployment of
tool on a remote site and the activation of the tool. In a similar way, consider an
activity to search a given information on a given database, the activity is always
the same, but its implementation is very different with respect to the target
database, i.e., different authentication method, different querying interface and

12

different naming, hence the information on the target database is used to se-
lect the proper implementation of the activity. Finally, the activity description
is used either when it is not possible to achieve transparency or when the user
prefers to decide by himself where and how to execute a certain activity.

User-Level Workflow
(uLw)

JakeT Jesn

Agent-Level Workflow (ALW)
WE -A- WE -B- | WE -C-

| | \
| | | \
| | | \
| | | |
| | | | %,
Pool of Workflow | | | | 2
Executors (WE) | | |)3
| I | 5
| | | |3
| | | \
Activity A1 Activity B1 .
Activity A2 Activity B2 Activity C1
2
5
service A Service B Service C 3
3
2
2
9
Feature A1 Feature B1
Feature A2 Feature B2 Feature C1

Feature A3

Fig. 6. Entities located at each Layer of Hermes Architecture. Any user level workflow
(ULW) is mapped into an agent-level workflow (ALW) and compiled to a pool of mobile
user agents, the workflow executors (WE) which interact with the service agents (SA)

System Layer

The system layer hosts WEs which are User Agents generated from the ULW
specification. WEs execute and coordinate their actions to reach the fulfilment
of the ULW specification. Some of the actions executed by WESs need interaction
with the services (SAs); these actions correspond to operations that must be
completed by interacting with a remote service.

13

In the case the distributed execution environment is open, the communica-
tion between agents takes place once the negotiation of communication protocol
(the ontology) is successfully accomplished. By fixing an ontology, the agree-
ment on the semantics is guaranteed, but information that can be exchanged is
constrained; in fact agents can use only concepts defined in the ontology. In the
case the system has defined a shared common ontology, the ontology negotiation
procedure always successes.

Now we described the two phases agent generation procedure that is per-
formed by the compiler. In the phase 1) the ULW is mapped to an ALW, and
in the phase 2) the ALW is used to generate WEs. The ALW is a specification
similar to the ULW, but it takes into account the existence of the agents that will
execute the actions and it contains only primitive actions (actions that can be
directly executed without decomposing them in workflows). Since the compiler
is under development we can not provides implementation details, but only its
main functionalities.

Phase 1: Mapping the ULW to the ALW The mapping from the ULW to the ALW
is performed by recursively substituting activities of the user-level specification
with a workflow of primitive agent-level activities. This mapping is performed by
accessing to the User-Level Activity Database (ULAD) that maintains the cor-
respondence between user-level activities and ALW. There are other rules man-
aging technicalities of the transformation process, for example branching of the
execution is translated to an agent creation activity and a join of two branches
are translated to a coordination activity between multiple agents. Moreover, in
the case the compiler recognizes a set of independent activities, it can distribute
them among several agents to increase parallelism. The set of activities assigned
to the same agent constitutes its body, therefore the result of this mapping con-
sists on a set of workflows: one for each agent. Activities belonging to an ALW
specify actions at a low-level of abstractions that can be directly executed. Mes-
sages are sent from an agent to another by using communication activities, i.e.,
an activity whose execution consists on sending a message to the receiver. Ac-
tually communication consists of sending and receiving single messages, in the
future we want to extend this approach to definition of protocols that must be
respected during inter-agent communication.

The ALW specifies all entities involved in the execution of a workflow, thus
the constraint of spatial and temporal coupling communication can be respected
since the compiler knows exactly when communication takes place and which
are both receivers and senders.

The compiler can optimize the ALW by applying heuristics based on param-
eters issued to the compiler, e.g., the compiler can try to minimize the consumed
bandwidth, minimize number of generated agents, minimize number of gener-
ated messages, maximize parallel execution of activities, and check for deadlock
freeness. In addition to general purpose analysis, the compiler can check specific
properties on the ALW, such as verifying that the shipping procedure of a spe-
cific item begins only after the purchase is completed. Actual prototype of the
compiler implements part of these features.

14

Phase 2: Mapping the ALW to WEs In the second step, the compiler concretely
generates agents from the ALW specification. To achieve this result, the com-
piler uses the User-level Activity Implementation Database (ULAID) and the
Database of Skeletons (DoS). The ULAID stores the implementation of the
agent-level activities and the DoS stores “empty” implementation of agents (the
skeletons).

A skeleton is a role-specific implementation of an agent that does not con-
tain any behaviour, e.g., a skeleton of a traveller agent can be a lightweight
implementation of an agent limiting bandwidth consumption. Particular system
properties can be obtained by proper choice of skeletons, e.g., limited bandwidth
consumption. The concrete WE is obtained by plugging the specified behaviour
into the skeleton. In particular, the compiler behaves following these steps:

A complex behavior CB is generated by composing as specified in the ALW

the implementation of each activity contained in the ULAID.

— The compiler analyzes the CB and derives all state variables that will be
necessary to complete its execution.

— A state entity SE is generated by aggregating all state variables

— A proper skeleton is selected from the DoS. The WE is created by plugging
both the complex behaviour CB and state entity SE in the selected skeleton.

— The previous steps are repeated for all WEs that must be created.

— Finally, execution starts.

Actually, we are implementing the WE generation procedure by using an
implementation of the skeletons that dynamically load the compiled complex
behavior and the state variables at start-up by dynamic binding. Instead of gen-
erating compiled WHEs, it is possible to use skeletons behaving as interpreters of
ALW specifications. In such case, the WE is obtained by associating the skeleton
to the ALW specification. WEs of the former type are small, i.e., WEs contain
only the code for the execution of the activities, and fast, i.e., instructions can
be directly executed; while WEs of the latter type are large, i.e., they imple-
ment a complete interpreter, and slower i.e., instructions must be interpreted,
but they exploit the ability to dynamically modify their behavior at run-time.
The organization of our system enables the use of both type of agents. Actually,
we are implementing the compiler producing compiled agents, but we plan also
to investigate interpretation and dynamic adaptability.

Run-Time Layer

As already described, the overall structure of the system is very complex,
it supports abstract specifications that are mapped into a complex distributed
and coordinated flows of activities over a large-scale distributed system. In or-
der to master this complexity, and support the transparency of the computing
distribution by using mobile computation, the run time system provides a set
of active services Service Agents to allow a secure resources access and a mobile
platform to support the agent mobility. The agent mobility is performed through
mobile code environment that besides mobile code, supports also security, fault-
tolerance, communication, and resource management and discovery.

15

More in detail, Service Agents provide access to services. When a U ser Agent
migrates and arrives in a different platform, it can query the Yellow PageService
to gain information about services offered in the platform and then it commu-
nicates with ServiceAgents to gain the information it needs. This paradigm
simplifies the interactions enabling the use of an agent communication language,
e.g. KQML [23] or Fipa ACL [25], as a unified way to communicate with other
agents, services or resources.

A detail description of the Run-Time Layer components is given in the next
section.

3.2 Hermes Mobile Middleware and its Engineering

We now describe a practical approach in developing of a modular and reusable
agent-based middleware, in particular the Run-Time support of Hermes software
architecture. We show the flexibility of Hermes middleware and how the followed
component-based approach supports the reusability of existing artefact during
the development of a middleware system for a specific application domain. As
we already highlighted in the previous sections, agent-based systems are com-
plexes [34], the development involving distribution, mobility, communication and
security problems. The adoption of layered software architecture allows to master
this complexity and enhances security because the interactions occurring among
different layers can be monitored and filtered. In order to give flexibility to the
Hermes middleware, we decided to adopt a layers plus components strategy, in
fact each layer is designed as an aggregation of components.

