Chapter 5

Syntax-Directed
Translation

This chapter develops the theme of Section 2.3: the translation of languages
guided by context-free grammars. The translation techniques in this chapter
will be applied in Chapter 6 to type checking and intermediate-code generation.
The techniques are also useful for implementing little languages for specialized
tasks; this chapter includes an example from typesetting.

We associate information with a language construct by attaching attributes
to the grammar symbol(s) representing the construct, as discussed in Sec-
tion 2.3.2. A syntax-directed definition specifies the values of attributes by
associating semantic rules with the grammar productions. For example, an
infix-to-postfix translator might have a production and rule

PRODUCTION SEMANTIC RULE

5.1
E—-E+T E.code = E;.code || T.code || '+ (5.1)

This production has two nonterminals, E and T'; the subscript in E; distin-
guishes the occurrence of E in the production body from the occurrence of E
as the head. Both E and T have a string-valued attribute code. The semantic
rule specifies that the string E.code is formed by concatenating E;.code, T'code,
and the character '+'. While the rule makes it explicit that the translation of
E is built up from the translations of E;, T, and '+, it may be inefficient to
implement the translation directly by manipulating strings.

From Section 2.3.5, a syntax-directed translation scheme embeds program
fragments called semantic actions within production bodies, as in

E—E +T {print'+ } (5.2)

By convention, semantic actions are enclosed within curly braces. (If curly
braces occur as grammar symbols, we enclose them within single quotes, as in
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304 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

"{ and '}'.) The position of a semantic action in a production body determines
the order in which the action is executed. In production (5.2), the action
occurs at the end, after all the grammar symbols; in general, semantic actions
may occur at any position in a production body.

Between the two notations, syntax-directed definitions can be more readable,
and hence more useful for specifications. However, translation schemes can be
more efficient, and hence more useful for implementations.

The most general approach to syntax-directed translation is to construct a
parse tree or a syntax tree, and then to compute the values of attributes at the
nodes of the tree by visiting the nodes of the tree. In many cases, translation
can be done during parsing, without building an explicit tree. We shall therefore
study a class of syntax-directed translations called “L-attributed translations”
(L for left-to-right), which encompass virtually all translations that can be
performed during parsing. We also study a smaller class, called “S-attributed
translations” (S for synthesized), which can be performed easily in connection
with a bottom-up parse. ' : ’

5.1 Syntax-Directed Definitions

A syntaz-directed definition (SDD) is a context-free grammar together with
attributes and rules. Attributes are associated with grammar symbols and rules
are associated with productions. If X is a symbol and a is one of its attributes,
then we write X.a to denote the value of a at a particular parse-tree node
labeled X. If we implement the nodes of the parse tree by records or objects,
then the attributes of X can be implemented by data fields in the records that
represent the nodes for X. Attributes may be of any kind: numbers, types, table
references, or strings, for instance. The strings may even be long sequences of
code, say code in the intermediate language used by a compiler.

5.1.1 Inherited and Synthesized Attributes

We shall deal with two kinds of attributes for nonterminals:

1. A synthesized attribute for a nonterminal A at a parse-tree node N is
defined by a semantic rule associated with the production at N. Note
that the production must have A4 as its head. A synthesized attribute at
node N is defined only in terms of attribute values at the children of N

and at N itself.

2. An inherited attribute for a nonterminal B at a parse-tree node N is
defined by a semantic rule associated with the production at the parent
of N. Note that the production must have B as a symbol in its body. An
inherited attribute at node N is defined only in terms of attribute values
at N’s parent, N itself, and N’s siblings.
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An Alfernative Definition of Inherited Attributes

No additional translations are enabled if we allow an inherited attribute
B.c at anode N to be defined in terms of attribute values at the children
of N, as well as at N itself, at its parent, and at its siblings. Such rules can
be “simulated” by creating additional attributes of B, say B.ci, B.c2,... .
These are synthesized attributes that copy the needed attributes of the
children of the node labeled B. We then compute B.c as an inherited
attribute, using the attributes B.cy, B.ca, ... in place of attributes at the
children. Such attributes are rarely needed in practice.

While we do not allow an inherited attribute at node N to be defined in terms of
attribute values at the children of node N, we do allow a synthesized attribute
at node N to be defined in terms of inherited attribute values at node N itself.

