Le disequazioni di secondo grado

Una disequazione di secondo grado si presenta, nella sua forma normale, come segue:

$$ax^2 + bx + c > 0$$

dove a, b e c sono numeri reali ($a \neq 0$) e al posto del segno ">" può esserci "<" oppure " \leq " o " \geq ".

Per risolvere una tale disequazione, bisogna, anzitutto, trovare le soluzioni dell'equazione associata, cioè della:

$$ax^2 + bx + c = 0$$

(Si ricorda che per risolvere una tale equazione si utilizzano le seguenti formule:

$$\Delta = b^2 - 4ac$$
 $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$).

Si possono presentare i seguenti tre casi:

- 1. $\Delta > 0$ si hanno due soluzioni reali e distinte x_1 e x_2 ;
- 2. $\Delta = 0$ si hanno due soluzioni reali e coincidenti $x_1 = x_2$;
- 3. $\Delta < 0$ non si hanno soluzioni reali, l'equazione è impossibile.

Tornando alla disequazione, bisogna tener presente che:

- 1. $\Delta > 0$ il trinomio assume il segno del primo coefficiente (cioè di a) all'esterno dell'intervallo delle due soluzioni. Per $x=x_1$ e per $x=x_2$ il trinomio è uguale a zero.
- 2. $\Delta=0$ il trinomio assume il segno del primo coefficiente per ogni x diverso dalla soluzione x_1 dell'equazione. Per $x=x_1$ il trinomio è nullo.
- 3. $\Delta < 0$ Il trinomio assume il segno del primo coefficiente per ogni x e non è mai nullo.

Vediamo alcuni esempi risolti.

Esempio 1.

Si deve risolvere la seguente: $x^2 + 5x - 6 > 0$

Si risolve prima l'equazione associata: $x^2 + 5x - 6 = 0$; (a=+1; b=+5 ; c=-6)

$$\Delta = b^2 - 4ac = 25 + 24 = 49 > 0$$

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-5 - 7}{2} = -6$$
 $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-5 + 7}{2} = +1$

Siamo nel primo caso, quello in cui "il trinomio assume il segno del primo coefficiente (cioè di a) all'esterno dell'intervallo delle due soluzioni. Per $x=x_1$ e per $x=x_2$ il trinomio è uguale a zero". Il valore del primo coefficiente è "+1", quindi il trinomio assume segno positivo all'esterno dell'intervallo delle soluzioni. Poiché la disequazione iniziale è $x^2+5x-6>0$, le

sue soluzioni sono quelle in cui il trinomio è positivo, cioè la disequazione è verificata per x<-6 o x>+1.

Esempio 2.

Si deve risolvere la seguente: $-6x^2 + x + 1 \le 0$

Si risolve prima l'equazione associata: $-6x^2 + x + 1 \le 0$; (a=-6; b=+1; c=+1)

$$\Delta = b^2 - 4ac = 1 + 24 = 25 > 0$$

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-1 + 5}{-12} = -\frac{1}{3}$$
 $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-1 - 5}{-12} = +\frac{1}{2}$

Siamo nel primo caso, quello in cui "il trinomio assume il segno del primo coefficiente (cioè di a) all'esterno dell'intervallo delle due soluzioni. Per $x=x_1$ e per $x=x_2$ il trinomio è uguale a zero". Il valore del primo coefficiente è "-6", quindi il trinomio assume segno negativo all'esterno dell'intervallo delle soluzioni.

Poiché la disequazione iniziale è $-6x^2+x+1 \le 0$, le sue soluzioni sono quelle in cui il

trinomio è negativo o nullo, cioè la disequazione è verificata per $x \le -\frac{1}{3}$ o $x \ge +\frac{1}{2}$.

Esempio 3.

Si deve risolvere la seguente: $9x^2 - 30x + 25 > 0$

Si risolve prima l'equazione associata: $9x^2 - 30x + 25 = 0$; (a=+9; b=-30; c=+25)

$$\Delta = b^2 - 4ac = 900 - 900 = 0$$

$$x_1 = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{+30 \pm 0}{18} = +\frac{5}{3}$$

Siamo nel secondo caso, quello in cui $\Delta=0$ "il trinomio assume il segno del primo coefficiente per ogni x diverso dalla soluzione x_1 dell'equazione. Per $x=x_1$ il trinomio è nullo". Il valore del primo coefficiente è "+9", quindi il trinomio assume segno positivo per ogni x tranne che per $x=+\frac{5}{3}$. Poiché la disequazione iniziale è $9x^2-30x+25>0$, le sue soluzioni sono quelle in cui il trinomio è negativo o nullo, cioè la disequazione è verificata per $x\neq+\frac{5}{3}$.

Esempio 4.

