
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998 315

KLAIM: A Kernel Language for Agents
Interaction and Mobility

Rocco De Nicola, Gian Luigi Ferrari, and Rosario Pugliese

Abstract—We investigate the issue of designing a kernel programming language for mobile computing and describe KLAIM, a
language that supports a programming paradigm where processes, like data, can be moved from one computing environment to
another. The language consists of a core Linda with multiple tuple spaces and of a set of operators for building processes. KLAIM
naturally supports programming with explicit localities. Localities are first-class data (they can be manipulated like any other data),
but the language provides coordination mechanisms to control the interaction protocols among located processes. The formal
operational semantics is useful for discussing the design of the language and provides guidelines for implementations. KLAIM is
equipped with a type system that statically checks access rights violations of mobile agents. Types are used to describe the
intentions (read, write, execute, etc.) of processes in relation to the various localities. The type system is used to determine the
operations that processes want to perform at each locality, and to check whether they comply with the declared intentions and
whether they have the necessary rights to perform the intended operations at the specific localities. Via a series of examples, we
show that many mobile code programming paradigms can be naturally implemented in our kernel language. We also present a
prototype implementaton of KLAIM in Java.

Index Terms—Programming languages, mobile code languages, semantics of programming languages, language design,
coordination models.

——————————���F���——————————

1 INTRODUCTION

ETWORKING has changed computers from isolated data
processors into powerful communication and elabo-

ration devices. The terms global computers and global infor-
mation structures have recently been used to identify archi-
tectures of this kind and applications over them [8]. The
World Wide Web (WWW) is the best known example of an
application geographically distributed over a collection of
processors and networks. Global structures/computers are
rapidly evolving towards programmability; again, an illus-
trative example is the WWW. One could easily imagine ap-
plications with programs running at different sites and
needing continuous interactions or applications that have
to take decisions according to information retrieved from
the global environment.

This new scenario has called for new programming lan-
guages and paradigms that support migratory (mobile)
applications. For example, Java [3] permits local executions
of self-contained programs downloaded from other sites.
Similarly, Facile [23] supports mobility of programs by al-
lowing processes to be transmitted in communications.
Obliq [7] is a programming language with a static scoping
discipline where mobile processes maintain their connec-
tions when they move from one site to the other. Other ex-
amples of languages supporting forms of mobility are CML
[38] and Telescript [41].

From a theoretical perspective, much research has ad-
dressed mobility starting from the definition of π–calculus
[32], which has been used as the basis for designing the
concurrent, object oriented, programming language PICT
[33]. Indeed, an abstract semantic framework that would
allow one to formalize and understand global program-
ming languages is clearly required. Such a semantic frame-
work may be the formal basis to discuss controversial de-
sign/implementation issues (e.g., the scoping discipline of
mobile processes) and provide support for mechanical rea-
soning about global programs.

A key issue when designing a language for network
programming is security, e.g., privacy and integrity of data.
It is important to prevent malicious agents from accessing
private information or modifying private data. Tools are
thus needed that enable sites receiving mobile agents for
execution to set demands and limitations to ensure that the
agents will not violate privacy or jeopardize the integrity of
the information. Similarly, mobile agents need tools to en-
sure that their execution at other sites will not disrupt them
or compromise their security. Languages for mobile agents
often rely on policies (both at compilation and run-time)
that over-restrict privileges and capabilities of mobile
agents (e.g., Java [3]). This unnecessarily reduces the ex-
pressive power and capabilities of the agents. Moreover,
there is no guarantee that certain desired security proper-
ties are enforced by the language implementation.

This paper presents a kernel programming language,
Kernel Language for Agents Interaction and Mobility
(KLAIM), for describing mobile agents and their interaction
strategies. We introduce basic concepts and linguistic
primitives together with a formal operational semantics.
This is followed by a discussion of the pragmatics of the
language and of a prototype implementation.

0098-5589/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� R. De Nicola and R. Pugliese are with the Dipartimento di Sistemi e
Informatica, Università di Firenze, Via Lombroso 6/17, I-50134 Firenze,
Italy. E-mail: {denicola, pugliese}@dsi2.dsi.unifi.it.

•� G.L. Ferrari is with the Dipartimento di Informatica, Università di Pisa,
Corso Italia 40, I-56100, Pisa, Italy. E-mail: giangi@di.unipi.it.

Manuscript received 16 July 1997; revised 16 Dec. 1997.
Recommended for acceptance by G.-C. Roman and C. Ghezzi.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 106409.

N

316 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

The distinguishing features of our approach are the ex-
plicit use of localities for accessing data or computational
resources and the presence of a simple type system to con-
trol access rights.

The choice of KLAIM’s primitives was heavily influenced
by process algebras [25], [30] and Linda [20], [10]. Indeed,
our language can be seen as an asynchronous higher-order
process calculus whose basic actions are the original Linda
primitives enriched with explicit information about the loca-
tion of the nodes where processes and tuples are allocated.

Explicit localities enable the programmer to distribute
and retrieve data and processes to and from the sites of a
net and to structure the tuple space as multiple, located
spaces. Moreover, localities, considered as first-order data,
can be dynamically created and communicated over the
network. The overall outcome is a powerful programming
formalism that, for example, can easily be used to model
encapsulation. In fact, an encapsulated module can be im-
plemented as a tuple space at a private locality, and this
ensures controlled access to data.

The separation of the logical distribution of processes
and their physical mappings over the net leads to the shar-
ing of the control between programmers and a net coordi-
nator. The actual coordination language is designed to han-
dle all issues related to the physical distribution of proc-
esses. Coordinators have complete control over changes of
configuration of the network that may be due to addition/
deletion of software components and sites, or to transmis-
sion of program and of resources.

The actual structuring, in terms of processes and coordi-
nators, provides a clean abstraction device for global pro-
gramming languages and is instrumental in studying mi-
gratory applications and in understanding the extent of
configuration decisions before carrying out the actual im-
plementation. This will be illustrated by analyzing the ef-
fects of choosing specific scoping disciplines for accessing
tuple spaces.

To take security issues into account, we extend KLAIM
processes and coordinators with a simple type system that
can be used to statically enforce security properties. More
precisely, the type system permits one to check whether the
operations KLAIM processes intend to perform over the
sites of a net really do comply with their access rights.

We illustrate the pragmatics of the language by means of
a number of programming examples which demonstrate
how well established programming paradigms for mobile
applications can be naturally programmed in KLAIM. The
untyped version of KLAIM has been implemented as a set
of Java packages.

The rest of the paper is organized as follows. Sections 2
and 3 introduce the syntax and the operational semantics of
KLAIM, respectively. In Section 4 we present a type system
for inferring process types and a methodology for controlling
their access rights. This is followed by a discussion of the
language pragmatics in Section 5, and by the description of
the prototype implementation in Section 6. In Section 7, fu-
ture research is discussed. Comments about the relationships
of KLAIM with other languages and about alternative design
choices are scattered along the paper as Remarks.

Preliminary presentations of the KLAIM language can be
found in [15], [16].

2 KLAIM: SYNTAX AND INFORMAL SEMANTICS

KLAIM consists of a core Linda with multiple tuple spaces
and a set of operators, borrowed from Milner’s CCS [30], for
building processes. The distinguishing feature is that tuples
and operations over them are located at specific sites of a net.
We start this section by summarizing the main features of
Linda (the interested reader is referred to, e.g., [22], [11], [10]
for more details). Then, we present the syntax of KLAIM. The
process algebraic operators will be briefly presented in the
subsection that contains the syntax of KLAIM processes.

2.1 An Overview of Linda
Linda is a coordination language that relies on an asynchro-
nous and associative communication mechanism based on a
shared global environment called tuple space (TS). A tuple
space is a collection (formally a multiset) of tuples, where a
tuple is a sequence of actual fields, i.e., expressions or values,
and formal fields, i.e., variables. Pattern-matching is used to
select tuples in a TS. Two tuples match if they have the same
number of fields and corresponding fields have matching
values or variables. Variables match any value of the same
type, and two values match only if they are identical.

Linda provides just four primitives for manipulating tu-
ples. Two (nonblocking) operations, out(t) and eval(t), per-
mit tuples to be added to a TS. The operation out(t) adds
the tuple resulting from the evaluation of t to a TS. The op-
eration eval(t) differs from out(t) because t is first added to
the TS and then a new concurrent process is created for
evaluating the tuple; this is not available for matching until
its evaluation has been completed. Two (possibly blocking)
operations, in(t) and read(t), permit tuples to be accessed in
the TS. The operation in(t) evaluates t and looks for a
matching tuple t′ in the TS. Whenever t′ is found, it is re-
moved from the TS. The corresponding values of t′ are then
assigned to the variables of t and the operation terminates.
If no matching tuple is found, the operation is suspended
until one is available. The operation read(t) differs from
in(t) because the tuple t′ selected by pattern-matching is not
removed from the TS.

Nondeterminism is inherent in the definition of Linda
primitives. It arises when more in/read operations are sus-
pended while waiting for a tuple. When such a tuple be-
comes available, only one of the suspended operations is
nondeterministically selected to proceed. Similarly, when
an in/read operation has more than one matching tuple
one is arbitrarily chosen.

The Linda programming paradigm is known as Genera-
tive Communication [20]. Indeed, once a tuple is added to a
TS (generated), its life-time is independent of the producer
process’s life-time.