Terminals can have synthesized attributes, but not inherited attributes. At-
tributes for terminals have lexical values that are supplied by the lexical ana-
lyzer; there are no semantic rules in the SDD itself for computmg the value of
an attribute for a terminal.

Example 5.1: The SDD in Fig. 5.1 is based on our familiar grammar for
arithmetic expressions with operators + and *. It evaluates expressions termi-
nated by an endmarker n. In the SDD, each of the nonterminals has a single
synthesized attribute, called val. We also suppose that the terminal digit has
a synthesized attribute lezval, which is an integer value returned by the lexical
analyzer.

PRODUCTION SEMANTIC RULES

1) L—En L.val = E.val

2) E—E + T | E.val= E;.val + T.val
3) E-T E.val = T.val

4) T —T, *x F | T.val=Ty.val x F.val
5 T—F T.val = F.val

6) F—(E) F.val = E.val

7) F — digit F.val = digit.lexval

Figure 5.1: Syntax-directed definition of a simple desk calculator

The rule for production 1, L — E n, sets L.val to E.val, which we shall see
is the numerical value of the entire expression.

Production 2, E — E; + T, also has one rule, which computes the val
attribute for the head F as the sum of the values at E; and T. At any parse-
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tree node N labeled E, the value of val for E is the sum of the values of val at
the children of node N labeled E and T'.

Production 3, E — T, has a single rule that defines the value of val for E
to be the same as the value of val at the child for T'. Production 4 is similar to
the second production; its rule multiplies the values at the children instead of
adding them. The rules for productions 5 and 6 copy values at a child, like that
for the third production. Production 7 gives F.val the value of a digit, that is,
the numerical value of the token digit that the lexical analyzer returned. O

An SDD that involves only synthesized attributes is called S-attributed; the
SDD in Fig. 5.1 has this property. In an S-attributed SDD, each rule computes
an attribute for the nonterminal at the head of a production from attributes
taken from the body of the production.

For simplicity, the examples in this section have semantic rules without
side effects. In practice, it is convenient to allow SDD’s to have limited side
effects, such as printing the result computed by a desk calculator or interacting
with a symbol table. Once the order of evaluation of attributes is discussed
in Section 5.2, we shall allow semantic rules to compute arbitrary functions,
possibly involving side effects.

An S-attributed SDD can be implemented naturally in conjunction with an
LR parser. In fact, the SDD in Fig. 5.1 mirrors the Yacc program of Fig. 4.58,
which illustrates translation during LR parsing. The difference is that, in the
rule for production 1, the Yacc program prints the value E.val as a side effect,
instead of defining the attribute L.val.

An SDD without side effects is sometimes called an attribute grammar. The
rules in an attribute grammar define the value of an attribute purely in terms
of the values of other attributes and constants.

5.1.2 Evaluating an SDD at the Nodes of a Parse Tree

To visualize the translation specified by an SDD, it helps to work with parse
trees, even though a translator need not actually build a parse tree. Imagine
therefore that the rules of an SDD are applied by first constructing a parse tree
and then using the rules to evaluate all of the attributes at each of the nodes
of the parse tree. A parse tree, showing the value(s) of its attribute(s) is called
an annotated parse tree.

How do we construct an annotated parse tree? In what order do we evaluate
attributes? Before we can evaluate an attribute at a node of a parse tree, we
must evaluate all the attributes upon which its value depends. For example,
if all attributes are synthesized, as in Example 5.1, then we must evaluate the
val attributes at all of the children of a node before we can evaluate the val
attribute at the node itself.

With synthesized attributes, we can evaluate attributes in any bottom-up
order, such as that of a postorder traversal of the parse tree; the evaluation of
S-attributed definitions is discussed in Section 5.2.3.
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For SDD’s with both inherited and synthesized attributes, there is no guar-
antee that there is even one order in which to evaluate attributes at nodes.
For instance, consider nonterminals A and B, with synthesized and inherited
attributes A.s and B.i, respectively, along with the production and rules

PRODUCTION SEMANTIC RULES
A— B A.s = B.i;
Bi=As+1

These rules are circular; it is impossible to evaluate either A.s at anode N or B.i
at the child of N without first evaluating the other. The circular dependency
of A.s and B.i at some pair of nodes in a parse tree is suggested by Fig. 5.2.