We think that this point of view is a natural and effective approach to middle-
ware construction and, more generally, to the development of complex systems.
In the following paragraphs we give some hints of design of the Hermes kernel
the detailed description can be found in [9]. We have chosen UML as architec-
ture description language because is widely accepted in both the academic and
industrial worlds as a reference language for system design.

The Hermes kernel can be described by three components, placed in a 3-
layered software architecture as shown in Figure 7. Notice that this software ar-
chitecture is different from that shown in Figure 5 because this last one highlights
the hierarchical dependencies among system software components, for example
the agent component in Figure 5 is unique while in Figure 6 has two distinct
functional roles of User Agent and ServiceAgent.

The Core layer role is similar to the kernel of an operating system, it im-
plements the basic features of a mobile code platform, such as communication
protocols, code traceability and security. The Core layer is essentially free of any
system strategy.

The BasicServices layer extends the core features by providing services that
directly support the agents activities, e.g., agent mobility and agent communi-
cation implemented on top of inter-platform communication. The BasicServices
layer contains system strategies, but does not implement any feature of the
application domain.

16

Agent

“V

BasicServices

ﬁv

Core

Fig. 7. 3-Layered Architecture of Hermes Mobile Computing Platform. The core sup-
ports identification, communication, loading and security; BasicServices supports dis-
covery, mobility, creation, communication and security; Agent supports User agents
and Service agents

The Agent layer is the container of all service agent and user agents of the
application domain. The BasicServices layer is always present in any place, so
that minimum support to agent execution is guaranteed.

Core Layer The Core layer is the lowest layer of the architecture (Figure 8)
and contains base functions of the system, such as the implementation of the
inter-platform communication protocols and agent management functions. This
layer is composed of four components: ID, SendReceive, Starter and Security.

Identify ReceiveAgent SendAgent SendMSG ReceiveMSG AgentlLoaderl

@
Trace .
/

ID SendReceive Starter Security
| ,>.7

Validatorl

Fig. 8. The Core Layer. It supports identification, communication, loading and security

To give an idea of how the design phase has been made we describe the com-
ponents belonging to the Core Layer.
The ID component implements general identity management functions by man-
aging a repository containing information about locally generated agents (Fig-

17

ure 9). This repository is accessed whenever we want to know the current position

of an agent.

IDTable .7

-

1 Agentldenti BasicService

i Ko
BornTable | < ficator 1 References

Fig. 9. ID Component

The ID component is also responsible for the creation of the identifiers to
be associated to new agents. These identifiers contain information about the
birthplace, date and time of the agent’s creation. Agent localization is simplified
by information contained directly in the “ID”, such as the birth place. In fact,
the birth place of an agent hosts information about the agent’s current location.

A second important feature of the Core is the SendReceive component (Fig-
ure 10). This component implements low level inter-platform communication by

. Migration ' .
SenderMa ' e AgentBuffer
Thread
nager O/‘?
= |nterPlaceCommunicatio Message
n e | — Buffer
" | ® handleMsgForPlace() \J/
FilterCriteria

@ MessageType(obj : Object) : msgType

Fig. 10. SendReceive Component

sending and receiving messages and agents. By using the traceability services of-

18

fered by the ID component, SendReceive can easily update or retrieve the exact
position of a specific user agent.

It is important to note that every change in the communication protocol is
concealed within the BasicService layer. The SendReceive component can also
send and receive agent instances. This feature is reused by the upper layer to
implement agent migration.

The Starter component processes any request for agent creation. This par-
ticular component, in fact, takes an inactive agent (just created or migrated),
and checks it for the absence of malicious or manipulated code. These agents,
before activation, are dynamically linked to all basic services of the platform.
During execution the agent is isolated from the Core layer by the Basic Service
layer.

The Security component, as mentioned above, checks for the presence of
malicious code or manipulations within the agent code.

Note that at this abstraction level permissions are not an issue. The code
inspection concerns only dangerous agents that attempt to perform illegal oper-
ations, such as viruses.

The BasicService Layer BasicServices layer (Figure 11) has five main com-
ponents: Discovery, Mobility, Genesis, Communication and Security Politics.

Discovery Update Move Creation SendToService SendToAgent ceiveMessage
| \ \ n 4

Discovery Mobility Genesis Commu Security

nication 7>r Politics

Access

Fig. 11. BasicServices Layer

The Discovery component searches and detects service agents. When a user
agent wants to communicate with a service, it will ask the Discovery for the
right identifier to use as the message’s receiver. The service detection strategy
can be implemented in different ways; for example by a fixed taxonomy or by
an UDDI [6], commonly used in the Web Services application domain.

The Mobility component enables the movement of code across platforms [27],
it implements the interface used by the UserAgent and it accesses to components
of the Core layer to send, receive and load agents. It is important to note that real
communication between different locations can be achieved only through Core’s
SendReceive component, and then migration is independent of the type of used
transport. Mobility consists on copy the agent i.e. its code and its current state

emanuela
Evidenziato

emanuela
Evidenziato

19

and send it to the destination platform where it will be re-started in a specific
point (weak mobility). The local agent is destroyed.

The Communication component makes possible to send and receive agent-
directed messages both in an intra- and inter-platform context. Intra-platform
messages are messages sent between agents and services residing in the same
platform. Inter-platform messages are messages sent to agents residing in dif-
ferent platforms (our system does not allow for remote communication between
user agents and service agents).

The agent requesting the dispatch of a message does not need to know,
effectively, where the target agent is; in fact, the ID is sufficient to post correctly
a message. The Communication component uses one of the Security Policy’s
interfaces to ascertain whether the specific UserAgent or ServiceAgent has the
right privileges for communication, if an Agent is not authorized to use a service,
the message is destroyed.

Before accessing resources and services, an agent must authenticate itself. The
identification is performed by sending a login message to a specific ServiceAgent,
as consequence the SecurityPolitics component jointly with the Communication
component intercept the message and unlock the communication. The Securi-
tyPolitics component centralizes control of permissions, protects services and
resources from the user agents, and provides the administrator with an easy way
to manage all permissions.

The last component of the service layer is the Genesis component that en-
ables agent creation. A special case of agent creation is cloning that is performed
when it is necessary to create a copy of an existing agent. The two copies differ
only for the agent identifier.

A special case of agent creation is cloning that is performed when it is nec-
essary to create a copy of an existing agent. The two copies differ only for the
agent identifier.

The Agent Layer The upper layer of the mobile platform, the Agent Layer,
contains all service and user agents. This layer implements features of the agent-
based workflows management system as described in Section 3.1.

This component has not any interface, but is has only several dependencies
upon the BasicService layer. The Agent component contains a general abstract
agent class and two inherited classes. ServiceAgent consists of agents enabling ac-
cess to biological databases or providing algorithm. UserAgent represents agents
created by biologists. User agents execute complex tasks and implement part of
the logic of the application.

The HermesV2 Java implementation, has been completely designed and de-
veloped following this approach [29]. The middleware we have implemented is
separated into several functional units (components) with mutual dependencies
explicitly documented by UML diagrams.

emanuela
Evidenziato

emanuela
Evidenziato

20

We would like to mention that such an approach, based on layers and com-
ponents, supports the generation of middleware for different domains as shown
in [9].