In the original proposal [20] two predicative (nonblock-
ing) forms, inp and readp, were also part of the language.
They yield true or false depending on whether the TS con-
tains a tuple matching their argument. When returning true
they retrieve/remove the matching tuple. We did not con-
sider these predicates because they are functional dupli-
cates of their nonpredicative counterparts and are difficult
to implement in a distributed environment. They may re-
quire expensive checks and synchronizations over entire
tuple spaces [29].

DE NICOLA ET AL.: KLAIM: A KERNEL LANGUAGE FOR AGENTS INTERACTION AND MOBILITY 317

The Linda asynchronous communication model allows
programmers to explicitly control interactions among proc-
esses via shared data and to use the same set of primitives
both for data manipulation and for process synchronization.
This has the advantage of rendering explicit all the interac-
tions of a program with its environment. The original Linda
primitives are, however, not completely adequate for pro-
gramming distributed systems. For example, data protection
and security, which are key features of mobile applications,
are problematic because the Linda communication model
cannot guarantee data privacy. Also, modular programming
disciplines are awkward to follow in practice as there is no
way to guarantee that tuples coming from different contexts
are not mixed up when two modules are put together. Multi-
ple tuple spaces [21] are a first step toward the solution of
these problems. In this paper we perform a further step by
adding structure to multiple tuple spaces and allowing ex-
plicit manipulation of localities and locality names.

2.2 KLAIM Processes
Hereafter, we shall exploit the syntactic categories listed
below; all of them are followed by the symbols we will use
(sometimes with indices) to refer to their elements.

•� 6�(s) is a set of sites (or physical localities). A site can be
considered as the address of a node where processes
and tuple spaces are allocated.

•� Loc (l) is a set of (logical) localities. A locality may be
thought of as the symbolic name for a site. Localities
permit structuring programs over distributed envi-
ronments while ignoring their precise allocations. A
distinguished locality self (∈ Loc) is assumed. Pro-
grams can use self to refer to their execution site.

•� Vloc (u) is a set of locality variables.
•� Val (v) is a set of basic values.
•� Var (x) is a set of value variables.
•� Exp (e) is the category of value expressions. These are

built up from values and value variables, by using a
set of operators (not specified here).

•� Ψ (A) is a set of parameterized process identifiers. Pa-
rameters can be of three different types: process, lo-
cality, and value; for the sake of simplicity, we fix this
ordering for the formal parameters of any process
identifier.

•� χ (X) is a set of process variables.

For simplicity, we will use , to denote both localities and

locality variables. Moreover, ,
~

will indicate sequences of

localities and {,
~

} the set of localities in ,
~

. A similar notation
will also be used for other kinds of sequences.

We will use the standard notation e[e′/x] to indicate the
substitution of the value expression ′e for the variable x in
e; e e x[/ ~]

~
′ will denote the simultaneous substitution of each

x ∈ ~x with the corresponding ′ ∈ ′e e
~

 in e.
Tuples are sequences of actual fields (i.e., expressions,

processes, localities, or locality variables) and formal fields;
these are denoted by “!var”, where var is a generic variable.
We shall use fields(t) to denote the set of fields of t.

The Linda operations to generate tuples (out), to spawn
a new process (eval), to read tuples (read), and to remove

tuples (in) are located, e.g., the operation out(t)@, is used to
place the tuple t in the tuple space located at ,. Our primi-
tives generalize Linda’s original ones. We have a modified
eval primitive; it has processes as arguments rather than tu-
ples, and thus permits mobile agents to be programmed. As
will be clarified later (Section 3), action eval(out(t)@,.nil)@,
can be used to simulate the “expected” behavior of action
eval(t)@,. New sites are created through the prefix new-
loc(u). This operation creates a “fresh” site that can be ac-
cessed via the locality variable u.

The operators for building processes are borrowed from
Milner’s CCS [30]. They are commonly used in process al-
gebras and correspond to basic notions. Namely, nil stands
for the process that cannot perform any action, a.P stands
for the process that first executes action a and then behaves
like P, P1|P2 stands for the parallel composition of P1 and
P2, and P1 + P2 stands for the nondeterministic composition
of P1 and P2.

KLAIM terms are given by the abstract syntax in Table 1.
As a matter of notation, in the following we often shall
write a instead of a.nil.

TABLE 1
PROCESSES SYNTAX

Variables occurring in KLAIM process terms can be
bound by prefixes. More precisely, prefixes in(t)@,._ and
read(t)@,._ act as binders for variables in the formal fields
of t. Prefix newloc(u)._ binds the locality variable u.

Process identifiers are used in recursive process defini-
tions. It is assumed that each process identifier A has a sin-

gle defining equation A X u x P
def

(
~

, ~, ~) = . All free (value, proc-

ess, and locality) variables in P are contained in {
~

, ~, ~}X u x ,
and all occurrences of process identifiers in P are guarded
(i.e., each process identifier occurs within the scope of a
blocking in/read prefix).

A process is a term without free variables; localities oc-
curring in processes are considered as constants. In the next
section, we will see that they are names whose meaning is
defined (i.e., mapped onto sites) by coordinators. Both pro-
cesses and localities are first-class data and can be manipu-
lated and generated like any other data occurring in tuples.
Processes have higher-order capabilities, in that they can be
exchanged in communications.

2.3 KLAIM Nets
Coordination appears to be a key concept for modeling and
designing heterogeneous, distributed, open-ended systems.
It applies typically to systems consisting of a large number of

318 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

software components, programmed independently, possibly
with different programming languages, which may change
their configuration during execution. Coordination lan-
guages provide the primitive for defining configurations
and interaction protocols of sets of software agents. Systems
are designed and developed in a structured way, starting
from the basic computational components and adding suit-
able software modules called coordinators. This approach
increases the potential reuse of both software agents and
coordinators at the cost of acceptable overheads.

In this section, we introduce the KLAIM coordination
language. It is designed to handle all the issues related to
the physical distribution of processes. Moreover, it controls
changes of network configuration. Changes may be due to
the addition/deletion of software components and sites, or
to the transmission of programs and resources.

Given a finite set of sites, a KLAIM net is a set of nodes. A
KLAIM node is a triple (s, P, ρ) where s is a site and ρ is the
allocation environment, i.e., a (partial) function from Loc to 6.
Hereafter, φ will denote the empty environment, and [s/l]
the environment that maps the locality l to the site s. Proc-
esses at each site can potentially access any other site of the
net; however, site visibility is (locally) controllable via the
allocation environment: A site s′ is visible at the node (s, P,
ρ) only if s′ belongs to the image of ρ. Finally, we introduce
an operation to stratify environments. If ρ1, ρ2 are allocation
environments then ρ1 • ρ2 is the environment defined by:

ρ ρ ρ ρ
ρ1 2

1

2
• = %&'()

() if () is defined
() otherwisel
l l
l

In ρ1 • ρ2, ρ1 is the inner environment and ρ2 is the outer
environment.

The abstract syntax for KLAIM nets is given by the
grammar in Table 2.

TABLE 2
NETS SYNTAX

Given a net N, we assume the existence of a function st
which returns the sites of N. The composition N1 i N2 is de-
fined only if st(N1) > st(N2) = /0 , thus we can consider a net
just as a set of nodes. We say that a net N is well-formed if
whenever s ::ρ P is a node of N then ρ(self) = s and the
image of ρ is included in st(N). We will only consider well–
formed nets. To lighten notations, the allocation environ-
ments will not report the binding for self.

REMARK 2.1. In the present formulation of KLAIM, located
tuple spaces have no hierarchical structure, i.e., lo-
cated tuple spaces are not nested. However, the nest-
ing of located tuple spaces can easily be modeled. It
suffices to extend KLAIM coordination language with
a combinator to allocate a complete net. Hence, a hi-
erarchical net would be written:

s ::ρ [N]

where ρ is the allocation environment that now re-
turns either localities or sequences of sites. The idea is
that s is the site where the net N is allocated. Site s and
its environment ρ can then be used to control all in-
teractions between N and other nets.

Allocated nets are very similar in spirit to the
multiple ambients of Cardelli and Gordon [9]. A
complete investigation of allocated nets is beyond
the scope of the present paper and will be the subject
of a further work.

3 OPERATIONAL SEMANTICS

The two syntactic levels of KLAIM are reflected at the se-
mantic level. The operational semantics of KLAIM is given
in the SOS style [35] and proceeds in two steps. The first
step defines the symbolic semantics that specifies parts of
process commitments, i.e., the control on localities and the
effects of the actions on the tuple spaces. The full descrip-
tion of process behaviors is given in the second step, which
packages processes and data into a net.

3.1 Process Semantics
The labeled transition system for processes describes the
possible evolutions of KLAIM processes without providing
the actual allocation of processes and tuple spaces. For this
reason, the corresponding operational semantics is called
symbolic in that neither value and locality expressions nor
tuples are evaluated.

To describe the effects of the evaluation of processes
which are placed within tuples fields, we introduce the aux-
iliary term P{ρ} which indicates the process P packaged with
the allocation of localities specified by ρ . Terms of the form
P{ρ} are called closures. For the sake of simplicity, we will
use P to range over closures as well.