@ o

Figure 5.2: The circular dependency of A.s and B.; on one another

It is computationally difficult to determine whether or not there exist any
circularities in any of the parse trees that a given SDD could have to translate.
Fortunately, there are useful subclasses of SDD’s that are sufficient to guarantee
that an order of evaluation exists, as we shall see in Section 5.2.

Example 5.2: Figure 5.3 shows an annotated parse tree for the input string
3 * 5 + 4 n, constructed using the grammar and rules of Fig. 5.1. The values
of lezval are presumed supplied by the lexical analyzer. Each of the nodes for
the nonterminals has attribute val computed in a bottom-up order, and we see
the resulting values associated with each node. For instance, at the node with
a child labeled x, after computing T.val = 3 and F.val = 5 at its first and third
children, we apply the rule that says T.val is the product of these two values,
or1l5. 0O

Inherited attributes are useful when the structure of a parse tree does not
“match” the abstract syntax of the source code. The next example shows how
inherited attributes can be used to overcome such a mismatch due to a grammar
designed for parsing rather than translation.

1'Without going into details, while the problem is decidable, it cannot be solved by a
polynomial-time algorithm, even if P = NP, since it has exponential time complexity.
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L.val=19
E.val=19 n
N
E.val=15 + T.val=4
T.'ual1= 15 F.va)l =4

.

Twal=3 * Foval =5 digit.lexval =4

F.val=3 digit.lezval = 5

digit.lezval = 3

Figure 5.3: Annotated parse tree for 3x5+4n

Example 5.3: The SDD in Fig. 5.4 computes terms like 3 x5 and 3 * 5 * 7.
The top-down parse of input 3 % 5 begins with the production ' — F'T". Here,
F' generates the digit 3, but the operator * is generated by T”. Thus, the left
operand 3 appears in a different subtree of the parse tree from *. An inherited
attribute will therefore be used to pass the operand to the operator.

The grammar in this example is an excerpt from a non-left-recursive version
of the familiar expression grammar; we used such a grammar as a running
example to illustrate top-down parsing in Section 4.4.

PRODUCTION SEMANTIC RULES
1) T—-FT' T'.inh = F.val
T.val =T'.syn
2) T'—=-xFT{ T} .inh = T'.inh x F.val
T'.syn="T1{.syn
3) T —e T'.syn = T'.inh
4) F — digit F.val = digit.lezval

Figure 5.4: An SDD based on a grammar suitable for top-down parsing

Each of the nonterminals T and F has a synthesized attribute wval; the
terminal digit has a synthesized attribute lezval. The nonterminal T’ has two
attributes: an inherited attribute inh and a synthesized attribute syn.
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The semantic rules are based on the idea that the left operand of the operator
% is inherited. More precisely, the head T' of the production T' — x F T
inherits the left operand of * in the production body. Given a term z x y * z,
the root of the subtree for * y * z inherits z. Then, the root of the subtree for
* z inherits the value of z * y, and so on, if there are more factors in the term.
Once all the factors have been accumulated, the result is passed back up the
tree using synthesized attributes.

To see how the semantic rules are used, consider the annotated parse tree
for 3 x5 in Fig. 5.5. The leftmost leaf in the parse tree, labeled digit, has
attribute value lezval = 3, where the 3 is supplied by the lexical analyzer. Its
parent is for production 4, F' — digit. The only semantic rule associated with
this production defines F.val = digit.lezval, which equals 3.

T.val = 15
T'.inh=3
Foyal=3 T"synz 15
N B // %h =15
digit.lezval = 3 * Foal=5 Ti.syn =15
digit.lezval = 5 €

Figure 5.5: Annotated parse tree for 3 x 5

At the second child of the root, the inherited attribute T".inh is defined by
the semantic rule T".inh = F.val associated with production 1. Thus, the left
operand, 3, for the * operator is passed from left to right across the children of
the root.

The production at the node for 7" is 7' — % F'T]. (We retain the subscript
1 in the annotated parse tree to distinguish between the two nodes for T”.) The
inherited attribute T7.inh is defined by the semantic rule T}.inh = T".inh x F.val
associated with production 2.