3.3 Main Services and Tools for Hermes

In this section we describe some aspects, that have been significant for the im-
plementation of Hermes middleware. The programming environment offered by
Hermes consists of several tools both for design and execution of distributed ap-
plications. Some tools turn into Agent services, e.g. those that support resources
access, resource localization, resource selection, schema mapping, etc. some oth-
ers remain tools usable during workflows design, analysis, verification phases.
Among Service agents we mention:

AIXO: XML Generalized Wrapper

ATIXO is a tool developed to present any data source as a collection of XML
documents. AIXO is flexible and modular, it allows to manage many input data
sources ranging from HTML to XML, databases, flat file, CGI and command line
programs. AIXO has been experimentally used on different resources in different
contexts and successfully integrated as wrapper service agent in Hermes [4].

AIXO

‘ Wrapper
[

®addXSLTFilter(pathfile : String) : void
®retrievalXMLDocument(parameter : Object) : org.jdom.Document
®\Wrapper(access : ResourceAccess, XMLResource : ResourceToXMLReader, engine : WaterfallXSLTProcessor)

+XMLResource 1 +engine
+access
]
ResourceloXML

‘ ResourceToXMLReader
[

®toXMLReader(input : Object) : java.io.Reader
.0

P XSLTProkessor
‘ WaterfallXSLTProcessor
[

ResourceAccess

®addXSLTFilter(pathfile : String) : void
®getDocument(input : java.io.Reader) : org.jdom.Document
EWaterfallXSLTProcessor()

L)

[
|lgetAccess(parameter : Object) : Object..

Fig. 12. AIXO architecture

The AIXO architecture is not for a specific resource or data type; rather, it
is general and suitable for a wide range of resources. An AIXO Service agent

21

implementation offers a wrapper that provides an “XML view of the resource”.
The AIXO architecture, shown in Figure 12, is composed of three main packages:
ResourceAccess, ResourceToXML, XSLTProcessor.

ResourceAccess manages access to the resource to be wrapped. Its imple-
mentation depends upon the communication protocol, permissions, and access
policies. By using the ResourceAccess’s interface, data can be gathered from
the resource in its native format; there is no transformation. For example, in
the case of a Relational DataBases (RDB), the data obtained is contained in a
“recordset”.

Resource ToXML transforms data, provided by the ResourceAccess module,
into XML. The transformation is canonical and independent of the data’s se-
mantics. Mapping from the original format to XML is performed considering
only the data’s structure. For example, in transforming a recordset to XML, the
output conforms exactly to the schema of the table; in the case of a flat file,
the transformation will derive its structure taking into account special charac-
ters such as tabular and white spaces. For an HTML text, the transformation
extracts the document schema from the tags.

Finally, the XSLTProcessor applies a set of XSLT filters to the raw XML,
provided by the ResourceToXML, to obtain the effective XML view of the re-
source. In this phase, the semantics of data plays an important role.

To create a concrete wrapper the ResourceAccess and Resource ToXML Java,
classes must be implemented and the XSLTProcessor must be configured us-
ing the appropriate set of XSL Transformations. Each wrapper is defined by
an XML configuration file. The system automatically loads classes and initial-
izes attributes. AIXO has been experimentally proven on different resources in
different contexts [4].

ATIXO Service agent can interact with OMSE (ontology management Service
agent), below described, to dynamically find the mapping among resources
schemas. An example of AIXO at work is given in Section 4.

WS?2A: a Web Service Service Agent

WS2A is a Web Service Service Agent, a tool developed to access Web
Services and to derive at run-time the resources access methods [60]. Briefly
a Web Service is an interface which describes a set of service access methods
usable through the network via XML messages. The interface hide any service
implementation details.

This tool is successfully used during the research and selection process of
a service that a MAS (matchmaker Service agent) supports. WS2A is charac-
terized by a peculiar communication among agents which allow to manipulate
unknown objects at run-time. In particular, data exchanged among agents do
not use messages but objects and by using JAVA reflection technique we support
the manipulation of unknown data.

MSA: Matchmaker Service Agent

Service discovery is the process of localizing resources and services available
in large scale open and distributed systems. In a distributed and redundant sys-

22

Service requestes

[|QoS certification authority| |
5. Request
2. Notify
Matchmaker ;
- 6. Response

4. Certify

3. Ven
F 1. Publish
7. Request
Service providers
8. Response

Fig. 13. Matchmaker Service Agent. Any gray box represent an agent active in the
distributed environment

tem as the Web, it is necessary, beside localizing services, to filter them in order
to obtain those which are best for the activities for which they have been re-
quested. By the term matchmaker we mean a software entity, a service agent,
which monitors services availability, maintains an updated file of all useful in-
formation for using services and possibly ensures a quality choice of them. We
have developed a matchmaker and defined a quality model based on parameters
that ensure the best choice of a service for a specific application domain. The
communication protocol among matchmaker and other agents is given in Figure
13. A full description of the tool is provided in [14]. The quality model consists
of two components, the first describes general quality aspects of the distributed
computational environment where the service is offered, we have considered the
Web, and the other includes quality features of the application domain. Any
resources must fulfil the following requirements:

— Aim: the purpose for which the resource has been developed;

— User target: the list of hypothetical users;

— Reliability: the probability of successfully using a resource;

— Feasibility: the measurement of the easiness to access the resource;

— Usability: the measurement of the easiness to use the resource;

— Originality: the degree of correctness of the resource and its information;
— Privacy: the legal conditions of using the resource;

— Updating: the attendance of the resource updating;

— Uptiming: the maximum length of time between two resource failures;
— Timing: the daily time of resource activity;

— Speedy: the measurement of the execution time;

— Browsing: the measurement of the human easiness to find a resource;

23
— Popularity: the number of active consumers;

Each quality aspect above defined is quantitative measured on the basis of
several parameters whose description if given in [49, 22]. The domain-dependent
quality aspects is provided in section 4.

OMSA: Ontology Management ServiAgent Agent

The availability of automatic tools for quickly determining semantic similar-
ity among concepts across different ontologies is useful during the processes of
data retrieval and data integration, in Hermes performed by AIXO. We have de-
veloped a tool which supports the ontology management to support the mapping
between domain ontology and local schema used to defines data repositories. To
that purpose we have defined a similarity algorithm to compare two ontologies.
The main idea is, supposing to have, in each execution environment, a shared
global ontology and a local ontology, the algorithm determines similar concepts
(i.e., data types, formats and terms) by computing the number of identical rela-
tionships among two concepts of different ontologies and recursively to all their
derived concepts as well. The algorithm is considered an instrument that any
mobile service agent can use to compare two ontologies, usually the application
domain ontology shared at user level and that derived from the local resources
schema. The detailed description of the similarity algoritm is given in [18] while
an example of how the tool can be used is provided in Section 4.

Client Servlet WISA Hermes

Web Server Platform system

HTTP Socket

Fig. 14. WISA: Web Interface Service Agent

lightTS-SA: lightTS Service agent

light TS-SA is a Service agent developed to support a coordination agents
via tuple space. light TS [48] is a Java package which provides a lightweight tuple
space implementation. Light because lighTS does not support the persistence,

24

security and remote access, features that can be provided by the run-time sup-
port. We have used this service especially to coordinate agents that move in place
where they do not know how to contact local services, but they can interact with
lightTS service agent which comes between the requester and the provider of a
service.

