Linked Lists

2%

o

© 2006 Goodrich, Tamassia Linked Lists

N

Singly Linked List

#A singly linked list is a o N I N N
concrete data structure
consisting of a sequence
of nodes

#:Each node stores
= an element
= a link to the next node _

~ Y~

N

© 2006 Goodrich, Tamassia Linked Lists

The Class for the List Nodes

»
class Npde { // Accessor methods:

// Instance variables: i .
private Object element; public Object getElement(){
’ return element;

private Node next;

N

}
public Node getNext () ({

/** Creates a node with null
return next;

references to its element and next

node. */ }
public Node() {
this(null, null); // Modifier methods:
} public void setElement
(Objectelement) {
/** Creates a node with the given this.element = elem;
element and next node. */ }
public Node(Object e, Node n) { public void setNext (Node
element = e; next)
next = nj; {
} this.next = next;
}
}

© 2006 Goodrich, Tamassia Linked Lists

Inserting at the Head

1. Allocate a new node with a given element
2. Make the new node point to old head
3. Update head to point to new node

N

head
O—ly I C > I C I
l | |
T A B C
|
D

© 2006 Goodrich, Tamassia Linked Lists

Inserting at the Head

1. Allocate a new node with a given element
2. Make the new node point to old head
3. Update head to point to new node

N

head

_ﬁ
_ﬁ

v
O —f—

g
|
D

© 2006 Goodrich, Tamassia Linked Lists

e—o1

Removing at the Head

N

1. Update head to point to next node in the list
2. Allow garbage collector to reclaim the former first node

head

—1—e
—1—e
«—1r

© 2006 Goodrich, Tamassia Linked Lists

Removing at the Head

N

1. Update head to point to next node in the list
2. Allow garbage collector to reclaim the former first node

o head

— 1]

—
—ﬁ

© 2006 Goodrich, Tamassia Linked Lists 7

Inserting at the Tall

)
1. Allocate a new node with a given element
2. Have new node point to null
3. Have old last node point to new node
4. Update tail to point to new node

tail
head I

—t—
—

A B C

[1]
5

© 2006 Goodrich, Tamassia Linked Lists

O «—1—

Inserting at the Tall

S
1. Allocate a new node
2. Insert new element
3. Have new node point to null
4. Have old last node point to new node
5. Update tail to point to new node
tail
head I

—t—
N

—

—t—

O «—p—e

© 2006 Goodrich, Tamassia Linked Lists

Removing at the Tall

N

#Removing at the tail of a singly linked list is not
efficient!

#There is no constant-time way to update the tail to
point to the previous node

head I

«—1 o
—

A

O ~—T

[] —F—o

© 2006 Goodrich, Tamassia Linked Lists 10

Doubly Linked List

—_——— e e e

@A doubly linked list provides a natural -l A
implementation of the Node List ADT
@Nodes implement Position and store:
m element
= |ink to the previous node
= |ink to the next node

@Special trailer and header nodes DS S I S N O I I 7

f\

e e e e e

——_—————— e —_ e —_ e e e e

/

elements /

___-

© 2006 Goodrich, Tamassia Lists 11

Insertion

g
N
We visualize operation insertAfter(p, X), which returns
position g
p
2N G AN S AN S
\A \B \C
p
T [
A N
/\ p
AN EA)
A \

© 2006 Goodrich, Tamassia 12

Insertion Algorithm

N

Algorithm addAfter(p,e):
Create a new node cur;
next = p.getNext();
cur.setElement(e);

cur.setPrev(p); // link cur to its predecessor

cur.setNext(next); // link cur to its successor

next.setPrev(cur) // link next (the old p successor
to cur

p.setNext(cur) /] link p to its new successor,cur

return v /] the position for the element e

© 2006 Goodrich, Tamassia Lists 13

Deletion

)
N . .
We visualize remove(p), where p = last() ...
T (\ T~ (\ a2 N S S 2 N S N
A B \ C - \ D ./
F B RSk

T
2>

T
ov

T

ye
>
VR
ow
VR
@!

© 2006 Goodrich, Tamassia Lists 14

Deletion Algorithm

N

Algorithm remove(p):
t = p.element // a temporary variable
prev = p.getPrev();
next = p.getNext();
prev.setNext(next) //linking out p
next.setPrev(prev)

p.setPrev(null) // invalidating the position p}

p.setNext(null)
return t

© 2006 Goodrich, Tamassia Lists

15

Performance

#In the implementation of the List ADT

by means of a doubly linked list

= The space used by a list with n elements
IS O(n)

= The space used by each position of the
list is O(1)

= All the operations of the List ADT run in
O(1) time

= Operation element() of the
Position ADT runs in O(1) time

N

© 2608 BYeenctsh TErmaseia Lists 16

Stack as a Linked List

@Ne can implement a stack with a singly linked list
@I’he top element is stored at the first node of the list

@'he space used is O(n) and each operation of the Stack ADT
takes O(1) time

N

_— g]])})]]] —] —

O

~_ e |——) —_——-

© 2006 Goodrich, Tamassia Linked Lists 17

Queue as a Linked List

#We can implement a queue with a singly linked
list (front = first element, rear the last one)

#The space used is O(n) and each operation of
the Queue ADT takes O(1) time

N

_— 4]

“ nodes k

~

—_——————
/
~d L

elements |

~d 4 _______ £ ___r___r |- — 44 -4 4 1 ___1___1___ L

© 2006 Goodrich, Tamassia Linked Lists 18

	Linked Lists
	Singly Linked List (§ 3.2)
	The Node Class for List Nodes
	Inserting at the Head
	Pagina 5
	Removing at the Head
	Pagina 7
	Inserting at the Tail
	Pagina 9
	Removing at the Tail
	Doubly Linked List
	Insertion
	Insertion Algorithm
	Deletion
	Deletion Algorithm
	Performance
	Stack as a Linked List (§ 5.1.3)
	Queue as a Linked List (§ 5.2.3)