The structural rules of the symbolic semantics are re-
ported in Table 3. The transition

P P→ ′
ρ

µ

describes the evolution to P′ of the process P. The label of the
transition 〈µ, ρ〉 provides an abstract description of the ac-
tivities performed in the evolution. For instance, µ = s(t)@,
describes the output (sending) of tuple t in the tuple space
specified by ,. Similarly, µ = n(u)@self can be thought of as
the request for binding a fresh site to the variable u. The en-
vironment ρ records the local bindings that must be taken
into account to evaluate µ. Our use of allocation environ-
ments in the transition labels is similar to the use of Boolean
expressions in the operational framework of [24].

3.2 Net Semantics
Following [4], [31] the operational semantics of KLAIM
coordination language is defined by a structural congru-
ence and a reduction relation. The structural congruence
incorporates the basic semantics of net parallel composi-
tion, while reduction describes the basic computational
paradigm of interactions among processes inside a net.

Nets are defined up to a structural congruence ≡. This is
the smallest congruence such that i is associative and
commutative.

DE NICOLA ET AL.: KLAIM: A KERNEL LANGUAGE FOR AGENTS INTERACTION AND MOBILITY 319

TABLE 3
THE STRUCTURAL RULES OF SYMBOLIC SEMANTICS

To avoid cumbersome notations, we use , to denote lo-
calities, locality variables and sites, and assume that alloca-
tion environments are extended to sites but for these they
act as the identity function. The operational semantics of
nets exploits an evaluation mechanism for tuples, and a
pattern-matching to select tuples in a tuple space. The
evaluation function for tuples, 7�v b, exploits the allocation
environment to resolve locality names and relies on an
evaluation mechanism, (� v e b, for closed expressions (i.e.,
expressions without free variables). 7 v e b is inductively
defined over the syntax of tuples by the rules in Table 4,
where we use (� v e b to denote the value of the closed ex-
pression e; the evaluation of a process, say 7 v P b ρ, yields a
process closure, i.e., P{ρ}.

TABLE 4
TUPLE EVALUATION FUNCTION

The rules defining the pattern-matching predicate are
reported in Table 5.

TABLE 5
THE MATCHING RULES

As in [18], [37], we model tuples as processes, and we
introduce auxiliary processes to denote evaluated tuples, re-
ferred to as et. Thus, KLAIM syntax is extended with the

process out(et) whose symbolic semantics are expressed by
the following structural rule:

out nil() ()@
et

o et VHOI →
φ

.

Moreover, we use sites alike localities and locality variables.
The reduction rules of nets (rules in Table 6, and rules

(11) and (12)) clearly distinguish between local and remote
operations performed by located processes and provide a
formal model to guide the implementation.

The evaluation of an out operation modifies a tuple
space. Rule (1) adds a new tuple to the local tuple space of
the process. Rule (2), on the other hand, adds a new tuple to
the remote tuple space located at ,2. In the latter rule, the
evaluation of the tuple t depends on the allocation envi-
ronment ρ • ρ1. This corresponds to having a static scoping
discipline for the remote generation of tuples. Moreover, if
the tuple t contains a field with a process, the correspond-
ing field of the evaluated tuple et contains a closure. Hence,
processes in a tuple are transmitted together with their local
allocation environment.

A dynamic scoping strategy is adopted for the eval opera-
tion, described by rules (3) and (4). In this case the process
spawned in the remote node is transmitted without the local
allocation environment, and its execution is influenced by
the remote allocation environment ρ2.

For the communication operations in and read note that
in modifies the tuple space (see rules (5) and (6)) while read
does not (in the conclusions of rules (7) and (8) the tuple
space encompassed within process P2 is left unchanged by
process evolution). Obviously, we have to distinguish be-
tween local rules ((5) and (7)) and remote rules ((6) and (8)).

Let us consider rule (5) (rules (6), (7), and (8) can be in-
terpreted similarly). It says that a process can perform an in
action at the local tuple space by synchronizing with a pro-
cess which represents a matching tuple. The result of this
synchronization is that the tuple is consumed, i.e., the cor-
responding process becomes nil, and its values are used to
replace the corresponding (free) variables of the process
which has performed the in operation.

Finally, rule (9) describes the asynchronous evolution of
subcomponents of a node.

Rules (1)–(9) may modify the structure of the nodes of
the net but they cannot introduce new nodes. The creation
of a new node is described by rule (10). The environment of
a new node is obtained from that of the creating one (with
the obvious update for the self locality). The underlying
idea is that the new node inherits all the knowledge about
localities of the creating node.

REMARK 3.1. Obviously, other design choices could have
been made. An alternative formulation of the rule for
the creation of a new node is:

P P s S s

s P s P s u s

n u

s

()@

[/]

, fresh

: : : : [/] : :

self

self

 → ′ ′ ∈ ′

→ ′ ′ ′
′

′ •

ρ

ρ ρ φs i nil

The rationale behind this choice (adopted in [39]) is
that any new node has no knowledge of the rest of
the net.

320 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

To conclude the description of the reduction relation, we
have to say how reduction behaves in presence of the op-
erator of parallel composition of nets. Since the composition
N1 i N2 is defined only if st(N1) > st(N2) = /0 , we have:

N N st N st N
N N N N

1 1 1 2

1 2 1 2

0s

s

→ ′ ′ = /
→ ′
() ()>

i i
 (11)

Finally, we have to say how reduction behaves with re-
spect to structural congruence. We have:

N N N N N N
N N

≡ → ′ ≡ ′
→ ′

1 1 2 2

2

s

s
 (12)

REMARK 3.2. Despite the different programming para-
digms, there are interesting similarities between
Telescript and KLAIM. General Magic Telescript [41]
is an object oriented language designed for network
programming. A central concept in Telescript is the

concept of place, which corresponds to our sites. A
place can be thought of as the stationary process that
can accept mobile agents. Agents travel from one
place to another by invoking the go operation. This
operation requires the agent’s destination place (the
ticket) and the route of the trip. The main advantage
of KLAIM’s approach is that the “possible stationary
processes” can be programmed via the notion of lo-
cality without requiring the precise physical distri-
bution of places. In other words, localities provide a
powerful abstraction mechanism over sites. There
are also some analogies between our eval/out op-
erations and Telescript go operation: both allow mo-
bile agents to be programmed.

TABLE 6
THE REDUCTION RELATION: PROCESS INTERACTIONS

DE NICOLA ET AL.: KLAIM: A KERNEL LANGUAGE FOR AGENTS INTERACTION AND MOBILITY 321

REMARK 3.3. Several theoretical works in noninterleaving
semantics of process calculi have adopted the notion
of locality to capture logical distribution of processes
(e.g., [6], [13] and the references therein). The basic
idea of these approaches is to allow the observation of
actions together with the locations (access paths)
where they take place. In our approach, localities are
not used as a tool for observing the distribution of
processes, but rather as a programming device to
structure and control the distribution of processes and
data. The formal models presented in [2], [19] are
closely related to the work presented here. These ap-
proaches deal with mobility much like π–calculus
(channel and locality names can be passed in interac-
tions). Significantly, localities in KLAIM can be used
to simulate the private name passing and the scope
extrusion mechanisms of π–calculus, so that a natural
encoding of (asynchronous) π–calculus in KLAIM can
be easily programmed.

3.3 Scoping and Mobility
The role of a net is to allocate and coordinate a set of proc-
esses. Hence, beyond formally describing all the issues re-
lated to physical distribution, net semantics is essential to
study migratory applications and for understanding design
decisions before carrying out an implementation. This can
be better understood by analyzing the effects of choosing
specific scoping disciplines on mobile agents when access-
ing tuple spaces.

The operational semantics of nets adopts a static scop-
ing discipline for the evaluation of out operations. On the
other hand, a dynamic scope discipline is adopted for re-
mote eval operations: The meaning of localities used by a
process spawned at a remote site depends on the remote
allocation environment.

Indeed, whenever a process P located at the site s1
wishes to insert a tuple t into the remote tuple space located
at s2, the local environment of P, namely ρ1, is used for
evaluating t. A dynamic scoping discipline for out can be
obtained by replacing rule (2) in Table 6 with the following:

P P s et t

s P s P et

s t
1 1 2 1 2

1 2 1 11 2 1 2

()@ () [[]]

: : : : : : : : ()

,
, → ′ = • =

→ ′
ρ

ρ ρ ρ ρ

ρ ρ ρ7

i i us s2 2 2s P out

where the remote environment ρ2 is used for evaluating t.

REMARK 3.4. Alternatively, we could also use the rule:

P P s

s P s P t

s t
1 1 2 1

1 2 1 11 2 1 2

()@ ()

: : : : : : : : ()@ .

,
, → ′ = •

→ ′
ρ

ρ ρ ρ ρ

ρ ρ

P s P1 2 2 2si i us out nilself

Namely, a process is placed in s2 which will eventu-
ally take care of the local evaluation of the tuple t.

Dynamic scoping for out can be also simulated (without
any modification to the operational rules for nets) by writ-
ing eval(out(t)@self)@,.P instead of out(t)@,.P. The exe-
cution of eval spawns process out(t)@self at site s2 (re-
sulting from the evaluation of ,) and, therefore, t is evalu-
ated by using the local environment at s2.

When process P located at s1 wants to spawn a process Q
at the remote site s2, a dynamic scoping discipline is fol-
lowed. The local environment ρ2 is used for giving meaning
to the localities which may be referred in Q. A static scoping
discipline for eval can be obtained by spawning Q{ρ1}
rather than Q. More precisely, rule (4) in Table 6 could be
replaced by the following:

P P s Q Q

s P s P P

e Q
1 1 2 1 1

1 2 1 1 21 2 1 2

()@ () { }

: : : : : : : :

,
, → ′ = • ′ =

→ ′ ′
ρ

ρ ρ ρ ρ

ρ ρ ρ

P s Q1 2 2si i us

In this case the remote spawning of process Q consists in
transmitting Q packaged with its allocation environment ρ1.