WISA: Web Interface Service Agent

WISA is a Service agent realised to support the expert programmer whose
want to directly interact with Hermes at system layer. This Service agent has
been designed to support some operations which characterize a user session:
manage your personal account, create an agent, send an agent, get the output of
the execution. To generalize the interface, the WISA communication protocol,
described in Figure 14, does not allow the “Client” to directly communicate
with WISA because the first one uses the HTTP protocol and the second one
uses a protocol based on Socket and XML. To make possible the communication
is needed a third component: a Web Server. The Web Server must support
application server-side (Java Servlet, JSP, ASP, CGI, PHP etc.).

WI1SA: Workflow Interface Service Agent

WISA is a Service agent developed to provide an interface to end user which
designs his workflow by combining the activities chosen from a give list. Note that
the list of activities are those implemented at the system layer of the Hermes
software architecture. The interface configured for a bioinformatics domain is
give in Section 4.

Analysis and verification tools for workflow

A further aspect we have dealt with is the possibility to used an automatic
tool to analyse and verify the behaviour of the workflow that a user can design.
Recalling that, in Hermes, a distributed applications is a workflow of activi-
ties, designed by a graphical notation usually made by JaWE editor. We have
verified that there is a correspondence between the JaWE notation and UML
Activity Diagram [59]. Then we have provided a process algebra view of work-
flows described in terms of UML activity diagrams by defining an interpretation
of activity diagrams into CSP-like process algebra terms. Similar results could be
obtained if we represents the workflow by a Petri Nets. To provide Hermes with
a verification tool based on CSP-process algebra to apply to user workflow, we
have exploit an intermediate relational language as a bridge between activity di-
agrams and process algebra terms as shown in the sequel and detailed discuss in
[1]. The obtained results do not only show a conceptional relationship between
two different notations. The advantage of our comparison is twofold. On one
hand we provide different notations for “the same” system abstraction: a tex-
tual description (process algebras terms) and a graphical notation (workflows).
This can be very useful during the system life cycle. On the other hand process
algebras are associated with formal semantics and this has allowed the prolif-
eration of automatic tools for system specification and verification so that our
results open the possibility to exploit such tools for the verification of workflows.

25
4 Application Scenarios

Scenario 1: Hermes for Bioinformatics

The scenario we refer to is related to a biological domain. In the post-genomic
era, the amount of available information is constantly increasing, and it is diffi-
cult to exploit available data from all sources [26]. As an example we take the
context of Oncology over Internet project [44], that aims to develop a frame-
work to support searching, retrieving and filtering information from Internet for
oncology research and clinics.

intron exon : intron_exon|
cell_line= B9 Sex : sex

intron_exon= 7-exon Smoke : smoke

sex= M Alcool : alcool

smoke= ex-smoker

alcool= drinker

Cell Line : cell_line

Name_Mutation

Info_Mutations
Name_Mutation
Merge_Mutation

Abstract >
Info_Mutation 4~

Merge_Mutazioni R,
F Abstract F 777777

Merge_Mutazioni

[0 < woZEINWT BuOZBS IR

[Merge_Mutation = 0]

Fig. 15. Example of User Level Workflow in Bioinformatics Domain

Suppose the application domain involves the use of biological resources (micro-
organisms, cell lines, mutations) that are essential for implementing a good,
reproducible experiment. Established that high quality biological resources are
available at some specialized centres (Biological Resources Centers:ATCC, DSMZ,
) and their catalogues are available on-line and that many researchers assess-
ing molecular biology databases often need find more information regarding re-
sources to finally request materials.

Suppose to have three different domain each of one characterized by a set
of activities as here described: Cell Line domain={Al: Find information about
the cell line named x, A2: Find all cell lines derived from a specific tumour or

26

pathology, A3: Find all Cell Lines producing a specific protein, A4: Given a
specific Cell Line, find all related bibliographic references A5: Given a specific
Cell Line, find all information about produced proteins}, Mutation={ B1: Find
all mutations observed in a specific intron/exon in subjects with specific sex and
life habits (i.e. smokers/ drinkers), B2: Find all mutations in subjects affected
by a given pathology, B3: Find all subjects affected by a tumoural pathology
and with a given protein mutation, B4: Find all mutations observed by using a
given cell line, B5: Given a specific mutation, find all abstracts of the correlated
bibliographic references} and Bibliographic resources= {C1: Select all abstracts
of bibliographic references, whose text includes a given term}.

introne/exon= 7-intron
smoke= ex-fumatore
alcool= bevitore

Agent B Agent C

Agent A

Cell Line =B9

liSt=(www.a..”"www.b

}
Index
Info_Mutations[] Index

CheckResult

[Place: listindex]|

Names_Mutations(]
check_risults

Place: listfindex]

ntron exo
Sex: sex
Smoke: smoke
Alcogl: alcool

---q List:list
Element : index|

[eheck_risult = end list]

Merge Mutations

check_risult |-

[check_risut no end list]

[eheck_risult = no end list]

[eheck _isult = end lst]

Fig.16. An Example of Agent Level Workflow in Bioinformatics Domain

As an example consider a workflow defined to verify a mutation experiment
by reproducing it. In particular a workflow that has a goal to retrieve abstracts
from a literature databases for identifying the best cell line for reproducing
a human TP53 mutation experiment linked to a particular tumour-habits-sex
combination. Any single activity of the workflow uses bioinformatics services
available on Internet in order to achieve the desired result. The user will select
activities B1,B3 and B4, will provide parameters to each one: B1l. Retrieve all

27

mutations (IDs) observed in the 7th exon in men who are ex-smokers and drinkers
by searching p53 mutations database SRS implementation at IST, Genova; B4.
Retrieve all mutations (IDs) observed by using B9 cell line as original resource
by searching p53 mutations database SRS implemerntation at IST, Genova; B5.
Retrieve all abstracts of the correlated bibliographic references, of a specific
mutation ID by searching Medline. And will combine them by the workflow
operators as described in Figure 15.

Hermes in the context of O2I project is called Bioagent [62], it supports the
design of user workflow by the interface shown in Figure 17, i.e a Workflow
Service Agent (WfSA). The context-aware compiler will produce the set of mo-
bile user agents whose behaviours are described in Figure 16 and implemented by
a set of activities, called use cases in the Figure 17, and stored in the knowledge
base. The user get the result in XHTML.

The Figure 18 shows a typical interaction between a bioscientist and user
agents involves the following steps:

1. a bioScientist specifies the set of activities to be performed;
2. the compiler system generates a pool of user agents to execute the activities;
3. user agents migrate and clone in order to efficiently accomplish the activities;

4. agents query resources by interacting with local service agents. service agent
map the query to local schema by using AIXO which implements the ab-
straction layer so that agents interact only with XML documents. In the case
in which an AIXO service agent has to manage different types of documents
(ontologies mismatching) can interact with OMSE and use the ontology sim-
ilarity algorithm previously mentioned.

5. user agents merge results and furnish data to the bioscientists.

In this example AIXO Service agent is used both to retrieve and to present
resources as XML documents.