Si deve risolvere la seguente: $-81x^2 + 18x - 1 \le 0$

Si risolve prima l'equazione associata: $-81x^2 + 18x - 1 = 0$; (a=-81; b=+18; c=-1)

$$\Delta = b^2 - 4ac = 324 - 324 = 0$$

$$x_1 = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-18 \pm 0}{-162} = +\frac{1}{9}$$

Siamo nel secondo caso, quello in cui $\Delta=0$ "il trinomio assume il segno del primo coefficiente per ogni x diverso dalla soluzione x_1 dell'equazione. Per $x=x_1$ il trinomio è nullo". Il valore del primo coefficiente è "-81", quindi il trinomio assume segno negativo 1

per ogni x tranne che per $x = +\frac{1}{9}$ dove è nullo. Poiché la disequazione iniziale è

 $-81x^2 + 18x - 1 \le 0$, le sue soluzioni sono quelle in cui il trinomio è negativo o nullo, cioè la disequazione è verificata per ogni x.

Esempio 5.

Si deve risolvere la seguente: $4x^2 + 4x + 1 < 0$

Si risolve prima l'equazione associata: $4x^2 + 4x + 1 = 0$; (a=+4; b=+4; c=+1)

$$\Delta = b^2 - 4ac = 16 - 16 = 0$$
 $x_1 = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-4 \pm 0}{8} = -\frac{1}{2}$

Siamo nel secondo caso, quello in cui $\Delta=0$ "il trinomio assume il segno del primo coefficiente per ogni x diverso dalla soluzione x_1 dell'equazione. Per $x=x_1$ il trinomio è nullo". Il valore del primo coefficiente è "+4", quindi il trinomio assume segno positivo per ogni x tranne che per $x=-\frac{1}{2}$ dove è nullo. Poiché la disequazione iniziale è $4x^2+4x+1<0$, le sue soluzioni sono quelle in cui il trinomio è negativo. Poiché il trinomio non è mai negativo, si conclude che la disequazione non è mai verificata, è impossibile.

Esempio 6.

Si deve risolvere la seguente: $-9x^2 + 6x - 1 \ge 0$

Si risolve prima l'equazione associata: $-9x^2 + 6x - 1 = 0$; (a=-9; b=+6; c=-1)

$$\Delta = b^2 - 4ac = 36 - 36 = 0$$
 $x_1 = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-6 \pm 0}{-18} = +\frac{1}{3}$

Siamo nel secondo caso, quello in cui $\Delta=0$ "il trinomio assume il segno del primo coefficiente per ogni x diverso dalla soluzione x_1 dell'equazione. Per $x=x_1$ il trinomio è nullo". Il valore del primo coefficiente è "-9", quindi il trinomio assume segno negativo per ogni x tranne che per $x=+\frac{1}{3}$ dove è nullo. Poiché la disequazione iniziale è $-9x^2+6x-1\geq 0$, le sue soluzioni sono quelle in cui il trinomio è positivo o nullo. Poiché il trinomio non è mai positivo, si conclude che la disequazione è verificata solo per $x=+\frac{1}{3}$.

Esempio 7.

Si deve risolvere la seguente: $x^2 - 2x + 10 > 0$

Si risolve prima l'equazione associata: $x^2 - 2x + 10 = 0$; (a=+1; b=-2; c=+10)

$$\Delta = b^2 - 4ac = 4 - 40 = -36 < 0$$
 (l'equazione non ha soluzioni)

Siamo nel terzo caso, quello in cui $\Delta < 0$ e " \it{Il} trinomio assume il segno del primo coefficiente per ogni \it{x} e non è mai nullo". Il valore del primo coefficiente è "+1", quindi il trinomio assume segno positivo per ogni \it{x} .

3

Poiché la disequazione iniziale è $x^2-2x+10>0$, le sue soluzioni sono quelle in cui il trinomio è positivo. Poiché il trinomio è sempre positivo, si conclude che la disequazione è verificata sempre, cioè per ogni x.

Esempio 8.

Si deve risolvere la seguente: $-x^2 + 4x - 5 \ge 0$

Si risolve prima l'equazione associata: $-x^2 + 4x - 5 = 0$; (a=-1; b=+4; c=-5)

$$\Delta = b^2 - 4ac = 16 - 20 = -4 < 0$$
 (l'equazione non ha soluzioni)

Siamo nel terzo caso, quello in cui $\Delta < 0$ e " \it{Il} trinomio assume il segno del primo coefficiente per ogni \it{x} e non è mai nullo". Il valore del primo coefficiente è "-1", quindi il trinomio assume segno negativo per ogni \it{x} .

Poiché la disequazione iniziale è $-x^2+4x-5\geq 0$, le sue soluzioni sono quelle in cui il trinomio è positivo o nullo. Poiché il trinomio è sempre negativo, si conclude che la disequazione non è mai verificata, cioè è impossibile.