Again, eval with static scoping can be simulated via the
primitives of the language, in particular, by passing proc-
esses (and then closures) as fields of tuples and using pri-
vate localities to store intermediate results. With this in
mind, we can write newloc(u).out(Q)@u.in(!X)@u.eval
(X)@,.P instead of eval(Q)@,.P. When eval(X) is executed
at site s2, X is bound to the process Q packaged with ρ1.
Hence, a closure rather than a plain process is activated at
site s2, which is different from the case of eval(Q).

4 TYPING AND SECURITY

Security, e.g., privacy and integrity of data, is a key issue in
the development of mobile applications. One can easily
imagine malicious mobile agents attempting to access pri-
vate information. A server receiving a mobile agent for exe-
cution thus needs to impose strong requirements to ensure
that the agent will not violate privacy and jeopardize the
integrity of the information. Similarly, mobile agents must
ensure that their execution at the server site will not dam-
age them or compromise their security.

In this section, we introduce a type system for KLAIM
and show how it can be used to statically enforce security
properties. More precisely, the type system permits one to
check whether the operations KLAIM processes intend to
perform over the sites of a net really do comply with their
access rights.

The typing analysis of KLAIM programs is structured
into two phases reflecting the two-level syntax of KLAIM.
The first phase deduces process intentions (read, write,
withdraw, execute, …) in relation to the various localities
they are willing to interact with or they want to migrate to.
This is done by an inference system which assigns types to
processes, and also, partially, checks whether these behave
in accordance with their declared intentions. The second
phase of the typing analysis checks whether each process
has the necessary rights to perform the intended opera-
tions, i.e., it does not violate the access rights as granted by
the net coordinator.

4.1 Types
We will use {r, i, o, e, n} to indicate the set of process capabili-
ties; r denotes the capability to execute a read operation, i
the capability to execute an in operation, etc.

Polarities are nonempty subsets of {r, i, o, e, n}. We use Π,
ranged over by π (which may be indexed), to denote the set
of all polarities. Polarities are used differently by processes

322 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

and nets. The polarity of a locality or of a locality variable,
say ,, within a process contains information about the op-
erations the process intends to perform at ,. In a net, on the
other hand, polarities are used to fix access rights. Type
checking will guarantee that only intentions that match
access rights, as granted by the coordinator, are allowed.

Orderings between polarities can be used to model hier-
archies of access rights. Obviously, if a process is able to
perform an in operation at , then it is also able to perform a
read at ,. Also, type checking should ensure that, if a proc-
ess has capabilities π, then it can execute all operations that
require capabilities smaller (greater, in the ordering vΠ de-
fined below) than π. These intuitions lead to the subpolarity
relation, obtained as the least reflexive and transitive rela-
tion induced by the following rules:

{i})v v
v v

vΠ
Π

Π Π

Π
{ } ()r

π π
π π

π π π π
(π π π π

2

2

1 2

2 1

1 1 2

1 2 1

⊆ ′ ′
′ ′< <

One could think of associating a polarity with each
process or with each locality to completely characterize
the intentions of processes and the rights of localities. It is
clear that this would not be enough to take into account
process migrations and the different access rights of the
different localities.

An obvious choice, for assigning types to a process,
would be to associate with it a single polarity that describes
all the operations the process intends to perform, while ig-
noring the specific localities it refers to. However, in this
way, we would not characterize different intentions relative
to different localities. Associating polarities with each of the
localities referred to within a process would also be unsatis-
factory. It hinders the possibility of keeping track of the
capabilities of remotely executed processes, which might be
different from those of sender processes. For example, con-
sider a process that does not have the right to access a re-
mote tuple space (e.g., a database), but does have the right
to send a process for remote execution at a (server) node
that is willing to grant the necessary right.

To take into account remote executions (migrations) of pro-
cesses, we need to further structure our types and to associ-
ate with each locality not just a polarity but also the type that
is required for the processes executed at that locality.

A type is a finite map that assigns pairs consisting of po-
larities and types to both localities and locality variables.
The first component of the pair associated with , describes
the polarity of ,, while the second describes the types of the
processes executed at ,.

KLAIM types, ranged over by δ, are elements of a uni-
verse which is defined by the following domain equation:

∆ Π ∆= × ⊥Fin Loc VLoc(() ())< a .

The construction of ∆ rests on a standard construction
over complete partial orders (cpo). Let D D, v , be a cpo; then
H(D) is the set of partial functions with finite domain from
Loc < Vloc to the cpo Π × D defined by:

H D Fin Loc VLoc D() (() ())= × ⊥< a Π

This set of functions can be ordered via the relation vH D()
stating that the more defined the partial function the
smaller it is.

1)�' vH D() f, for all f ∈ H(D)
2)� f vH D() g when

•� dom(g) ⊆ dom(f), and
•� ∀, ∈ dom(g) : f(,) v Π× D g(,), where vΠ× D is the ob-

vious ordering on Π × D.

It is not difficult to show that if D D, v is a (ω–algebraic)

cpo then also H D H D(), ()v is a (ω–algebraic) cpo.

Let 〈∆, d〉 be the initial solution1 of the recursive domain
equation for ∆; d is called the subtype relation. As usual, u
shall denote the greatest lower bound, and φ shall denote
the element of ∆ with empty domain. If δ ∈ ∆, then δ 1(,) is
used to denote the ith component of the pair δ(,), if it is
defined; otherwise, δ 1(,) yields /0 and δ 2 (,) yields φ.
Moreover, δ �_ , denotes the greatest lower bound of the
set {δ 2 (,)} < {δ (,′) �_ , | δ (,′) is defined}.

Notation δ [δ 1(,) := π] denotes a type δ1 such that

δ δ φ1
1

1
1() (), ,= =π, , if δ (,) is undefined, δ δ1

2 2() (), ,=

otherwise, and δ1(,′) = δ(,′) for ,′ ≠ ,. Notation δ δ δ[/ ()]1
2 ,

has the same effect as a substitution (thus, δ δ δ[/ ()]1
2 , de-

notes δ itself if δ(,) is undefined).
The typed version of KLAIM is obtained by associating a

type with locality variables and with process variables
whenever they are bound. Hereafter, for the sake of simplic-
ity, we will also call the typed version of the language
KLAIM.

The abstract syntax of terms (processes, as usual, are
closed terms) is reported in Table 7. Recall that , stands for
a generic locality or locality variable. To avoid name clash-
ing and thus overloading of types, we will assume that
Vloc, the set of locality variables, is partitioned into two
subsets: NVloc, used as arguments of newloc, and TVloc,
used as formals of tuples.

TABLE 7
TYPED KLAIM SYNTAX

A type is associated with process and locality parameters
of process identifiers and, as usual, it is assumed that each
process identifier A has a single defining equation

A X u x P
def

(
~

:
~

, ~ :
~

, ~)δ δ = .

1. The construction H on cpos may be straightforwardly turned into a

functor + in the category CPOE , the category of cpos with embeddings as
morphisms. The action of the functor + on cpos is defined as for H. If i :
D < D′ is an embedding, +(i) : +(D) → +(D′) (the action of the functor on
embeddings) is obtained as:

(+ (i))(') = ' (+(i))(f) = i ° f .

By using standard techniques, we can prove that + is a continuous and

covariant functor in CPOE which preserves ω–algebraicity [27]. Therefore,

the theory in [36] ensures the existence and uniqueness in CPOE of the
initial fixed point of the functor +, i.e., the initial solution of the recursive
domain equation for ∆.

DE NICOLA ET AL.: KLAIM: A KERNEL LANGUAGE FOR AGENTS INTERACTION AND MOBILITY 323

We are now ready to introduce the formal syntax of
typed nets, whose role is to allocate and coordinate proc-
esses, and to assign access rights. The type of sites is similar
to that of processes: it associates pairs 〈polarity, type〉 with
localities and locality variables. This is declared by means
of two functions, Λ and Υ. For each site s of the net, Λ de-
scribes the access rights of processes located at s on the
other sites of the net, while Υ describes the locality vari-
ables that processes located at s may use.

A net is a triple N : 〈Λ, Υ〉 where N is as defined in Sec-
tion 2.3, and Λ and Υ have the following structure:

Λ Π: () (())st N st N→ → and Υ : ()st N VLoc→ .

4.2 Deriving Process Types

This section presents an inference system that assigns types
to processes. The type system records the operations that
processes are willing to perform at specific localities and
checks whether process operations comply with the de-
clared types of the variables.

Type contexts Γ are functions mapping process variables
and identifiers into types. Hereafter, φ will denote the
empty context. The auxiliary function update, defined
structurally over tuples syntax, will be used to update type
contexts; it behaves like the identity function for all fields
but !X : δ. Formally, it is defined by:

update t
update update t t t t t

X t X(,)
((,),) if ,

[/] if ! :
otherwise

Γ
Γ

Γ
Γ

=
=
=

%
&K
'K

1 2 1 2
δ δ

The type judgments for processes take the form Γ |_ P : δ
where Γ is a type context providing the type of process
variables and identifiers of P. A statement such as Γ |_ P : δ
asserts that the capabilities of P are those in δ , within the
context Γ.