To prove the flexibility of Hermes middleware we now briefly describe a case
study we have recently made [17] by using Hermes for systems biology [36], i.e.
bioinformatics area which aim to understand how biological systems function.
A cell consists of a large number of components interacting in a dynamic envi-
ronment. The complexity of interaction among cell components and functions
makes design of cell simulations a challenging task for biologists. We have used an
agent-oriented methodology to design a cell components as autonomous software
entities (agents) situated in an environment and communicating via high-level
languages and protocols (ontologies), may be a natural approach for such mod-
els. We constructed a model of cellular components involved in the metabolic
pathway of carbohydrate oxidation. To give an idea of approach, the Figure 19
shows the set of agents identified be autonomous part of the system while Figure
20 shows the behavior of the only one component. Note that the UML Activity
Diagram described a workflow of activity which in turn is executed by a pool of
mobile agents which represents small components of the cell.

- Scorty Explorer

,T’XJ Fo s vmise” Pt Smentl 7 | &
S -O-HNaLPhkeaE % QO - HRANLHr@a|L
i [nzn. 00 s > indiizzo [€] hpi[/127.0.0. 110080 wnsfndes o0 8w
Comien it = 2 Googe~ [=] G cerconetuen - | Eopaont

=
MENU SELECT ONE USE CASE

University of Camerino

Use Cases Available

336

[Find allinformation sbout CELL LINE

Find oll nformtion sbout CELL LINE.

Fincl all CELL LINES of 2 speciic timour of pathology
Findiall CELL L

Department of Mather SRS RN
Computer Scien| @ - - ¥ 2] B[DN k@@ 2
BB 1 00 om0 EBD

| Google - =]

t cocarsvt | B poon

MENU SELECT A DOMAIN USE CASE
Login
Password [
Use Cases Relevant
Evier | Cles | | Nel RemoveUser | © CellLine
T T W O B | e € Mutation

@ Bibliographic Databank

|
‘Add Use Case S URECEE AR =
ViewWarkiow

GetAgents Data

Operaione conpleata T

[ireemet 7

Scorty Enplorer
Modifica Visualizza Preferiti Strumenti 7
¢ R A Ne L
Q-0 - HNRGBILHY
Indrizzo [] htp:i/127.0.0.1:8080/wmsfindex.isp =8
Google~ | < & coraelweb + | Eopeon
MENU URL ‘h[’tp://www.fabri.urg ‘ Databank ‘ dsmiz_mutz
‘Accession_number ACC 57
Ll Cell_line_name HELA
Fle Modfica Veusleza Prefertl Sumentl ? B3 confitmed & hLman with IEF of GEFD, MDH,NPesrabhshed
. : s fom
Q-O-HNEAnLhiceda2 & (Rl e A woman in 1951 later dagrosis changed toadeﬂocardnoma,
ndrizo [@] htpi17127.0.0.1 080jwnsfindex.ssp. BRI first arnetploid), continuously cultired human cel ine
Googee- | =] @ cercaneiweb - | [opeions human cervix carcinoma estabished from the epit
~ = of 2 31-yearold b#e?womammdlsm, later diagnosis
Description adenocarcinoma; first aneuploid, continuously
MENU SETUP USE CASE i cum,vredﬁwmanceﬂﬂhecmﬁrmed a5 himen wth EF of GEPD,
MEH,
Depositor obtamed from ATCC (CEL 2), Rockvile, Maryland, USA
Input Value ; o Scherer et ., 1. Exp. Med. 97: 695 (1953); Gey et ., Cancer
— Biblograptic_reference oC 175 1 25
[T e E epithelaike oells growing n morolayers
el Exon/Intron [10-eon =] 90% MEM (with Earle’s salts) + 10% Fesw 2 M L guﬁmm i
Sex M=l non-essential : w wiell i
i | Culture_conditions. 1640 + 5-10% FBs) sphtcoﬂmen culmre 1i4to 1 ?sevew 35
outatea. 1-2x 106 ceﬂsEOcm 2at 376 with 5% cozceﬁ
Add Use Case harvest of ca. 5-15 x 106 cells/175 cm 2
ELISA! reverse transcriptase negative; PCR: EBV-, HBY-, HCV-,
ViewWordiow Info Use Case Viruses. v V- HTLV ﬂ"[‘f =
© single use case Propertics cytokerst 15+, desmiry, erdothel, GFAP-, HME-4S-, |]
© subsequent of Lse case [2 =]
T oot [[@ 7
Log Off Reset | 0K
| |
Fowamnezmvdﬂia [[iernet. Z

Fig. 17. User Interface for Workflow Management in Bioinformatics Domain

29

Uh

BioAgent "
P g ~

= il

=1 ontologyService -! l @
= Wrapperservice ’ Userfgents
— Workflow
lwebinterfaceservice ot =

=)

)

1

Client(Bioskientist)

HTTP

@ Workflow

UserAgent

UserAgent

HTTP
@ HTTP X
usrengent Internet | '—,
HTTP w—
UserAgent

"k h
BioAgent
= 1L (e
Wrapl
3 yemagemen |
- nagement

Ma
O«4=] serviet

&)

UsefAgent

=] ontologyservice

é WrapperService
>~—1

%Weh\merlaceserwce L_

Bioinformatic
WebServer

Fig. 18. Interactions Between Agents and AIXO wrappers within Bioagent[62], i.e.
Hermes configured for Biologists

Scenario 2: Hermes for Industrial Control

Now, we focus on the industrial control case study, in particular the domain of
quality control. In a supply chain, the actors are the suppliers and the production
plans; the former usually provide both raw and semi-manufactured materials
while the latter assemble the various input components to produce a final, more
complex assembled product. We are interested to develop an application for
the traceability of the different components and semi-manufactured products in
terms of quality.

At first sight this context, geared towards quality, reflects problems with the
integration of heterogeneous data. In fact, each single supplier uses his own qual-
ity control mechanisms and stores results of test in his own format. The goal is
to integrate and rendered readily accessible all these data among manufacturers.
It would be useful, once a defect or malfunction in the final product has been
identified, to be able to trace and recover all information regarding quality that

30

~

Utente

<<Agent>>
AgCitosol

<<ex(end>©mj>>
: : <<extend>>
Glicolisi <<extend>>
FermentazioneLattica rmentazioneAlcolica
(from AgCitosol)
(from AgCitosol) rom AgCitosol)

INIZIALIZZAZIONEy ostraQuantitaAttuali

(from 01-Domain Dex..)
!

<<Agenf>>
Aglnterfaccia

MostraAT PCitosol
(from AgInterfaccia) s
(from Aglnterfaccia)
<<communjcate>> |
‘ <communjcate>>
<<Agent>> <<communicate>>
AgMermibranaMitocondrialeInterna
<<communicate>:
Trasporto CatenaRespiratoria <<communicate>>
<
L

l I Agknt>>
! ' xo b
N /AggimaDamCondwws‘
<<commu
(from Ag StatoAtua.
<<col ate>>

<<Agent>>
gMatriveMitocondriale

ITVICO Gi itrico

(o Agerisliizeondie (from AgMatriveMitocondria.

Fig.19. The Cellular Agents Identification Diagram

has been generated by the different tests and controls on components composing
the faulty product.

An agent-based system can be the technology exploiting resources and ser-
vices integration in the manufacturing applicative domain, but several issues
must be taken into account. Embedded systems that perform the various qual-
ity tests of the products are very heterogeneous, and data is stored in repository
providing access services that differ significantly. The security issues, moreover,
play a vital role all along the supply chain. In fact, both generated reports and
embedded checking system must be protecting from malicious access.

The supply chain consists of federated enterprises: many suppliers, a produc-
tion plant, a distribution center and a technical service center. Each enterprise is
characterized by a specific role and carries out a set specific tasks in the virtual
organization.

