

plexmath proposal # 317614 Consortium Hearing session

Alex Arenas Yamir Moreno

viernes 15 de junio de 12

Consortium

 $\langle + | + \rangle$

Institution	Representative	
Universitat Rovira i Virgili *	A. Arenas	
Universidad de Zaragoza	Y. Moreno	
University of Limerick	J. Gleeson	
CNRS-URA	M. Barthelemy	
University of Oxford	M.A. Porter	

Object of study

Time-dependent, multi-layered network structures

Mathematical object rank-4th order tensor

Aijkt

viernes 15 de junio de 12

I

• To create a comprehensive mathematical formalism for describing the general class of multiplex network structures, including time-varying networks.

• To extend the understanding of standard network structure diagnostics and descriptors, e.g. strength distributions, correlations, clustering coefficients, betweenness, mesoscopic structure etc., to the general multiplex framework.

• To determine how particular dynamical processes (random walks and complex contagions) act on multiplex networks.

• To validate our theoretical approaches on real-world multiplex data sets.

Plexmath structure

 $\langle \downarrow | \downarrow \rangle$

• WP2 will address the problem of both formulation and scalable/efficient computation of time dependent and multiplex networks

• WP3 will address the generalization of network diagnostics such as clustering coefficient and methods such as community detection to this new framework.

• WP4 will address dynamical systems on multiplex and time-dependent networks, which will allow us to consider interactions between dynamics on networks, and dynamics of networks as well as network-control problems in such situations.

• WP5 will then apply the tools, concepts, diagnostics, and algorithms from WP2—WP4 to large data sets to demonstrate the practical use of the theory and algorithms that we will develop.

Expected progress

 $\langle \downarrow | \downarrow \rangle$

	SCIENCE	TECHNOLOGY
NOVELTY	A general theoretical foundation for the study of multi-level complex systems	Identification of previously unnoticed correlations between the structural properties and the relevant dynamics of large socio- technical networks
INTEGRATION	Common mathematical framework for general complex network structures	Unified set of data structures to implement computational codes representing multiplex structures and dynamical processes on them