The type of a process variable or identifier is always de-
termined by the type context, Γ, that has been set up by the
other inference rules. Definedness of Γ(X) (Γ(A)) is guaran-
teed by the fact that processes are closed terms.

Γ Γ Γ Γ|_ : () |_ : ()X X A A

The simplest process (the null process) has no capability.
Γ |_ :nil φ

The process out(t)@,.P puts the tuple t in the tuple space
whose address is specified by , and then behaves like P.
The typing rule of the out operation

Γ

Γ

|_ :

|_ ()@ . : [() : () { }]

P

t P o

δ
δ δ δout , , ,1 1= <

states that the type of out(t)@,.P (possibly) extends that of
P at , with capability o. Since out is not a binder, P is typed
within the same context (Γ) as out(t)@,.P.

The typing rules for read and in update the context with
the types of the process variables they bind. The second
half of their premises checks whether process P does not
misuse the locality variables bound by read and in. Thus,

for each locality variable u with type δu one checks that the

remote operations of P at u (δ �_ u) really do respect δu. The
resulting type is obtained by extending the type of P at ,
with the corresponding capability (r or i).

update t P u u fields t

t P r

update t P u u fields t

t P i

u u

u u

(,)|_ :
_

for all(! :) ()

|_ ()@ . : [() : () { }]

(,)|_ :
_

for all(! :) ()

|_ ()@ . : [() : () { }]

Γ

Γ

Γ

Γ

δ δ δ δ
δ δ δ

δ δ δ δ
δ δ δ

d

d

� ∈

=

� ∈

=

read

in

, , ,

, , ,

1 1

1 1

<

<

where {~}u are all the locality variables bound by read and in.
The typing rule of eval extends the type of P at , with e

and records that the remote operations of P have to be ex-
tended with those (′δ) of the spawned process Q.

Γ Γ

Γ

|_ : |_ :

|_ ()@ . : [() : () { }][()) / (

P Q

Q P e

δ δ
δ δ δ δ δ δ

′

= ′eval , , , , ,1 1 2 2< u)]

The typing rule for newloc extends the type of P at self
with n and at u with the type ′δ declared for u, while it
checks whether the operations that P is willing to perform
at u (δ 2 (u)) comply with ′δ .

Γ

Γ

|_ :
_

|_ (! :). : [() : () { }][/ ()]

P u

u P n

δ δ δ
δ δ δ δ δ δ

′ �
′ = ′

d

newloc 1 1 2self self < u

The typing rules for parallel composition and choice state
that the intentions of the composed processes are in both
cases the union, formally the greatest lower bound, of those
of the components. The binding context is left unchanged.

Γ Γ
Γ

Γ Γ
Γ

|_ : |_ :
|_ :

|_ : |_ :
|_ | :2

P Q
P Q

P P
P Q

δ δ
δ δ

δ δ
δ δ

1 2

1

1 2

1 2+ u u
The typing rule for process definition, first updates the

type context with the types of the process variables that
occur as parameters of A and with a candidate type δ for A.
The resulting context is exploited to infer the type δ for P.

Secondly, for each formal locality variable ui, one checks

that the operations of P at ui (i.e., δ 2 (ui)) match the type
declaration δ ui

. Finally, the inferred type is assigned to A.

Γ
Γ

[/
~

][/]|_ : () for all {~}
|_ :

δ δ δ δ δ
δ

X u i iX A P u u u
A

i

˜ d 2 ∈

where A X u x PX u

def
(
~

: , ~ : , ~)δ δ˜ ˜ = is the defining equation for
the process identifier A.

The typing rule for process invocation, first determines
the type of the process identifier and those of the process
arguments. It then, checks whether each of the types in-
ferred for the process arguments agree with the one of the
corresponding formal parameter. No requirement is im-
posed on the other arguments. The type of locality variables
is controlled when one of the rules for in, read, and newloc
is applied. Localities are controlled when well-typedness of
nets is checked.

Γ Γ

Γ

|_ : |_ : and for all {
~

}

|_
~

,
~

, ~ : {
~

/~}

A P P P

A P e u
i i X i ii

δ δ δ δ

δ

d ∈

< <

where δ {
~

/~}, u is such that:

δ δ δ δ δ{
~

/~}() () (), (() ()) {
~

/~}, , , , ,u u u ui i i i i= 1 1 2 2< u ,

for , ,i ∈ {
~

} , and

δ δ δ{
~

/~}() (), (){
~

/~}, , , , ,u u′ = ′ ′1 2 ,

324 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

for ,′ ∉ {
~

}, such that δ()′, is defined. The inferred type
states that A P e(

~
,

~
, ~), intends to perform at , ,i ∈ {

~
} and

u ui ∈ {~} the same operations that A X u x(
~

, ~, ~) intends to per-
form at ui . Indeed, statically we are unable to establish

which occurrences of ui ∈ {~}u in δ must be replaced by ,i.

4.3 Typing Nets
This section presents the criteria for establishing whether a
net is well-typed. The types of the processes in a net will be
required to agree with those of the sites where they are lo-
cated. More specifically, the types of the processes, as de-
termined by the type inference system, are checked against
those fixed by the net coordinator, taking into account
where each process has been located.

The pair of functions, Λ and Υ associate a type with each
site of a net. This is the type that is compared with the one
for located processes (which expresses their expected be-
havior) to check whether the net is well-typed.

Given a net N : (Λ, Υ), the type δs of each site s ∈ st(N) is
obtained as: ∀ ∈, (() (())):dom dom ssρ < Υ

δ

ρ δ ρ

δ
ρ

s

s s

s

s dom

i o e n dom s NVLoc
i o e n dom s TVLoc

s

()

()(()), if ()

{ , , , }, if (())
{ , , , }, if (())

()

,

, ,

,

,

,

=

∈

∈
⊥ ∈

%
&
KK

'
KK

Λ

Υ
Υ

>

>

Notice that, for any site s, δs is well-defined since, by defi-
nition of net, if , ∈ dom(ρs) then Λ(s)(ρs(,)) is a polarity.
Namely, the first item of the definition of δs uses the alloca-
tion environment ρs of s to determine the site associated to ,,
hence its polarity and type. The last two items deal with lo-
cality variables; the only restriction we statically put on them
is that a fresh node inherits the rights of the creating one.

In [17] a soundness theorem is proved, namely well–
typed KLAIM nets (and processes) never lead to run-time
errors due to misuse of access rights. For a net be well–
typed, it will be required that the types of the processes in
the net agree with the access rights of the sites where they
are located. More specifically, the types of the processes, as
derived by the type inference system, are checked against
those fixed by the net coordinator, while taking into ac-
count where each process has been located. The soundness
theorem establishes that well-typedness is an invariant of
the operational semantics. This result is essentially a variant
of standard subject reduction, that takes into account the fact
that new sites can be dynamically created. The soundness
theorem and the related technicalities are not presented
here since they are not needed to appreciate the primitives
and the pragmatics of KLAIM.

To highlight the utility of KLAIM types, let us consider a
system composed of a process Server, which makes avail-
able in its local space a tuple containing locality l, and two
identical processes Client1 and Client2, which access the tu-
ple space at lS to read an address u and then send process P
for execution at u.

Server l

Client u l P u

def

i

def

S

=

=

out nil

read eval nil

()@ .

(!)@ . ()@ .

self

If P has type δ, each process Clienti, i = 1, 2, has type:

δ φ δc Sl r u e= a a{ }, , { },

Suppose now that only Client1 has the right to send proc-
esses for evaluation at the location denoted by u. The net
coordinator can thus allocate Server on site s and the two
processes Client on sites s1 and s2, and can give the follow-

ing access rights to s1 and s2

δ φ δ

δ φ
s

s

s r u e

s r
1

2

=

=

a a

a

{ }, , { },

{ }, .

REMARK 4.1. There are some similarities between types in
KLAIM and Telescript [41] permit and authority. The
latter are used to limit the access rights of mobile
agents.2 The advantage of our approach is that the use
of the type system makes mechanical static verifica-
tions of access rights possible.

Type systems have already been proposed for cal-
culi of mobile processes, though not addressing secu-
rity issues. Here, we mention the type system pro-
posed by Pierce and Sangiorgi [34] and refined by
Kobayashi, Pierce, and Turner [28]. In [34], a type
system is developed for π-calculus [32] which uses
types of channels to record information on whether
channels are used to read or to write. This type system
was extended in [28] by associating multiplicities with
types in order to describe how many times each
channel can be used. The main difference with our
approach lies in the treatment of localities and, more
importantly, in the role played by type information at
the level of the net coordinator to check and enforce
access rights of processes.

The present work shares parts of its underlying ra-
tionale with the work by Volpano and Smith [40],
though those authors only consider a sequential pro-
cedural language and the type system is used to con-
trol a specific noninterference security property.

5 PROGRAMMING MOBILE CODE APPLICATIONS

In this section we illustrate how to use KLAIM to program
Mobile Code Applications (MCAs). In the programming ex-
amples, we assume that natural numbers and identifiers are
basic values.

MCAs are distributed applications whose distinctive
feature is the exploitation of “code mobility.” According to
the classification proposed in [14], we can single out three
paradigms, apart from the traditional client-server paradigm
(CS), which are largely used to build MCAs:

•� Remote Evaluation (RE). Any component of a distrib-
uted application can invoke services from other com-
ponents by transmitting both the data needed to per-
form the service and the code that describes how to
perform the service.