The complete set of tasks includes quality testing, performance testing, re-
porting on damages incurred during shipment, and reports on repairs carried
out directly to the customer.

Suppose that the Production plant receives a communication of the nth fault
of a washing machines family. The responsible of the plant could decide to ana-

31

K(Fase =2
"AgMembranaMitocondrialelnterna, { E) - . ®
OssidazionePiruv ato

£\

secitrato
Citgafo
IsocitratoDeidrogenasi
AgStatoAttuale. SendData

alf a-Chgtoglutarato
Contrpllo Fase [Fase =3

MalatoDeidrogenasi) < alfa-ChetoglutaratoDeidrogenasi)

%.aw Succ\ti\rCoA

[Fage =2]

Piruvato De{drogenasi OK

Ossalgcetato beparato Sye€inato
(lovio Dati Aggiomali—g it >

Agda dati

(‘AgMembranaMitocondrialelnterna. Listener, E Fase=4 ConteggioQuantita

Fig. 20. An example of agent workflow, the Mitochondrial Matrix Activity Diagram

lyze the complete life-cycle testing quality data of the signaled washing machines
family.

To that purpose he must identify any suppliers involved in the production
of the washing machine and retrieve from them all distributed data regarding
testing quality data.

Figure 21 shows a possible quality-oriented workflow which describes the
human aim. The workflow consists of domain specific activities regarding any
retrieval phases.

The quality-oriented workflow can be mapped into an agent-oriented work-
flows (Figure 22) and then compiled into a pool of agents (agent society) spe-
cialized to execute one or more activities. Among those we find Manager Agents,
Test Agent and Fragmenter Agents. Those agents, once created, have the main
features to be completely autonomous and running all the time for its goal.

Manager Agents has the goal to create the final testing report by interacting
with Test Agents and Fragmenter Agents. The final testing report, created by
an XML template, will include all quality data of the washing machine, testing
reports of any single components and all defects recorded during the product’s
life-cycle. Test Agent has the goal to retrieve quality data for a single component
by communicating with remote Wrapper Service Agents (running on remote
site). Fragmenter Agents has the goal to decompose a complex domestic device

32

(washing machine) into a list of semi-manufactured products and raw materials
(components).

"RETRIEVAL
DELIVERY
INFORMATION
FROM DELIVER DB"
"RETRIEVAL
FUNCTIONAL
TEST
INFORMATION —
FROM "INTEGRATE
PRODUCTION "RETRIEVAL ASSISTANCE FINAL TESTING
"PRODUCT BARCODE ~ PLANT DB" INFORMATION FROM ASSITANCE DB" REPORT"

A

"DECOMPOSE "RETRIEVAL
ALL COMPONENTS
PRODUCT COMPONENT'S CHECKED?"
IN COMPONENTS" TEST INFORMATION ‘
FROM SUPPLIER DB

READ"
, ,—“‘l".‘.

Fig. 21. Quality-oriented Workflow for the Functional Testing in the Production Con-
trol Plant

Scenario 3: Hermes for Pervasive Computing

The pervasive and ubiquitous devices are computational and control systems,
located in domestic environment (domotica) and in a manufactured articles.
These devices are often either masked or invisible therefore they can assist us in
the shadow. In this scenario, the microcontroller is the computational system for
excellence. A microcontroller is a computer system that centralizes, in a single
chip, all the functionalities needed to control and manage electrical domestic
appliances and automotive systems. One of the interesting characteristics of
the microcontrollers is low cost that favours a quick and wide spread among
many manufactured articles that surround us. A problem is the huge variety of
microcontrollers offered by producers to satisfy the demand.

A great number of microcontrollers use devices like bluetooth [7], echelon
[20], WLan [61], IrDA [58] that allow interactions between devices. Many en-
terprises provide protocols and services to allow connection between computers
and devices, like SUN with Jini [35]. However, these solutions do not conciliate
the computational resources of the microcontrollers with protocols flexibility, the
cost and the variety of the microcontrollers.

In this scenario, we have defined a virtual machine that makes transparent the
differences among microcontrollers and supports connectivity without defining
new protocols and to realize a secure environment for pervasive and ubiquitous
computing.

33

ManagerAgent TestAgent FragmenterAgent TestAgent TestAgent TestAgent
ProductionPlant ProductionPlant ProductionPlant Delivery Assistance Supplier

User run the
workflow

Read Retrieve
Washingmachine Quality
BarCode Report

‘All reports

?
TVes) checked?

Initiate
extended
retrieval

v

Decompose Retrieve Retrieve
Whashing Delivery Faults
machine Report Report
T
% Alleports /L<g}\ll reports
?
Nol checked? | o) checked? Retrieve
[Yes] [Yes) Quality
Report

Check
External
Suppliers

[Nol

All suppliers
checked?
[No] All reports

[Yes] checked?

[Yes]

=

Integrate

Fig. 22. Agent-oriented Workflow

To support a secure communication, and keep track of a mobile agent, we
have chosen a hierarchical structure: each agent may know only the ID of its
father agent (its creator) and its children agents

Clonation, mobility and communication have been identified as the kernel
primitives in the microcontroller environment. Clonation allows to duplicate the
code and the state of a running code. After a clonation there will be two iden-
tificable codes in execution. Mobility allows a code to move on other execution
platform in proactive mode: a copy of the code and its current state is moved to
the destination platform for being started from a specific point (weak mobility).
Unlike the clonation, the code that performs the move primitive comes destroyed
if the execution of the movement primitive succeeded. Communication directly
results from the clonation primitive. After a clone operation will be created an
exclusive communication channel between cloning and cloned codes. Commu-
nication (through exchange of messages) is possible only between cloning and
cloned. Messages are sent-received in asynchronous-synchronous fashion.

34

The virtual machine relies on a calculus which describes the semantics of the
minimal set of operation isolated to characterize a platform supporting mobile
code [13]. The calculus for modelling mobile applications is summarized here
below.

A is a set of basic actions, A, = A U {7}, where 7 is used to represent
internal activity. N;q and N, are an infinite sets of names of mobile processes
and platforms,resp. M is an infinite set of messages.

Definition 1. (mobile processes)
The set S of sequential programs and the set M of mobile processes (sequen-
tial programs in execution) are generated by the following grammar:

S == nil | a.S | clone(S).S | send(m).S | receive(m).S

| go(p, S)

where & € A, m € M and p € NV,. The set M of mobile processes (codes in
execution) is generated by the following grammar:

M = NIL | init(S,SP) | id : {SP, S, A} | My, M,

where id € N4, S € S, SP € P(M) and A € P(N;4), nil represents a terminated
sequential program.

A process whose sequential behaviour is «.S, send(m).S, receive(m).S and
clone(S.).S can execute a, send and receive a message in m € M, clone itself
and then behaves as S. go(p, S) instructs a process to migrate to a destination
platform named p and then behaves as S.

The component-based approach, used to developed Hermes and discussed in
Section 3.2, allows to create new components in the Hermes core, by reusing the
existing ones. We have developed a version of Hermes which adapt its compo-
nents to the hardware characteristics of the microcontrollers to guarantee the
function required by middleware. As an example, the communication component
can be adapted for various technologies [7, 20, 35].

