Stacks

N

© 2010 Goodrich, Tamassia

Stacks

Abstract Data Types (ADTs)

a0 An abstract data type (ADT, for short) is
an abstraction of a data structure
a An ADT specifies:
= Data stored
= Operations on the data
= Error conditions associated with operations

N

© 2010 Goodrich, Tamassia Stacks

The Stack ADT

N

0 The Stack ADT stores
arbitrary objects

0 |Insertions and deletions
follow a last-in first-out
scheme

0 Think of a spring-loaded
plate dispenser

0 Main stack operations:

= push(object): inserts an
element
= object pop(): removes and

returns the last inserted
element

© 2010 Goodrich, Tamassia Stacks

a0 Auxiliary stack
operations:

= object top(): returns
the last inserted
element without
removing it

= |nteger size(): returns
the number of
elements stored

= poolean isEmpty():
indicates whether no
elements are stored

N

QO Java interface
corresponding to our
Stack ADT

0 Needs the definition
of a class
EmptyStackException

o Different from the
built-in Java class
java.util.Stack

© 2010 Goodrich, Tamassia

Stack Interface In Java

public interface Stack<E> {
public int size();
public boolean isEmpty();

public E top()
throws EmptyStackException;

public void push(E e);

public E pop()
throws EmptyStackException;

Stacks

Exceptions

a Attempting the a |n the Stack ADT,
execution of an operations pop and
operation of ADT top cannot be
may sometimes performed if the stack
cause an error IS empty
Conditipn, Ca”ed an o The executiOn Of pop
exception or top on an empty

a0 Exceptions are said stack throws an
to be “thrown” by an EmptyStackException
operation that
cannot be executed

© 2010 Goodrich, Tamassia Stacks 5

Applications of Stacks

N

2 Direct applications
= Page-visited history in a Web browser
= Undo sequence in a text editor

= Chain of method calls in the Java
Virtual Machine

d [ndirect applications
= Auxiliary data structure for algorithms
= Component of other data structures

© 2010 Goodrich, Tamassia Stacks

N

a

© 2010 Goodrich, Tamassia

The Java Virtual Machine (JVM)
keeps track of the chain of active
methods with a stack

When a method is called, the JVM
pushes on the stack a frame
containing

» Local variables and return value

= Program counter, keeping track of
the statement being executed

When a method ends, its frame is
popped from the stack and control
IS passed to the method on top of
the stack

Allows for recursion

Stacks

Method Stack in the JVM

main() {

int1 =5;

fool(i);

}

foo(intj) {

int k;

k =j+1;

bar(k);
}

bar(int m)

{
i

bar
PC=1
m==6

foo
PC=3
1=5

main
PC=2
1=5

Array-based Stack

o A simple way of Algorithm size()

implementing the return 7+ 1

Stack ADT uses an

array Algorithm pop()
2 We add elements if isEmpty() then

from left to right throw EmptyStackException
o A variable t keeps else

track of the index t —1-1

of the top element return {7+ 1]

S \ I \
0 1 2 {

© 2010 Goodrich, Tamassia Stacks

Array-based Stack (cont.)

a0 The array storing the

N

stack elements may -
become full Algorithm push(e)
a0 A push operation will | f#=S.length =1 then
then throw a throw FullStackException
FullStackException else
= |imitation of the array- t —t+1
based implementation S[f] < e
= Not intrinsic to the -
Stack ADT

< \...H

0 1 2 t

© 2010 Goodrich, Tamassia Stacks

Performance and

Limitations

N

Q Performance
= | et n be the number of elements in the stack
= The space used is O(n)
= Fach operation runs in time 0O(1)

0 Limitations

= The maximum size of the stack must be
defined a priori and cannot be changed

= Trying to push a new element into a full stack
causes an implementation-specific exception

© 2010 Goodrich, Tamassia Stacks 10

Computing Spans

N

0 Using a stack as an auxiliary

S[i] of X[i] is the maximum 4 -
number of consecutive elements
X[j] immediately preceding X[i] 3 -
and such that X[j] £ X[i] 2

0 Spans have applications to 1 -

financial analysis
= E.g., stock at 52-week high

!

© 2010 Goodrich, Tamassia Stacks

.] G
data structure in an algorithm 0 -
2 Given an an array X, the span S5 - |
0

1 3
31452
112131

Quadratic Algorithm

N

Algorithm spans1(X, n)
Input array X of n integers

Output array S of spans of X #
S — new array of n integers n
fori «Oton —1do n
s <1 n
whiles< fand X[i —s|< X[i] 1+ 2+ ...+ (n—-1)
s «s+1 1+ 2+ .. +(n-1)
S[i] <=
return S 1

Algorithm spansl runs in O(n?) time

© 2010 Goodrich, Tamassia Stacks

12

Computing Spans with a
Stack

0 We keep in a stack the
indices of the elements 7
visible when “looking 61m
back” 5 -
a We scan the array from 4 m
left to right 3 _
= [etibe the current index 7
= We pop indices from the
stack until we find index j 11 IJ
such that X[i] < X[j] 0 o -
" We set S 1 01234567

= We push x onto the stack

© 2010 Goodrich, Tamassia Stacks

13

Linear Algorithm

N

Algorithm spans2(X, n)
$ — new array of n integers
A < new empty stack
fori —Oton—1do
while (nA.isEmpty() and X[A.top()] £ X[i]) do
A.pop()
if A.isEmpty() then
S[i] i+ 1
else S[i] —i-—-A.top()
A.push(i)
return $

— S S QS S S QS = H

© 2010 Goodrich, Tamassia Stacks

14

	Stacks
	Abstract Data Types (ADTs)
	The Stack ADT
	Stack Interface in Java
	Exceptions
	Applications of Stacks
	Method Stack in the JVM
	Array-based Stack
	Array-based Stack (cont.)
	Performance and Limitations
	Computing Spans (not in book)
	Quadratic Algorithm
	Computing Spans with a Stack
	Linear Algorithm