With T'.inh = 3 and F.val = 5, we get Ty.inh = 15. At the lower node
for T}, the production is T’ — €. The semantic rule T".syn = T".inh defines
T7.syn = 15. The syn attributes at the nodes for T' pass the value 15 up the
tree to the node for T, where T.val = 15. O

5.1.3 Exercises for Section 5.1

Exercise 5.1.1: For the SDD of Fig. 5.1, give annotated parse trees for the
following expressions:

a) 3+4)*(5+6)n.
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b) 1%2%3*(4+5)n.
c) (9+8x%(7T+6)+5)x4n.

Exercise 5.1.2: Extend the SDD of Fig. 5.4 to handle expressions as in
Fig. 5.1.

Exercise 5.1.3: Repeat Exercise 5.1.1, using your SDD from Exercise 5.1.2.

5.2 Evaluation Orders for SDD’s

“Dependency graphs” are a useful tool for determining an evaluation order for
the attribute instances in a given parse tree. While an annotated parse tree
shows the values of attributes, a dependency graph helps us determine how
those values can be computed.

In this section, in addition to dependency graphs, we define two impor-
tant classes of SDD’s: the “S-attributed” and the more general “L-attributed”
SDD’s. The translations specified by these two classes fit well with the parsing
methods we have studied, and most translations encountered in practice can be
written to conform to the requirements of at least one of these classes.

5.2.1 Dependency Graphs

A dependency graph depicts the flow of information among the attribute in-
stances in a particular parse tree; an edge from one attribute instance to an-
other means that the value of the first is needed to compute the second. Edges
express constraints implied by the semantic rules. In more detail:

e For each parse-tree node, say a node labeled by grammar symbol X, the
dependency graph has a node for each attribute associated with X.

e Suppose that a semantic rule associated with a production p defines the
value of synthesized attribute A.b in terms of the value of X.c (the rule
may define A.b in terms of other attributes in addition to X.c). Then,
the dependency graph has an edge from X.c to A.b. More precisely, at
every node N labeled A where production p is applied, create an edge to
attribute b at N, from the attribute c at the child of N corresponding to
this instance of the symbol X in the body of the production.?

e Suppose that a semantic rule associated with a production p defines the
value of inherited attribute B.c in terms of the value of X.a. Then, the
dependency graph has an edge from X.a to B.c. For each node N labeled
B that corresponds to an occurrence of this B in the body of production
p, create an edge to attribute ¢ at N from the attribute @ at the node M

2Gince a node N can have several children labeled X, we again assume that subscripts
distinguish among uses of the same symbol at different places in the production.
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that corresponds to this occurrence of X. Note that M could be either
the parent or a sibling of V.

Example 5.4: Consider the following production and rule:

PRODUCTION SEMANTIC RULE
E—-FE + T E.val = Ey.val + T.val

At every node N labeled E, with children corresponding to the body of this
production, the synthesized attribute val at N is computed using the values of
val at the two children, labeled E and T. Thus, a portion of the dependency
graph for every parse tree in which this production is used looks like Fig. 5.6.
As a convention, we shall show the parse tree edges as dotted lines, while the
edges of the dependency graph are solid. O

Figure 5.6: E.val is synthesized from E;.val and Es.val

Example 5.5: An example of a complete dependency graph appears in Fig.
5.7. The nodes of the dependency graph, represented by the numbers 1 through
9, correspond to the attributes in the annotated parse tree in Fig. 5.5.

T ‘9 val

F 3 al s T
digit 1 lezval *

digit 2 lezval €
Figure 5.7: Dependency graph for the annotated parse tree of Fig. 5.5
Nodes 1 and 2 represent the attribute lezval associated with the two leaves

labeled digit. Nodes 3 and 4 represent the attribute wval associated with the
two nodes labeled F'. The edges to node 3 from 1 and to node 4 from 2 result
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from the semantic rule that defines F.val in terms of digit.lezval. In fact, F.val
equals digit.lezval, but the edge represents dependence, not equality.

