
Stacks

© 2010 Goodrich, Tamassia 1Stacks

Stacks 2

Abstract Data Types (ADTs)
 An abstract data type (ADT, for short) is

an abstraction of a data structure
 An ADT specifies:

 Data stored
 Operations on the data
 Error conditions associated with operations

© 2010 Goodrich, Tamassia

Stacks 3

The Stack ADT
 The Stack ADT stores

arbitrary objects
 Insertions and deletions

follow a last-in first-out
scheme

 Think of a spring-loaded
plate dispenser

 Main stack operations:
 push(object): inserts an

element
 object pop(): removes and

returns the last inserted
element

 Auxiliary stack
operations:
 object top(): returns

the last inserted
element without
removing it

 integer size(): returns
the number of
elements stored

 boolean isEmpty():
indicates whether no
elements are stored

© 2010 Goodrich, Tamassia

Stacks 4

Stack Interface in Java
 Java interface

corresponding to our
Stack ADT

 Needs the definition
of a class
EmptyStackException

 Different from the
built-in Java class
java.util.Stack

public interface Stack<E> {

public int size();

public boolean isEmpty();

public E top()
 throws EmptyStackException;

public void push(E e);

public E pop()
 throws EmptyStackException;

}

© 2010 Goodrich, Tamassia

Stacks 5

Exceptions
 Attempting the

execution of an
operation of ADT
may sometimes
cause an error
condition, called an
exception

 Exceptions are said
to be “thrown” by an
operation that
cannot be executed

 In the Stack ADT,
operations pop and
top cannot be
performed if the stack
is empty

 The execution of pop
or top on an empty
stack throws an
EmptyStackException

© 2010 Goodrich, Tamassia

Stacks 6

Applications of Stacks

 Direct applications
 Page-visited history in a Web browser
 Undo sequence in a text editor
 Chain of method calls in the Java

Virtual Machine
 Indirect applications

 Auxiliary data structure for algorithms
 Component of other data structures

© 2010 Goodrich, Tamassia

Stacks 7

Method Stack in the JVM
 The Java Virtual Machine (JVM)

keeps track of the chain of active
methods with a stack

 When a method is called, the JVM
pushes on the stack a frame
containing
 Local variables and return value
 Program counter, keeping track of

the statement being executed
 When a method ends, its frame is

popped from the stack and control
is passed to the method on top of
the stack

 Allows for recursion

main() {
int i = 5;
foo(i);

}

foo(int j) {
int k;
k = j+1;
bar(k);

}

bar(int m)
{

…
}

bar
 PC = 1
 m = 6

foo
 PC = 3
 j = 5
 k = 6

main
 PC = 2
 i = 5

© 2010 Goodrich, Tamassia

Stacks 8

Array-based Stack
 A simple way of

implementing the
Stack ADT uses an
array

 We add elements
from left to right

 A variable t keeps
track of the index
of the top element

S
0 1 2 t

…

Algorithm size()
return t + 1

Algorithm pop()
if isEmpty() then

throw EmptyStackException
 else

t ← t − 1
return S[t + 1]

© 2010 Goodrich, Tamassia

Stacks 9

Array-based Stack (cont.)
 The array storing the

stack elements may
become full

 A push operation will
then throw a
FullStackException
 Limitation of the array-

based implementation
 Not intrinsic to the

Stack ADT

S
0 1 2 t

…

Algorithm push(e)
if t = S.length − 1 then

throw FullStackException
 else

t ← t + 1
S[t] ← e

© 2010 Goodrich, Tamassia

Stacks 10

Performance and
Limitations

 Performance
 Let n be the number of elements in the stack
 The space used is O(n)
 Each operation runs in time O(1)

 Limitations
 The maximum size of the stack must be

defined a priori and cannot be changed
 Trying to push a new element into a full stack

causes an implementation-specific exception

© 2010 Goodrich, Tamassia

Stacks 11

Computing Spans
 Using a stack as an auxiliary

data structure in an algorithm
 Given an an array X, the span

S[i] of X[i] is the maximum
number of consecutive elements
X[j] immediately preceding X[i]
and such that X[j] ≤ X[i]

 Spans have applications to
financial analysis
 E.g., stock at 52-week high

6 3 4 5 2

1 1 2 3 1

X

S

0
1
2
3
4
5
6
7

0 1 2 3 4

© 2010 Goodrich, Tamassia

Stacks 12

Quadratic Algorithm
Algorithm spans1(X, n)

Input array X of n integers
Output array S of spans of X #
S ← new array of n integers n
for i ← 0 to n − 1 do n

s ← 1 n
while s ≤ i and X[i − s] ≤ X[i] 1 + 2 + …+ (n − 1)

 s ← s + 1 1 + 2 + …+ (n − 1)
S[i] ← s n

return S 1

Algorithm spans1 runs in O(n2) time

© 2010 Goodrich, Tamassia

Stacks 13

Computing Spans with a
Stack
 We keep in a stack the

indices of the elements
visible when “looking
back”

 We scan the array from
left to right
 Let i be the current index
 We pop indices from the

stack until we find index j
such that X[i] < X[j]

 We set S[i] ← i − j
 We push x onto the stack

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

© 2010 Goodrich, Tamassia

Stacks 14

Linear Algorithm
Algorithm spans2(X, n) #

S ← new array of n integers n
A ← new empty stack 1
for i ← 0 to n − 1 do n

while (¬A.isEmpty() and X[A.top()] ≤ X[i]) do n
A.pop() n

if A.isEmpty() then n
S[i] ← i + 1 n

else S[i] ← i − A.top() n
A.push(i) n

return S 1

© 2010 Goodrich, Tamassia

	Stacks
	Abstract Data Types (ADTs)
	The Stack ADT
	Stack Interface in Java
	Exceptions
	Applications of Stacks
	Method Stack in the JVM
	Array-based Stack
	Array-based Stack (cont.)
	Performance and Limitations
	Computing Spans (not in book)
	Quadratic Algorithm
	Computing Spans with a Stack
	Linear Algorithm