2. In Telescript an agent permit can also specify allowances of a mobile
agent, e.g., the maximum lifetime in seconds, the maximum size in bytes,
etc.

DE NICOLA ET AL.: KLAIM: A KERNEL LANGUAGE FOR AGENTS INTERACTION AND MOBILITY 325

•� Mobile Agent (MA). A process (i.e., a program and an
associated state of execution) on a given node of a
network can migrate to a different node where it con-
tinues its execution from the current state.

•� Code On-Demand (COD). A component of a distrib-
uted application running on a given node, can dy-
namically download from a different component and
link the code to perform a given task.

Suitable programming constructs are needed to support
these approaches. Indeed, several programming languages,
such as Java [3], Facile [23], Obliq [7], and Telescript [41]
were designed to provide facilities for process mobility and
distribution; see [14] for a detailed survey.

Our aim here is to show, by means of simple program-
ming examples, that the KLAIM programming constructs
are powerful enough to implement the programming para-
digms of MCAs.

Both the CS and RE paradigms can be programmed by
exploiting the flexibility of KLAIM data structures, i.e., tu-
ples. Indeed, tuple fields may contain both data values and
processes (i.e., program codes). Let us now show how to
program RE (which is basically a CS in a language with
higher order facilities like KLAIM). Suppose we want to
require that server located at location l executes (evaluates)
code P where the values v1, …, vn must be assigned to vari-
ables x1, …, xn. To this end, we can use the instruction:

out in((! , , !)@ . , , , , ,)@y y l A y y v v ln n n1 1 1K K K

where we assume that A(x1, …, xn) =
def

 P and that the server
performs:

in out(! , ! , , !)@ . (, ,)@ .X x x x x Xn n1 1K Kself self

or a similar activity.
Suppose now that we want to execute process P at a

(perhaps remote) location l, the paradigm MA can be im-
plemented by means of:

•� the instruction eval(P)@l, if a dynamic scoping disci-
pline for resolving location names is adopted,

•� the sequence newloc(!u).out(P)@u.in(!X)@u.eval(X)@l,
otherwise.

Since P is a closed term, i.e., P does not contain free vari-
ables, we can think of P as a closure 〈process, data〉. Thus, we
have that processes migrate while taking their states with
them.

Finally, if we want to download a program code P stored
in a tuple with one field only (which contains P) from a
(perhaps remote) location l, the COD paradigm is simply
programmed by means of an instruction of the form
read(!X)@l.

In the next three subsections we discuss three specific ex-
amples that take advantage of the above described facilities.

5.1 Remote Procedure Call
A caller process, caller, sends a request to the callee, callee,
and waits for a response. The request, together with the
name of the procedure and its actual parameters, contains
the caller’s private locality where the response has to be
delivered.

caller u procid e e u

y y u next behavior
n callee

k

= newloc out

in

(). (, , , ,)@ .

(! , , !)@ . .
1

1

K

K

,

Process callee waits for an invocation, executes the re-
lated procedure and sends back the results using the local-
ity, passed together with the service request.

callee pid x x u callee

pid x x r r u
n

n k

= in

out nil

(! , ! , , ! , !)@ . (|

(, ,) . (, ,)@ .).
1

1 1

K

K K

self

When processes are allocated in a net, the local environ-
ment of caller assigns to the locality ,callee the site where cal-
lee is located. Hence, we have:

N s caller s callees s scallee
= 1 21 2 2

: : || : :{ / , } { / }self self/,

A crucial role in this example is played by newloc(u) which
permits a private data space to be created and accessed
only via the variable u.

5.2 Dynamic Newsgatherer
We now consider remote programming. This programming
discipline permits writing agents which can dynamically
move over the network and can interact locally with other
agents. An agent placed by a user at the server’s location
can thus be decoupled from the user and interact with the
server without using the net.

Consider the following scenario. User P needs additional
information on a piece of data represented by item (item
could be, for example, the title of a book whose price P wants
to know). Part of the behavior of P depends on this informa-
tion. However, there are some activities which are independ-
ent of it. P can look for the required information in a database
distributed over the network. We assume that at each node of
the database reachable from ,item contains either a tuple of the
form (item, v), with the desired information, or a tuple of the
form (item, ,next), with the information about the next node to
search for the additional information.

The user process P asks for the execution at ,item (the
starting point of the search, which can be chosen according
to the search key item) of the agent gatherer, which dynami-
cally travels between nodes looking for a tuple that con-
tains information on item. This agent takes as its parameters
the research key item and a fresh locality u, which provides
the address of the user’s private tuple space where the re-
sult of the search has to be placed. Once gatherer has been
spawned, P splits its behavior into two parallel compo-
nents: one waits for the additional information and the
other proceeds. Thus, those activities that do not need the
additional information are decoupled from the search ac-
tivity, which might be complex and expensive.

P = newloc(u).eval(gatherer(item, u))@,item. ((in(!x)@u.P1)| P2)

Process gatherer can match two alternative tuples. The
first one captures the additional information on item (e.g.,
the price). If this is found then it is placed at locality u and
gatherer terminates. The second tuple is used to obtain the
address of the node where the search has to be repeated.

gatherer item u item x x u

item u gatherer item u u

(,) (, !)@ . ()@ .
(, !)@ . ((,))@ .

=
+ ′ ′

read out nil

read eval nil

self

self

326 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

Our assumption about the structure of the distributed
database guarantees that gatherer never deadlocks (because
either the associated information or a location where the
search can be repeated certainly found), but it does not en-
sure that the search activity will terminate successfully:
gatherer might loop indefinitely. This could happen if its
second tuple, the one with location information, always
finds a match in the tuple spaces.

5.3 An Electronic Marketplace
By means of an example borrowed from [41], we illustrate
now how to use KLAIM to program mobile agents.

Assume that a client (process) P wants to buy a specific
camera, c. To decide where to purchase the camera, P acti-
vates a migrating agent A and passes the following infor-
mation to it:

1)�c, the make and the model of the camera chosen,
2)�locD, the locality of the directory of the electronic mar-

ketplace, and
3)�a length measure, which will be used to identify the

geographical area of interest.

P expects A to return the name, address and telephone
number of the closest (within the chosen area) camera shop
with the lowest price for c. The following could be part of
the behavior of P:

P A c loc length c x y
def

D=K Keval in(, ,)@ . (, ! , !)@ .self self

where x will retain the name, address and telephone num-
ber of the camera shop from where to buy c at cost y.

The agent A behaves as follows:

1)�It obtains the site where P is located, which will be
used both to return the outcome of the query and to
identify the geographical area which is of interest for
pricing information. This is done by putting a tuple
containing self into a new tuple space u′, in order to
force the evaluation of self within the local tuple
space, and by withdrawing the tuple.

2)�It migrates to the site of the marketplace directory and
asks for (and obtains) the list of all camera shops
whose location is close to the site of P. Each item in the
list contains the name, address and telephone number
of a camera shop. A function l will return the locality
information within an item.

3)�It visits each camera shop in turn and obtains the local
price for c. The agent retains information about the
shop only if a lower price than that currently stored is
offered.

4)�After visiting all the camera shops on the list, it sends
back to the site of P the information about the shop
that offers the lowest price for c. It then terminates.

For the sake of simplicity, in defining agents we use a condi-
tional construct (which can be programmed by exploiting the
dynamic creation of new sites and the choice operator) and a
data type list (with the usual operators hd, tl, and empty).

A x u y u u u u

B x u y u

B x u y cshop u y cshop list

empty list x nocloseshop u

I c list u l hd list

I x y u u x cost

R x y cost hd y u u

R x y w z u empty y

def

def

def

def

(, ,) (). ()@ . (!)@ .

(, ,)@ .

(, ,) (, ,)@ . (, !)@ .

() (, ,)@ .

, , , (())

(, , ,) ((, !)@ .

, , , (),)@ .

(, , , ,) ()

= ′ ′ ′′ ′

′′

=

−

′′′ =

′′′

=

newloc out in

eval nil

out in

if then out nil

else

eval read

nil

if

self

self self

self

1

then out nil

else

then

else

eval read if

nil

(, ,)@ .

, (), , , , ((()))

(, , , , ,) ((, !)@ .

, , , (),

, , , ,)@ .

x z w u

C x tl y w z u l hd tl u

C x y w z u u x cost cost w

R x y cost hd y u

R x y w z u u

def
′′′ = <

′′′

self

The following will be part of the behavior of each cam-
era shop Si

S c price ci

def
= K K| (, ())@ . |out nilself

Let D denote the marketplace directory process. The net
could be initially structured as follows:

s P s D s S s SP s loc D s cs s cs n nD D n n
: : || : : || : : || || : :{ / } { / , , / } {} {}1 1 1 1K K

If now we are interested in inferring the type δ of P, we
have that:

δ ν ν ν

δ

δ φ φ δ

δ ν φ φ ν

: . ({ , , , }, , { , , , }, ,

{ },)

: { , }, , { }, , { },

: . ({ }, , { }, , { },)

rec o i e n u o i e n

loc e

o i u o u e

rec r u o u e

D

self

self

self

a a

a

a a a

a a a

′

′

′ ′′ ′′′ ′′

′′ ′′ ′′′

where rec is used to represent recursive types.
These types state that P performs any kind of operation

both at the site where it is located (addressed by self) and
at the site it dynamically creates (namely u′). Moreover,
when (a process activated by) P migrates to the site of the
marketplace directory (addressed by locD), it performs both
local out and in, remote out at u′′ (to return the outcome of
the initial query), and migration to u′′′ (the site of a camera
shop). Finally, when running at the site of a camera shop, (a
process activated by) P performs local read (to read the lo-
cal price for the camera c), remote out at the original site of
P, and migrations to the sites of other camera shops.