Nodes 5 and 6 represent the inherited attribute T".inh associated with each
of the occurrences of nonterminal 7”. The edge to 5 from 3 is due to the rule
T'.inh = F.val, which defines T".inh at the right child of the root from F.val
at the left child. We see edges to 6 from node 5 for T".inh and from node 4
for F.vael, because these values are multiplied to evaluate the attribute inh at
node 6.

Nodes 7 and 8 represent the synthesized attribute syn associated with the
occurrences of T’. The edge to node 7 from 6 is due to the semantic rule
T'.syn = T'.inh associated with production 3 in Fig. 5.4. The edge to node 8
from 7 is due to a semantic rule associated with production 2. ‘

Finally, node 9 represents the attribute T.val. The edge to 9 from 8 is due
to the semantic rule, T.val = T".syn, associated with production 1. O

5.2.2 Ordering the Evaluation of Attributes

The dependency graph characterizes the possible orders in which we can evalu-
ate the attributes at the various nodes of a parse tree. If the dependency graph
has an edge from node M to node N, then the attribute corresponding to M
must be evaluated before the attribute of V. Thus, the only allowable orders
of evaluation are those sequences of nodes N1, Na, ... , Ni such that if there is
an edge of the dependency graph from N; to Nj, then ¢ < j. Such an ordering
embeds a directed graph into a linear order, and is called a topological sort of
the graph. ‘

If there is any cycle in the graph, then there are no topological sorts; that is,
there is no way to evaluate the SDD on this parse tree. If there are no cycles,
however, then there is always at least one topological sort. To see why, since
there are no cycles, we carn surely find a node with no edge entering. For if there
were no such node, we could proceed from predecessor to predecessor until we
came back to some node we had already seen, yielding a cycle. Make this node
the first in the topological order, remove it from the dependency graph, and
repeat the process on the remaining nodes.

Example 5.6 : The dependency graph of Fig. 5.7 has no cycles. One topologi-
cal sort is the order in which the nodes have already been numbered: 1,2,...,9.
Notice that every edge of the graph goes from a node to a higher-numbered node,
so this order is surely a topological sort. There are other topological sorts as
well, such as 1,3,5,2,4,6,7,8,9. O

5.2.3 S-Attributed Definitions

As mentioned earlier, given an SDD, it is very hard to tell whether there exist
any parse trees whose dependency graphs have cycles. In practice, translations
can be implemented using classes of SDD’s that guarantee an evaluation order,
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since they do not permit dependency graphs with cycles. Moreover, the two
classes introduced in this section can be implemented efficiently in connection
with top-down or bottom-up parsing.

The first class is defined as follows:

e An SDD is S-attributed if every attribute is synthesized.

Example 5.7: The SDD of Fig. 5.1 is an example of an S-attributed definition.
Each attribute, L.val, E.val, T.val, and F.val is synthesized. O :

When an SDD is S-attributed, we can evaluate its attributes in any bottom-
up order of the nodes of the parse tree. It is often especially simple to evaluate
the attributes by performing a postorder traversal of the parse tree and evalu-
ating the attributes at a node N when the traversal leaves NV for the last time.
That is, we apply the function postorder, defined below, to the root of the parse
tree (see also the box “Preorder and Postorder Traversals” in Section 2.3.4):

postorder(N) {
for (each child C of N, from the left ) postorder(C);
evaluate the attributes associated with node N;
}
S-attributed definitions can be implemented during bottom-up parsing, since
a bottom-up parse corresponds to a postorder traversal. Specifically, postorder
corresponds exactly to the order in which an LR parser reduces a production
body to its head. This fact will be used in Section 5.4.2 to evaluate synthesized

attributes and store them on the stack during LR parsing, without creating the
tree nodes explicitly.

5.2.4 L-Attributed Definitions

The second class of SDD’s is called L-attributed definitions. The idea behind
this class is that, between the attributes associated with a production body,
dependency-graph edges can go from left to right, but not from right to left
(hence “L-attributed”). More precisely, each attribute must be either

1. Synthesized, or

2. Inherited, but with the rules limited as follows. Suppose that there is
a production 4 = X1 X5 --- X,,, and that there is an inherited attribute

X;.a computed by a rule associated with this production. Then the rule
may use only:

(a) Inherited attributes associated with the head A.