We have configured the Hermes platform for running with CDC of SUN
[55] on PDAs. The porting of the Hermes on one particularly compact JVM
for microcontrollers (like CLCD of SUN of type KVM [56, 53]), according to
[53] needs libraries for sockets, serialization and reflection. Unlike many other
platforms, Hermes does not use RMI [35]. The only pre-requirement on the
microcontroller is the presence of a JVM. The core of the platform plus AIXO
service is between 120KB to 160KB. Therefore the implementation of HermesV2
over a microcontroller would supports the following functionalities:

Communications peer to peer. At most two platforms are involved in every
communication. Therefore it is possible to realize it without involving other
partners [12]. Every platform must only store information in order to realize
communication between clonated and cloning codes currently in execution on
it. This implies limited traffic of service between platforms and small tables.
Substantially are draft communications to local environment.

35

Communications deadlock free. The communications of this model are dead-
lock free. According to the hierarchical structure of communication, it is im-
possible to establish the condition of circular wait for more that two actors.
Moreover, the situation of circular wait happens only if both the actors, cloning
and clonated, establish a synchronized communication. Such a situation can be
easily prevented imposing that, before sending a synchronous message m, a code
must control that in its own queue there is not a synchronous message sent by
the receiver of the massage m. In this case the communication simply fails with
exception.

Absence of timeout. Since the actor of a communication are always two codes,
cloning and clonated, that may also reside on two different platforms, it is possi-
ble to determine the cause of failures in the communications. Consequently the
code that sends or receives a communication can know the exact cause of the
failure and always undertake appropriate operations. This is not always the case
in systems where the communications is based on timeouts.

Absence of communication protocols. The communications between cloning
and clonated and vice versa is not subject to protocols (ACL [24]) since the code
of cloning is the same of clonated.

Security. All the requests of a code in a clonation tree (or forest of clona-
tion trees) realize a closed system and a set of predetermined communications.
The identifier produced after a clonation is only known by the cloning and it is
the only handle in order to allow communication between cloning and clonated.
Beyond to the communications towards the services, other shape of communica-
tion for the user code does not exist. The control of the communications allows
to remove or to supply grant to the codes in execution. By removing all the
communications a code becomes completely innocuous.

Correctness. Since a pool of instance relative to a code is ties at the communi-
cation network, it’s possible to simulate dynamic behaviour in static background.
It would be enough to eliminate from the code the primitive of mobility in order
to verify the behaviour gearless of context. Moreover since the communications
happen between copies of the same code is possible to verify the correctness
analyzing the graph of the possible states that it can assume a code in execution
[46].

5 Conclusion and future perspective

Mobile computing systems are computational systems that may be easily moved
and whose computing capabilities may be used while they are moved. Several
middleware have been proposed for mobile computing [47, 45] most of them
focus on communication and coordination of distributed components. Indeed, we
concentrate on a user not expert programmer, on workflow as suitable technology
to hide distribution and on mobile agent as flexible implementation strategy of
workflow in a distributed environment.

Our experience in developing applications in several application domains,
convinces us on the necessity to create an integrated, flexible programming en-

36

vironment, whose user can easily configure for its domain. This leads to the
developing of Hermes middleware. Hermes is structured as a component-based,
agent-oriented, 3-layered software architecture. It can configured for specific ap-
plication domains by adding domain-specific component libraries. The user can
specify, modify and execute his workflow in a very lightweight.

Workflow is specified abstractly in a graphical notation and mapped to a set
of autonomous computational units (UserAgents) interacting through a com-
munication medium. The mapping is achieved by compiler that is aware not only
of contents of a library of implemented user activities but also the software and
hardware environment to executing them. In our case it includes also available
services (ServiceAgent). A user specifying workflow need not to be concerned
with where to search for information, in what form information is stored, the
protocol for interacting with each services or the low level details that can be
left to the context-aware compiler.

We are moving to the definition of a domain-specific mobile agent language
to support as target language of the workflow compilation. We also plan to
study the integration of Hermes with Klaim to allow the formal verification of
agent-oriented workflow. Finally, we aim to experiment the use of the abstract
machines for systems biology as one of the domain-specific language.

Acknowledgements

We wish to thank all the students have been involved, ver the last years, in the de-
velopment of Hermes, among them we would like to mention Francesca, Davide,
Lorenzo, Ezio, Leonardo, Marco, Chiara and Barbara. A special acknowledge is
due to Rosario Culmone, Leonardo Mariani and Diego Bonura with who we have
taken the most important development decisions.

We would like to thank Michal Young for valuable comments on a preliminary
version of this paper.

37

References

[1]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

R. Amici, D. Cacciagrano, F. Corradini, and E. Merelli. A process algebra view of
coordination models with a case study in computational biology. In Proceedings
of 1st International Workshop on Coordination and Petri Nets, PNC’04, 2004.
M. Angeletti, R. Culmone, and E. Merelli. An intelligent agent architecture for
dna-microarray data integration. In NETTAB Workshop on CORBA and XML:
Towards a bioinformatics integrated network environment, Genova, 2001.

R. B’ Far. Mobile Computing Principles. Cambridge University Press, 2005.

E. Bartocci, L. Mariani, and E. Merelli. An XML view of the “world”. In In-
ternational Conference on Enterprise Information Systems, ICEIS, pages 19-27,
Angers, France, April 2003.

E. Bartocci, S. Moeller, L. Todo, and E. Merelli. Integration of ensembl with
bioagent. In Abstract book of the Biocomp - Gruppo di Cooperazione in Bioinfor-
matica, 2004.

T. Bellwood, L. Clément, D. Ehnebuske, A. Hately, M. Hondo, Y. L. Husband,
K. Januszewski, S. Lee, B. McKee, J. Munter, and C. von Riegen. UDDI version
3.0. Published specification, Oasis, 2002.

Bluetooth. http://www.bluetooth.org.

D. Bonura, F. Corradini, E. Merelli, and G. Romiti. Farmas: a MAS for extended
quality workflow. In 2nd IEEE International Workshop on Theory and Practice
of Open Computational Systems. IEEE Computer Society Press, 2004.

D. Bonura, L. Mariani, and E. Merelli. Designing modular agent systems. In
Proceedings of NET.Object DAYS, Erfurt, pages 245-263, September 2003.

L. Cardelli. Abstract machines of systems biology. In Transaction on Com-
putation System Biology, special issue for NETTAB Workshop on Model and
Metaphors from Biology to Bioinformatics Tools, Lecture Notes in Computer Sci-
ence. Springer-Verlag, 2005. to appear.

L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer Science,
240(1):117-213, 2000.

N. Carriero, D. Gelernter, and T. G. Mattson. Linda in heterogeneous computing
environments. In Proceedings of the Workshop on Heterogeneous Processing, pages
43-46, Beverly Hills, CA, March 1992.

F. Corradini, R. Culmone, and M. R. Di Berardini. Code mobility for pervasive
computing. In 2nd IEEE International Workshop on Theory and Practice of Open
Computational Systems. IEEE Computer Society Press, 2004.

F. Corradini, C. Ercoli, E. Merelli, and B. Re. An agent-based matchmaker. In
proceedings of WOA 200/ dagli Oggetti agli Agenti - Sistemi Complessi e Agenti
Razionali, 2004.

F. Corradini, L. Mariani, and E. Merelli. A programming environment for global
activity-based applications. In proceedings of WOA 2008 dagli Oggetti agli Agenti
- Sistemi Intelligenti e Computazione Pervasiva, 2003.

F. Corradini, L. Mariani, and E. Merelli. An agent-based approach to tool inte-
gration. Journal of Software Tools Technology Transfer, 6(3):231°244, November
2004.

