
Stacks

© 2010 Goodrich, Tamassia 1Stacks

Stacks 2

Abstract Data Types (ADTs)
 An abstract data type (ADT, for short) is

an abstraction of a data structure
 An ADT specifies:

 Data stored
 Operations on the data
 Error conditions associated with operations

© 2010 Goodrich, Tamassia

Stacks 3

The Stack ADT
 The Stack ADT stores

arbitrary objects
 Insertions and deletions

follow a last-in first-out
scheme

 Think of a spring-loaded
plate dispenser

 Main stack operations:
 push(object): inserts an

element
 object pop(): removes and

returns the last inserted
element

 Auxiliary stack
operations:
 object top(): returns

the last inserted
element without
removing it

 integer size(): returns
the number of
elements stored

 boolean isEmpty():
indicates whether no
elements are stored

© 2010 Goodrich, Tamassia

Stacks 4

Stack Interface in Java
 Java interface

corresponding to our
Stack ADT

 Needs the definition
of a class
EmptyStackException

 Different from the
built-in Java class
java.util.Stack

public interface Stack<E> {

public int size();

public boolean isEmpty();

public E top()
 throws EmptyStackException;

public void push(E e);

public E pop()
 throws EmptyStackException;

}

© 2010 Goodrich, Tamassia

Stacks 5

Exceptions
 Attempting the

execution of an
operation of ADT
may sometimes
cause an error
condition, called an
exception

 Exceptions are said
to be “thrown” by an
operation that
cannot be executed

 In the Stack ADT,
operations pop and
top cannot be
performed if the stack
is empty

 The execution of pop
or top on an empty
stack throws an
EmptyStackException

© 2010 Goodrich, Tamassia

Stacks 6

Applications of Stacks

 Direct applications
 Page-visited history in a Web browser
 Undo sequence in a text editor
 Chain of method calls in the Java

Virtual Machine
 Indirect applications

 Auxiliary data structure for algorithms
 Component of other data structures

© 2010 Goodrich, Tamassia

Stacks 7

Method Stack in the JVM
 The Java Virtual Machine (JVM)

keeps track of the chain of active
methods with a stack

 When a method is called, the JVM
pushes on the stack a frame
containing
 Local variables and return value
 Program counter, keeping track of

the statement being executed
 When a method ends, its frame is

popped from the stack and control
is passed to the method on top of
the stack

 Allows for recursion

main() {
int i = 5;
foo(i);

}

foo(int j) {
int k;
k = j+1;
bar(k);

}

bar(int m)
{

…
}

bar
 PC = 1
 m = 6

foo
 PC = 3
 j = 5
 k = 6

main
 PC = 2
 i = 5

© 2010 Goodrich, Tamassia

Stacks 8

Array-based Stack
 A simple way of

implementing the
Stack ADT uses an
array

 We add elements
from left to right

 A variable t keeps
track of the index
of the top element

S
0 1 2 t

…

Algorithm size()
return t + 1

Algorithm pop()
if isEmpty() then

throw EmptyStackException
 else

t ← t − 1
return S[t + 1]

© 2010 Goodrich, Tamassia

Stacks 9

Array-based Stack (cont.)
 The array storing the

stack elements may
become full

 A push operation will
then throw a
FullStackException
 Limitation of the array-

based implementation
 Not intrinsic to the

Stack ADT

S
0 1 2 t

…

Algorithm push(e)
if t = S.length − 1 then

throw FullStackException
 else

t ← t + 1
S[t] ← e

© 2010 Goodrich, Tamassia

Stacks 10

Performance and
Limitations

 Performance
 Let n be the number of elements in the stack
 The space used is O(n)
 Each operation runs in time O(1)

 Limitations
 The maximum size of the stack must be

defined a priori and cannot be changed
 Trying to push a new element into a full stack

causes an implementation-specific exception

© 2010 Goodrich, Tamassia

Stacks 11

Computing Spans
 Using a stack as an auxiliary

data structure in an algorithm
 Given an an array X, the span

S[i] of X[i] is the maximum
number of consecutive elements
X[j] immediately preceding X[i]
and such that X[j] ≤ X[i]

 Spans have applications to
financial analysis
 E.g., stock at 52-week high

6 3 4 5 2

1 1 2 3 1

X

S

0
1
2
3
4
5
6
7

0 1 2 3 4

© 2010 Goodrich, Tamassia

Stacks 12

Quadratic Algorithm
Algorithm spans1(X, n)

Input array X of n integers
Output array S of spans of X #
S ← new array of n integers n
for i ← 0 to n − 1 do n

s ← 1 n
while s ≤ i and X[i − s] ≤ X[i] 1 + 2 + …+ (n − 1)

 s ← s + 1 1 + 2 + …+ (n − 1)
S[i] ← s n

return S 1

Algorithm spans1 runs in O(n2) time

© 2010 Goodrich, Tamassia

Stacks 13

Computing Spans with a
Stack
 We keep in a stack the

indices of the elements
visible when “looking
back”

 We scan the array from
left to right
 Let i be the current index
 We pop indices from the

stack until we find index j
such that X[i] < X[j]

 We set S[i] ← i − j
 We push x onto the stack

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

© 2010 Goodrich, Tamassia

Stacks 14

Linear Algorithm
Algorithm spans2(X, n) #

S ← new array of n integers n
A ← new empty stack 1
for i ← 0 to n − 1 do n

while (¬A.isEmpty() and X[A.top()] ≤ X[i]) do n
A.pop() n

if A.isEmpty() then n
S[i] ← i + 1 n

else S[i] ← i − A.top() n
A.push(i) n

return S 1

© 2010 Goodrich, Tamassia

	Stacks
	Abstract Data Types (ADTs)
	The Stack ADT
	Stack Interface in Java
	Exceptions
	Applications of Stacks
	Method Stack in the JVM
	Array-based Stack
	Array-based Stack (cont.)
	Performance and Limitations
	Computing Spans (not in book)
	Quadratic Algorithm
	Computing Spans with a Stack
	Linear Algorithm