(b) Either inherited or synthesized attributes associated with the occur-
rences of symbols X7, Xs,..., X;_; located to the left of X;.
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(c) Inherited or synthesized attributes associated with this occurrence
of X; itself, but only in such a way that there are no cycles in a
dependency graph formed by the attributes of this X;.

Example 5.8: The SDD in Fig. 5.4 is L-attributed. To see why, consider the
semantic rules for inherited attributes, which are repeated here for convenience:

PRODUCTION SEMANTIC RULE
T-sFET T'.inh = F.val
T =% FT| T}.inh = T'.inh x F.val

The first of these rules defines the inherited attribute 7".inh using only F.val,
and F' appears to the left of T’ in the production body, as required. The second
rule defines T7.inh using the inherited attribute T".inh associated with the head,
and F.val, where F' appears to the left of T in the production body.

In each of these cases, the rules use information “from above or from the
left,” as required by the class. The remaining attributes are synthesized. Hence,
the SDD is L-attributed. O ‘

Example 5.9: Any SDD containing the following production and rules cannot
be L-attributed:

PRODUCTION SEMANTIC RULES
A= BC A.s = B.b;
B.i= f(C.c, A.s)

The first rule, A.s = B.b, is a legitimate rule in either an S-attributed or L-
attributed SDD. It defines a synthesized attribute A.s in terms of an attribute
at a child (that is, a symbol within the production body).

The second rule defines an inherited attribute B.i, so the entire SDD cannot
be S-attributed. Further, although the rule is legal, the SDD cannot be L-
attributed, because the attribute C.c is used to help define B.i, and C is to
the right of B in the production body. While attributes at siblings in a parse
tree may be used in L-attributed SDD’s, they must be to the left of the symbol
whose attribute is being defined. O

5.2.5 Semantic Rules with Controlled Side Effects

In practice, translations involve side effects: a desk calculator might print a
result; a code generator might enter the type of an identifier into a symbol table.
With SDD’s, we strike a balance between attribute grammars and translation
schemes. Attribute grammars have no side effects and allow any evaluation
order consistent with the dependency graph. Translation schemes impose left-
to-right evaluation and allow semantic actions to contain any program fragment;
translation schemes are discussed in Section 5.4. '
We shall control side effects in SDD’s in one of the following ways:
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e Permit incidental side effects that do not constrain attribute evaluation.
In other words, permit side effects when attribute evaluation based on any
topological sort of the dependency graph produces a “correct” translation,
where “correct” depends on the application.

o Constrain the allowable evaluation orders, so that the same translation is
produced for any allowable order. The constraints can be thought of as
implicit edges added to the dependency graph.

As an example of an incidental side effect, let us modify the desk calculator
of Example 5.1 to print a result. Instead of the rule L.val = E.val, which saves
the result in the synthesized attribute L.val, consider:

PRODUCTION SEMANTIC RULE
1) L= En print(E.val)

Semantic rules that are executed for their side effects, such as print(E.val), will
be treated as the definitions of dummy synthesized attributes associated with
the head of the production. The modified SDD produces the same translation
under any topological sort, since the print statement is executed at the end,
after the result is computed into E.val.

Example 5.10: The SDD in Fig. 5.8 takes a simple declaration D consisting
of a basic type T followed by a list L of identifiers. T' can be int or float. For
each identifier on the list, the type is entered into the symbol-table entry for the
identifier. We assume that entering the type for one identifier does not affect
the symbol-table entry for any other identifier. Thus, entries can be updated
in any order. This SDD does not check whether an identifier is declared more
than once; it can be modified to do so.

PrRODUCTION SEMANTIC RULES
1) D->TL L.inh = T.type
2) T —int T.type = integer
3) T — float T .type = float

4) L—Lp,id Ly.inh = L.inh
addType(id.entry, L.inh)
5) L—id addType(id.entry, L.inh)

Figure 5.8: Syntax-directed definition for simple type declarations

Nonterminal D represents a declaration, which, from production 1, consists
of a type T followed by a list L of identifiers. T has one attribute, T'.type, which
is the type in the declaration D. Nonterminal L also has one attribute, which
we call inh to emphasize that it is an inherited attribute. The purpose of L.inh
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is to pass the declared type down the list of identifiers, so that it can be added
to the appropriate symbol-table entries.