F. Corradini, E. Merelli, and M. Vita. A multi-agent system for modelling the
oxidation of carbohydrate cellular process. In First International Workshop On
Modelling Complex Systems (MCS 2005), Lecture Notes in Computer Science.
Springer Verlag, 2005. To appear.

38

[18]

[19]

[20]
[21]
22]

[23]

[24]
[25]

[26]

[33]
[34]
[35]
[36]
[37]

[38]

[39]

[40]

[41]

R. Culmone and E. Merelli. An semantic comparison of ontologies. Technical
Report TR02, Dipartimento di matematica e Informatica, Universit di Camerino,
2003.

R. De Nicola, G. L. Ferrari, and R. Pugliese. Klaim: A kernel language for agents
interaction and mobility. IEEE Transaction of Software Engineering, 24(5):315—
330, May 1998.

Echelon. http://www.echelon.com.

Enhydra. Jawe. http://jawe.enhydra.org/, 2003.

C. Ercoli. Un modello di qualita per la scelta di servizi web in ambito biologico
- il middleware. Master’s thesis, Laurea in Informatica, Universita di Camerino,
a.a. 2003-2004. http://dmi.unicam.it/merelli/tesicl26/ercoli.pdf.

T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an Agent Commu-
nication Language. In N. Adam, B. Bhargava, and Y. Yesha, editors, Proceedings
of the 3rd International Conference on Information and Knowledge Management
(CIKM’94), pages 456-463, Gaithersburg, MD, USA, 1994. ACM Press.

FIPA. The foundations for intelligent physical agent. http://www.fipa.org.
FIPA-ACL. FIPA9T specification, part 2: Agent communication language. Spec-
ification, FIPA, October 1997.

D. Frishman, K. Heumann, A. Lesk, and H.-W. Mewes. Comprehensive, com-
prehensible, distributed and intelligent databases: current status. Bioinformatics,
14(7):551-561, 1998.

A. Fuggetta, G. Picco, and G. Vigna. Understanding code mobility. IEEE Trans-
action of Software Engineering, 24(5):352-361, May 1998.

D. Gelenter. Generatve communicationin linda. ACM Computing Survey, 7(1):80—
112, 1985.

HermesV2. http://hermes.cs.unicam.it.

D. Hollingsworth. The Workflow Reference Model, January 1995.

IBM. TSpace web page. http://www.almaden.ibm.com/cs/TSpace.

Javapace. The javaspace specification web page.
http://www.sun.com/jini/spec/js-spec.html.

J. Jayashankar M. Swaminathan, S. Smith, and N. Sadeh. Modeling supply chain
dynamics: A multiagent approach. Decision Sciences, 29(3), 1998.

N. R. Jennings. An agent-based approach for building complex software systems.
Communications of the ACM, 44(4):35-41, April 2001.

JINIL. Jini network technology. http://wwws.sun.com/software/jini.

H. Kitano. Foundations of Systems Biology. MIT Press, 2002.

A. C. R. Martin. Can we integrate bioinformatics data on the internet? Trends
in Biotechnology, (19):327-328, 2001. (Meeting Report).

C. Mascolo, L. Capra, and W. Emmerich. Middleware for mobile computing (a
survey). In E. Gregori, G. Anastasi, and S. Basagni, editors, Neworking 2002
Tutorial Papers, volume 2497 of Lecture Notes in Computer Science, pages 20-58.
Springer-Verlag, 2002.

E. Merelli, R. Culmone, and L. Mariani. Bioagent: a mobile agent system for
bioscientists. In NETTAB Workshop on Agents nd Bioinformtics, Bologna, July
2002.

E. Merelli, P. Romano, and L. Scortichini. A workflow service for biomedical
application. In Abstract book of the Biocomp - Gruppo di Cooperazione in Bioin-
formatica, 2003.

M. Merz, B. Lieberman, and W. Lamersdorf. Using mobile agent to support inter-
organizational workflow management. Applied Artificial Intelligence, 11(6):551—
572, 1997.

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]
[54]
[55]
[56]
[57]

[58]
[59]

[60]

[61]

[62]

39

J. P. Milner, R. and D. Walker. A calculus of mobile processes, part 1-2. Infor-
mation and Computation, 100(1):1-77, 1992.

A. L. Murphy, G. P. Picco, and G.-C. Roman. Lime: A middleware for physical and
logical mobility. In F. Golshani, P. Dasgupta, and W. Zhao, editors, Proceedings
of the 21° International Conference on Distributed Computing Systems. ACM
Publisher, 2001.

0O2I. Oncology over internet, strategic project founded by italian nationa research
minestry. http://www.o2i.org.

A. Omicini and F. Zambonelli. Coordination for Internet application development.
Autonomous Agents and Multi-Agent Systems, 2(3):251-269, Sept. 1999. Special
Issue: Coordination Mechanisms for Web Agents.

M. Pezzé, R. N. Taylor, and M. Young. Graph models for reachability analysis of
concurrent programs. ACM Transaction on Software Engineeringn and Method-
ology (TOSEN), 4(2):171-213, 1995.

G. P. Picco, A. L. Murphy, and G.-C. Roman. Lime: Linda meets mobility. In Pro-
ceedings of the 21st International Conferece on Software Engineering (ICSE’99),
pages 368-367, May 1999.

G. P. Picco, A. L. Murphy, and G.-C. Roman. Developing mobile computing ap-
plications with lime. In International Conference on Software Engineering archive
Proceedings of the 22nd international conference on Software engineering, pages
766769, 2000.

B. Re. Un modello di qualita per la scelta di servizi web in ambito biologico - il
modello di coordinazione. Master’s thesis, Laurea in Informatica, Universita di
Camerino, a.a. 2003-2004. http://dmi.unicam.it/merelli/tesicl26 /re.pdf.

R. D. Robert D. Stevens, A. J. Robinson, and C. A. Goble. mygrid: personalised
bioinformatics on the information grid bioinformatics. Bioinformatics, (19):302 —
304, July.

G.-C. Roman, G. P. Picco, and A. L.Murphy. Software engineering for mobility:
A roadmap. In The Future of Software Engineering, pages 241-258. 2000.

S. S. Mueller-Wilken, F. Wienberg, and W. Lamersdorf. On integrating mobile
devices into a workflow management scenario. In I. C. Society, editor, Proc. 11th
International Workshop on Database and Expert Systems Applications (DEXA),
pages 186-192, Hamburg, 2000.

C. H. Stephan Gatzka, Th. Geithner. The kertasarie vim. In NET.Object DAYS
2003, pages 285-299, Erfurt, September 22-25 2003.

R. Steven, C. Goble, P. Kaker, and A. Brass. A classification of tasks in bioinfor-
matics. Bioinformatics, 17(2), 2001.

Sun Microsystems. The CVM. http://java.sun.com/CDC.

Sun Microsystems. The KVM. http://java.sun.com/cled.

A. Tanenbaum and M. van Steen. Distributed Systems: Principles and Paradigms.
Printice Hall, 2002.

TIDA. The infrared data association. http://www.irda.org.

UML Revision Taskforce. OMG UML Specification v. 1.4. Object Magemement
Group, 2001.

L. Vito. Hermesv2 e web services. Master’s thesis, Lau-
rea in Informatica, Universita di Camerino, Italy, a.a. 2003-2004.
http://dmi.unicam.it/merelli/tesicl26 /vito.pdf.

WLAN. The working group for wlan standards.
http://grouper.ieee.org/groups/802/11/.

The BioAgent project. http://www.bioagent.net/.

