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Sophocles
Nature processes Information

* Information is registered in the state of a system
and its elements

* |nformation is transferred. =

— Bits of information about the state of one element
will travel —imperfectly — to the state of the other
element, forming its new state.

— This storage and transfer of information is imperfect due to randomness or noise.

* A system can then be formalized
— as a collection of bits
— organized according to its rules of dynamics and its topology of interactions.

* Mapping out exactly how these bits of information percolate through the
system could reveal new fundamental insights in how the parts orchestrate to
produce the properties of the system.

* Atheory of information processing would be capable of defining a set of
universal properties of dynamical multilevel complex systems



Sophocles

Nature processes Information

I(P [O) returns how many bits of information are
stored about the predicted system state P in the
observed system state O
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The amount of information that a macroscopic

system stores about a historic
instance of a node i after 6 time steps
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The average time it takes to reduce to its minimum value is per lost bit.
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equivalent to how long the macroscopic system remembers'
the state of a microscopic state. This the information
dissipation time of the node i
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Landauers principle, any logically irreversible
transformation of classical information is
necessarily accompanied by the dissipation of at
least kTIn(2) of heat

LETTER

Experimental verification of Landauer’s principle
linking information and thermodynamics

Antoine Béruf', Artak Arakelyan', Artyom Petrosyan', Sergio Ciliberto, Raoul Dillenschneider” & Eric Lutz't

doi: 10,1038 /nature 10872
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Sophocles
Nature processes Information
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Scatter plots of information dissipation times of nodes as function of their
number of connections, for different temperatures.
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Nature is multi-scale
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Sophocles
Nature is multi-scale
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Sophocles Objectives

1. Develop mathematical and computational formalisms for information
processing in multi-level complex systems, based on Information Theory.

2. Develop a theory of information processing in multilevel complex systems for
study of criticality, emergence, and tipping points.

3. Develop a theory of self-organised information processing for multi-level
systems that can emerge due to co-evolution of information processing and
system topology.

4. Create an Computational Exploratory, an in-silico experimental facility that
allows implementing our mathematical and computational framework of
Information Processing in multi-level complex systems

5. Validate our theory using socio-economic datasets (tick-by-tick data from the
Forex market, inter-bank interest rates, and social media). Study emergence
of scales and tipping points in these datasets.
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Sophocles Coevolution of dynamics and topology
due to internal and external stimuli
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Tipping Points

LETTER

doi: 10. 1038/ ma ture 09 3B

Early warning signals of extinction in deteriorating
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Sophocles  Computational Exploratory

Multiscale Complex Systems — - > . Hierarchical networks . Agent Based Models
including ... . Multi-scale systems . Cellular Automata
. Differential equations . Complex Automata
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Tick-count scaling law
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Collaborative tasks
) = ECCS 12 Satellites

-'T' Computational
W | 8 Science
1w European Conference on Complex Systems

ECCS'12: Satellite Meeting
INFORMATION PROCESSING IN COMPLEX
SYSTEMS (IPCS'12)

Date
Thursday September 6th, 2012

Note

To attend the Satellite Meeting, it is mandatory to register to the European Conference on Complex
Systems 2012 ECC52012

Location

Universite Libre de Bruxelles

Summary

All systems in nature have one thing in common: they process information. Information is
registered in the state of a system and its elements, implicitly and invisibly. As elements interact,
information is transferred. Indeed, bits of information about the state of one element will travel —
imperfectly — to the state of the other element, forming its new state. This storage and transfer of
information, possibly between levels of a multi level system, is imperfect due to randomness or
noise. From this viewpoint, a system can be formalized as a collection of bits that is organized
according to its rules of dynamics and its topology of interactions. Mapping out exactly how these
bits of information percolate through the system could reveal new fundamental insights in how the
parts orchestrate to produce the properties of the system. A theory of information processing
would be capable of defining a set of universal properties of dynamical multi level complex
systems, which describe and compare the dynamics of diverse complex systems ranging from
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Collaborative tasks

Candidate joint publications
— Special issues in a journal on Dynamics of Complex Systems
Candidate joint events

— Sophocles and TOPDRIM have taken initiative to organize a satellite event with
ECCS2012 on Information Processing in Complex Systems,

— see http://computationalscience.nl/ipcs2012/

Future roadmap for DyM-CS, Impact assessment for DyM-CS (including
how close we are getting to a general theory of CS)

— Targeted consultation actions of experts, plus workshops to
Joint Exploitation activities/events
— Workshops, satellite events at conferences, such as ECCS, ICCS.

Exchanges between projects (perhaps taking advantage of already existing
overlaps)

— TOPOSYS <> Sophocles via partner JSI

— TOPDRIM <> Sophocles via partner UvA

Common approach to international cooperation (e.g. workshops with
other international related projects and with funding agencies)


http://computationalscience.nl/ipcs2012/