Productions 2 and 3 each evaluate the synthesized attribute T.type, giving
it the appropriate value, integer or float. This type is passed to the attribute
L.inh in the rule for production 1. Production 4 passes L.inh down the parse
tree. That is, the value L;.inh is computed at a parse-tree node by copying the
value of L.inh from the parent of that node; the parent corresponds to the head
of the production.

Productions 4 and 5 also have a rule in which a function addType is called
with two arguments:

1. id.entry, a lexical value that points to a symbol-table object, and

2. L.inh, the type being assigned to every identifier on the list.

We suppose that function addType properly installs the type L.inh as the type
of the represented identifier.

A dependency graph for the input string float id;, idy, id3 appears in
Fig. 5.9. Numbers 1 through 10 represent the nodes of the dependency graph.
Nodes 1, 2, and 3 represent the attribute entry associated with each of the
leaves labeled id. Nodes 6, 8, and 10 are the dummy attributes that represent
the application of the function addType to a type and one of these entry values.

-D.
T"4 type mh 5 A'L~ 6 entry
real . s ids 3 entry
inh 7" L 8 _entry
R idy 2 entry

inh 9 L 4‘10 entry
)

id; 1 entry
Figure 5.9: Dependency graph for a declaration float id; , id;, ids

Node 4 represents the attribute T'.type, and is actually where attribute eval-
uation begins. This type is then passed to nodes 5, 7, and 9 representing L.inh
associated with each of the occurrences of the nonterminal L. O
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5.2.6 Exercises for Section 5.2

Exercise 5.2.1: What are all the topological sorts for the dependency graph
of Fig. 5.77

Exercise 5.2.2: For the SDD of Fig. 5.8, give annotated parse trees for the
following expressions:

a) int a, b, c.
b) float w, x, y, z.

Exercise 5.2.3: Suppose that we have a production A — BCD. Each of
the four nonterminals A, B, C, and D have two attributes: s is a synthesized
attribute, and ¢ is an inherited attribute. For each of the sets of rules below,
tell whether (i) the rules are consistent with an S-attributed definition (i) the
rules are consistent with an L-attributed definition, and (i37) whether the rules
are consistent with any evaluation order at all?

a) As=B.i+Cs

b) As=B.i+C.sand D.i= Ai+ B.s.

¢) As=B.s+ D.s.

'!'d) As=D.i,Bi=As+Cs,Ci=DB.s,and D.i = B.i+ C..

Exercise 5.2.4: This grammar generates binary numbers with a “decimal”
point:

S—L.L|L
L-LB|B
B—-0]1

Design an L-attributed SDD to compute S.val, the decimal-number value of
an input string. For example, the translation of string 101.101 should be the
decimal number 5.625. Hint: use an inherited attribute L.side that tells which
side of the decimal point a bit is on.

Il Exercise 5.2.5: Design an S-attributed SDD for the grammar and translation

described in Exercise 5.2.4.’

Exercise 5.2.6: Implement Algorithm 3.23, which converts a regular expres-
sion into a nondeterministic finite automaton, by an L-attributed SDD on a
top-down parsable grammar. Assume that there is a token char representing
any character, and that char.lezval is the character it represents. You may also
assume the existence of a function new() that returns a new state, that is, a
state never before returned by this function. Use any convenient notation to
specify the transitions of the NFA.
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5.3 Applications of Syntax-Directed Translation

The syntax-directed translation techniques in this chapter will be applied in
Chapter 6 to type checking and intermediate-code generation. Here, we consider
selected examples to illustrate some representative SDD’s.

The main application in this section is the construction of syntax trees. Since
some compilers use syntax trees as an intermediate representation, a common
form of SDD turns its input string into a tree. To complete the translation to
intermediate code, the compiler may then walk the syntax tree, using another
set of rules that are in effect an SDD on the syntax tree rather than the parse
tree. (Chapter 6 also discusses approaches to intermediate-code generation that
apply an SDD without ever constructing a tree explicitly.)

We consider two SDD’s for constructing syntax trees for expressions. The
first, an S-attributed definition, is suitable for use during bottom-up parsing.
The second, L-attributed, is suitable for use during top-down parsing.

The final example of this section is an L-attributed definition that deals
with basic and array types.