6 KLAVA: KLAIM IN JAVA

In this section we describe the prototype implementation of
KLAIM. To ensure portability over different platforms we
choose Java [3] as the implementation language. Of course,
here we assume a basic knowledge of Java.

The implementation of KLAIM in Java (JDK 1.1), called
KLAVA [5], extends Java packages with two new packages,
Linda and KLAIM.

The Linda package implements standard Linda primi-
tives. The main classes of this package are Tuples and

DE NICOLA ET AL.: KLAIM: A KERNEL LANGUAGE FOR AGENTS INTERACTION AND MOBILITY 327

TupleSpace. The class Tuples provides the methods to
build and handle tuples. The class TupleSpace provides
the mechanisms to build, access and update a tuple space.
In particular, the Linda operations in, out, and read are im-
plemented as methods of this class.

The KLAIM package supports the implementation of
KLAIM. The main classes of this package are Net, Node, K-
Process, and NodeMsg.

The class Net implements KLAIM coordination lan-
guage, i.e., a KLAIM net is an object of this class. A net ob-
ject behaves like a server and contains the code to register
the sites of a net. In the current implementation, localities
are implemented as strings. Sites, on the other hand, are
Internet addresses.

An object of the class Node implements a KLAIM node.
Hence, it encapsulates a tuple space and a set of processes.
KLAIM primitives (in, read, out, eval) are implemented as
methods of this class. One of the parameters of these meth-
ods is the locality of the node.

A KLAIM process is an object of the class K-Process.
The main method of this class is the method execute().
This method is invoked to run a process on a node, such as
the method run of the class Thread.

The objects of the class NodeMsg are used to implement
node communications. A message object contains the
sender node, the receiver node, the operation code, and a
content field of type Object. This feature permits transmis-
sion of processes. However, the receiver node may not
know the class the process belongs to. Therefore, the proc-
ess must be sent together with the corresponding .class
file. Each node has also a specific NodeClassLoader which
performs the dynamic linkage of the class received from
other nodes of the net.

The main method of the class NodeClassLoader is
addClassBytes which is invoked when a node receives a
process from the net. The method addClassBytes inserts
the .class files into a local hash table. The method load-
Class uses the hash table to load the class definitions of
remote processes before starting their execution. Note that a
similar approach was adopted in the implementation of the
AGLETS library [26]. Fig. 1 presents part of our Java code
implementing the NodeClassLoader.

To give the reader a flavor of KLAVA programming, we
report in Fig. 2 the source code of the CameraClient agent
of the example presented in Section 5.3.

public class NodeClassLoader extends ClassLoader {
private Hashtable classes = new Hashtable();
private Hashtable classData = new Hashtable();
Node thisNode;

public NodeClassLoader() {
}

synchronized public void addClassBytes(String className, byte classBytes[]) {
if(classData.get(className) == null && classBytes != null)
 classData.put(className, classBytes);

}
:
public synchronized Class loadClass(String className, boolean resolveIt)

throws ClassNotFoundException {
Class result;
byte classData[];
result = (Class)classes.get(className); /* Check local cache of classes */
if (result != null) {

return result;
}
classData = getClassBytes(className); /* Load the class from the repository */
if (classData == null) {

try {
result = super.findSystemClass(className);
return result;

} catch (Exception e) {
System.err.println(“NodeClassLoader : “ + e);
e.printStackTrace();
throw new ClassNotFoundException(className);

}
}
result = defineClass(classData, 0, classData.length); /* Parse the class file */
if (result == null) {

throw new ClassFormatError();
}
if (resolveIt) {

resolveClass(result);
}
classes.put(className, result);
return result;

}
}

Fig. 1. NodeClassLoader.java.

328 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

REMARK 6.1. Java has also been used to implement a dialect
of Linda called Jada [12]. Jada supports a version of
Linda with multiple tuple spaces. Tuple spaces are the
key notion of Jada; they are autonomous entities, dis-
tributed over the nodes of a net and identified by the
internet address of the nodes where they are placed. In
Jada there is no distinction between logical and physi-
cal addresses. Processes use tuple spaces by connecting
to the nodes where they are placed and by invoking
their methods. Jada does not support process mobility,
namely the eval primitive is not implemented and pro-
cesses cannot be exchanged in communications.

7 CONCLUDING REMARKS

In this paper, we have presented a kernel programming lan-
guage which supports mobile applications. An operational
semantics, which focuses on the coordination of mobile
agents, is provided. A type system that permits one to stati-
cally detect violations of security properties related to capa-
bilities and access control has been developed. Programming

examples have been presented that illustrate how mobile
applications can be expressed in KLAIM. Finally, a prototype
implementation in Java has been described.

The KLAIM type system provides a first step towards
the ambitious goal of demonstrating that typing informa-
tion can be systematically used to guarantee that well–
typed processes enjoy security properties. We plan to
extend the type system by introducing:

•� user-defined capabilities,
•� allowance capabilities (e.g., maximum life-time in

seconds, maximum size in bytes, etc.),
•� multilevel security (e.g., structuring localities into

levels of security), and
•� dynamic transmission of access rights.

KLAIM can also be equipped with cryptographic primitives
as done in spi-calculus [1].

We plan to develop observational semantics as a founda-
tion for programming logics and verification techniques. To
this end, our starting point will be the testing framework
developed for a process calculus based on Linda in [18], [37].

public class CameraClient extends K-Process {
protected KString CameraMake;
protected Locality MarketPlaceDir;
protected KInteger distance;
protected MarketPlaceAgent mAgent;

public CameraClient(KString c, Locality m, KInteger d) {
 CameraMake = c;
 MarketPlaceDir = m;
 distance = d;

}

public void execute() {
 PhysicalLocality newLoc;
 PhysicalLocality KLoc = new PhysicalLocality();
 KString ShopName = new KString();
 KInteger CameraPrice = new KInteger();
 newLoc = (PhysicalLocality)newloc();
 out(self, newLoc);
 in(KLoc, newLoc);
 mAgent = new MarketPlaceAgent(CameraMake, KLoc, distance);
 eval (mAgent, MarketPlaceDir);
 in(CameraMake, ShopName, CameraPrice, self);
 Print(CameraMake + “ at “ + ShopName + “ costs “ + CameraPrice);

}

public static void main(String args[]) throws IOException {
 Node node;
PhysicalLocality ClientLoc = new PhysicalLocality(“CameraClient“);
KString CameraMake = new KString(“CameraX“);
Locality MarketLoc = new PhysicalLocality(“MarketPlace“);
KInteger distance = new KInteger(10);
if (args.length > 0)
 ClientLoc = new PhysicalLocality(args[0]);

if (args.length > 1)
 CameraMake = new KString(args[1]);

if (args.length > 2)
MarketLoc = new PhysicalLocality(args[2]);

if (args.length > 3)
 distance = new KInteger(Integer.parseInt(args[3]));

node = new NodeG(“CameraClient“, ClientLoc, “localhost“, 9999);
K-Process P = new CameraClient(CameraMake, MarketLoc, distance);
node.start();
node.addProcess(P);

}
}

Fig. 2. CameraClient.java.

DE NICOLA ET AL.: KLAIM: A KERNEL LANGUAGE FOR AGENTS INTERACTION AND MOBILITY 329

We are currently exploring the possibility of allowing
nets to communicate and move processes and tuples be-
tween them. The current KLAVA implementation appears to
be well-suited also to program this feature, that will lead to
providing KLAIM and KLAVA with hierarchical nets.

KLAIM has been implemented via Java packages, hence
programmers have to adopt the Java (object-oriented) pro-
gramming discipline to use KLAIM. A compiler from
KLAIM extended with Pascal-like primitives in KLAVA is
under development, together with the implementation of
the typed version of KLAVA.

ACKNOWLEDGMENTS

We are grateful to Luca Cardelli and Betti Venneri for
stimulating discussions about global programming and
type systems, and to the anonymous referees, whose useful
comments helped us to improve the paper. We also thank
Lorenzo Bettini and Emilio Tuosto for discussions about the
implementation of KLAIM. This work has been partially
supported by Esprit Working Groups CONFER2 and CO-
ORDINA, HCM project EXPRESS, by CNR Progetti Speciali
Modelli e Metodi per la Matematica e l’Ingegneria, and by Me-
todologie e Strumenti di Analisi, Verifica e Validazione di Sistemi
Software Affidabili.

REFERENCES

[1]� M. Abadi and A. Gordon, “A Calculus for Cryptographic Proto-
cols: the Spi-Calculus,” Proc. Fourth ACM Conf. Computer and
Comm. Security, 1997.

[2]� R. Amadio and S. Prasad, “Localities and Failures,” FCT&TCS 14,
Proc., P.S. Thiagarajan, ed., Lecture Notes in Computer Science 880,
pp. 205-216. Springer-Verlag, 1994.

[3]� K. Arnold and J. Gosling, The Java Programming Language.
Addison-Wesley, 1996.

[4]� G. Berry and G. Boudol, “The Chemical Abstract Machine,” Theo-
retical Computer Science, vol. 96, pp. 217-248, 1992.

[5]� L. Bettini, “Progetto e Realizzazione di un Linguaggio di Pro-
grammazione per Codice Mobile,” in Italian, Tesi di Laurea,
Dipartimento di Sistemi e Informatica, Università di Firenze,
1998.

[6]� G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn, “Observing
Localities,” Theoretical Computer Science, vol. 114, 1993.

[7]� L. Cardelli, “A Language with Distributed Scope,” Computing
Systems, vol. 8, no. 1, pp. 27-59. MIT Press, 1995.

[8]� L. Cardelli, “Global Computation Manuscript,” 1996. Available at
URL http://www.luca.demon.co.uk.

[9]� L. Cardelli and A. Gordon, “Mobile Ambients,“ FoSSaCS’98, M.
Nivat, ed., Lecture Notes in Computer Science 1378, pp. 140-145.
Springer-Verlag, 1998.

[10]� N. Carriero and D. Gelernter, “Linda in Context,” Comm. ACM,
vol. 32, no. 4, pp. 444-458, 1989.

[11]� N. Carriero, D. Gelernter, and J. Leichter, “Distributed Data
Structures in Linda,” Proc. ACM Symp. Principles of Programming
Languages, New York: ACM, pp. 236-242, 1986.

[12]� P. Ciancarini and D. Rossi, “Jada: Coordination and Communica-
tion for Java agents,” Mobile Object Systems: Towards the Program-
mable Internet,” J. Vitek and C. Tschudin, eds., Lecture Notes In
Computer Science 1222, pp. 213-228. Springer-Verlag, 1997.

[13]� F. Corradini and R. De Nicola, “Locality Based Semantics for Pro-
cess Algebras,” Acta Informatica, vol. 34, pp. 291-324, 1997.

[14]� G. Cugola, C. Ghezzi, G.P. Picco, and G. Vigna, “Analyzing Mo-
bile Code Languages,” J. Vitek and C. Tschudin, eds., Mobile Ob-
ject Systems, Lecture Notes in Computer Science 1222. Springer-
Verlag, 1997.

[15]� R. De Nicola, G. Ferrari, and R. Pugliese, “Locality Based Linda:
Programming with Explicit Localities,” TAPSOFT ’97, Proc., M.

Bidoit and M. Dauchet, eds., Lecture Notes in Computer Science
1214, pp. 712-726. Springer-Verlag, 1997.

[16]� R. De Nicola, G. Ferrari, and R. Pugliese, “Coordinating Mobile
Agents via Blackboards and Access Rights,” Coordination ’97,
Proc., D. Garlan and D. Le Metayer, eds., Lecture Notes in Computer
Science 1282, pp. 220-237, Springer-Verlag, 1997.

[17]� R. De Nicola, G. Ferrari, R. Pugliese, and B. Venneri, “Types for
Access Control,” submitted for publication, 1998. URL http://
di.unipi.it/~giangi/papers

[18]� R. De Nicola and R. Pugliese, “A Process Algebra Based on Linda.
Coordination ’96, Proc., P. Ciancarini and C. Hankin, eds., Lecture
Notes in Computer Science 1061, pp. 160-178. Springer-Verlag, 1996.

[19]� C. Fournet, G. Gonthier, J.-L. Lévy, L. Maranget, and D. Rémy, “A
Calculus of Mobile Agents,” Concur ’96, Proc., U. Montanari and
V. Sassone, eds., Lecture Notes In Computer Science 1119, pp. 406-
421. Springer-Verlag, 1996.

[20]� D. Gelernter, “Generative Communication in Linda,” ACM Trans.
on Programming Languages and Systems, vol. 7, no. 1, pp. 80-112,
1985.

[21]� D. Gelernter, “Multiple Tuple Spaces in Linda,” PARLE’89, Proc.,
G. Goos and J. Hartmanis, eds., Lecture Notes in Computer Science
365, pp. 20-27, 1989.

[22]� D. Gelernter, N. Carriero, and S. Chandran, et al., “Parallel Pro-
gramming in Linda,” Proc. Int’l Conf. Parallel Programming, IEEE,
pp. 255-263, 1985.

[23]� A. Giacalone, P. Mishra, and S. Prasad, “Facile: A Symmetric Inte-
gration of Concurrent and Functional Programming,” Int’l J. Par-
allel Programming, vol. 18, no. 2, 1989.

[24]� M. Hennessy and H. Lin, “Symbolic Bisimulations,” Theoretical
Computer Science, vol. 138, pp. 353-389, 1995.

[25]� C.A.R. Hoare, Communicating Sequential Processes. Prentice Hall
International, 1985.

[26]� IBM Aglets Workbench—Home Page, 1996. URL address: http:
//www.trl.ibm.co.jp/ aglets/

[27]� A. Ingolfsdottir, “Semantic Models for Communicating Processes
with Value–Passing,” PhD thesis, Univ. of Edinburgh, 1994.

[28]� N. Kobayashi, B. Pierce, and D. Turner, “Linearity and the π-
Calculus,” Proc. POPL’96, 1996.

[29]� J. Leitcher, Shared Memories, Buses and LANs—Linda Imple-
mentations Across the Spectrum of Connectivity,” Research Re-
port YALEU/DCS/TR-714, Dept. of Computer Science, Yale
Univ., 1989.

[30]� R. Milner, Communication and Concurrency. Prentice Hall Interna-
tional, 1989.

[31]� R. Milner, “The Polyadic π-Calculus: A Tutorial,” Technical Re-
port, ECS-LFCS-91-180, 1991.

[32]� R. Milner, J. Parrow, and D. Walker, “A Calculus of Mobile Proc-
esses, Part I and II, Information and Computation, vol. 100, pp. 1-77,
1992.

[33]� B. Pierce and D. Turner, “Concurrent Objects in a Process Calcu-
lus,” Theory and Practice of Parallel Programming, T. Ito and A. Yo-
nezawa, eds., Lecture Notes in Computer Science 907, pp. 186-215,
1994.

[34]� B. Pierce and D. Sangiorgi, ”Typing and Subtyping for Mobile
Processes,” Proc. LICS ’93, IEEE Press, 1993. A full version appears
in Mathematical Struction in Computer Science.

[35]� G.D. Plotkin, “A Structural Approach to Operational Semantics,”
Technical Report DAIMI FN-19, Dept. of Computer Science,
Aarhus Univ., 1981.

[36]� G.D. Plotkin, “Lectures Notes in Domain Theory,” Univ. of Edin-
burgh, 1983.

[37]� R. Pugliese, “Semantic Theories for Asynchronous Languages,”
PhD thesis VIII-96-6, Dip. Scienze dell’Informazione, Univ. di
Roma ‘La Sapienza’, 1996.

[38]� J. Reppy, “Higher Order Concurrency,” PhD thesis, Cornell Univ.,
Tr-92-1285, 1992.

[39]� B. Thomsen, L. Leth, and A. Giacalone, “Some Issues in the Se-
mantics of Facile Distributed Programming,” Proc. REX Workshop
Semantics: Foundations and Applications, J.W. de Bakker, W-P. de
Roever, and G. Rezenberg, eds., Lecture Notes in Computer Science
666, pp. 563-593. Springer-Verlag, 1992.

[40]� D. Volpano and G. Smith, “A Typed-Based Approach to Program
Security,” Proc. TAPSOFT ’97, Lecture Notes in Computer Science
1214, pp. 607-621. Springer-Verlag, 1997.

[41]� J.E. White, “Mobile Agents,” Software Agents, J.M. Bradshaw, ed.,
pp. 437-471, 1996.

330 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

Rocco De Nicola received the Laurea degree in
computer science from the University of Pisa,
Italy, in 1978 and the PhD degree in computer
science from the University of Edinburgh, United
Kingdom, in 1985. He is a full professor in the
Dipartimento di Sistemi e Informatica at the Uni-
versity of Florence, Italy, since 1995. From 1990
until 1995, he has been a full professor in the
Dipartimento di Scienze dell’Informazione, at the
University of Rome ‘La Sapienza’. Italy. Before
that he was a full time research at IEI–CNR,

Pisa and worked at Edinburgh University and for Italtel in Milano. Dr. De
Nicola is a member of the IFIP W.G. 2.2. His research interests are
centered around design methods and formal specifications and their
use for the verification of distributed concurrent systems.

Gian Luigi Ferrari received the Laurea degree in
computer science, and the PhD degree in com-
puter science from the University of Pisa, Italy, in
1984 and 1989, respectively. He is an assistant
professor of computer science in the Department
of Computer Science at the University of Pisa.
His research interests include formal specification
and verification of concurrent and mobile sys-
tems, programming languages for network com-
puting, tool support for mobile systems, and theo-
retical aspects of distributed computing.

Rosario Pugliese received the Laurea degree
in computer science from the University of
Pisa, Italy, in 1991, and the PhD degree in
computer science from the University of Rome
‘La Sapienza’ Ital, in 1996. He currently holds
a postdoctoral position in the Dipartimento di
Sistemi e Informatica, at the University of Flor-
ence, Italy. His research interests include se-
mantics of concurrent programming and speci-
fication languages, and models and tools sup-
porting specification and verification of concur-

rent and distributed systems.