5.3.1 Construction of Syntax Trees

As discussed in Section 2.8.2, each node in a syntax tree represents a construct;
the children of the node represent the meaningful components of the construct.
A syntax-tree node representing an expression E; + E» has label + and two
children representing the subexpressions Fy and Fs.

We shall implement the nodes of a syntax tree by objects with a suitable
number of fields. Each object will have an op field that is the label of the node.
The objects will have additional fields as follows:

o If the node is a leaf, an additional field holds the lexical value for the leaf.
A constructor function Leaf(op, val) creates a leaf object. Alternatively, if
nodes are viewed as records, then Leaf returns a pointer to a new record
for a leaf.

e If the node is an interior node, there are as many additional fields as the
node has children in the syntax tree. A constructor function Node takes
two or more arguments: Node(op,ci,ca,... ,cr) creates an object with
first field op and k additional fields for the k children ¢y, ... ,ck.

Example 5.11: The S-attributed definition in Fig. 5.10 constructs syntax
trees for a simple expression grammar involving only the binary operators +
and —. As usual, these operators are at the same precedence level and are
jointly left associative. All nonterminals have one synthesized attribute node,
which represents a node of the syntax tree.

Every time the first production £ — Ey + T is used, its rule creates a node
with '+’ for op and two children, E;.node and T.node, for the subexpressions.
The second production has a similar rule.
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PRODUCTION SEMANTIC RULES
1) E—-E+T E.node = new Node('+', Ey.node, T .node)
2) E—E-T E.node = new Node('—', Ey.node, T .node)

3) E-T E.node = T.node

4) T—(FE) T.node = E.node

5 T —id T.node = new Leaf(id, id.entry)

6) 7T — num T.node = new Leaf (num, num.val)

Figure 5.10: Constructing syntax trees for simple expressions

For production 3, E — T, no node is created, since E.node is the same as
T.node. Similarly, no node is created for production 4, T — ( E ). The value
of T.node is the same as E.node, since parentheses are used only for grouping;
they influence the structure of the parse tree and the syntax tree, but once their
job is done, there is no further need to retain them in the syntax tree.

The last two T-productions have a single terminal on the right. We use the
constructor Leaf to create a suitable node, which becomes the value of T.node.

Figure 5.11 shows the construction of a syntax tree for the input a — 4 + c.
The nodes of the syntax tree are shown as records, with the op field first.
Syntax-tree edges are now shown as solid lines. The underlying parse tree,
which need not actually be constructed, is shown with dotted edges. The third
type of line, shown dashed, represents the values of F.node and T.node; each
line points to the appropriate syntax-tree node.

At the bottom we see leaves for a, 4 and ¢, constructed by Leaf. We suppose
that the lexical value id.entry points into the symbol table, and the lexical
value num.val is the numerical value of a constant. These leaves, or pointers
to them, become the value of T.node at the three parse-tree nodes labeled T,
according to rules 5 and 6. Note that by rule 3, the pointer to the leaf for a is
also the value of E.node for the leftmost E in the parse tree.

Rule 2 causes us to create a node with op equal to the minus sign and
pointers to the first two leaves. Then, rule 1 produces the root node of the
syntax tree by combining the node for — with the third leaf.

If the rules are evaluated during a postorder traversal of the parse tree, or
with reductions during a bottom-up parse, then the sequence of steps shown in
Fig. 5.12 ends with ps pointing to the root of the constructed syntax tree. O

With a grammar designed for top-down parsing, the same syntax trees are
constructed, using the same sequence of steps, even though the structure of the
parse trees differs significantly from that of syntax trees.

Example 5.12: The L-attributed definition in Fig. 5.13 performs the same
translation as the S-attributed definition in Fig. 5.10. The attributes for the
grammar symbols E, T', id, and num are as discussed in Example 5.11.
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‘ E.node

to entry for a

Figure 5.11: Syntax tree for a —4 + ¢

1) p1 = new Leaf(id, entry-a);
2) pe = new Leaf(num,4);

3) ps =new Node('—',p1,p2);
4) ps = new Leaf(id, entry-c);

5) b5 = new NOde(’+’:P3:P4)§

Figure 5.12: Steps in the construction of the syntax tree for a —4 + ¢

The rules for building syntax trees in this example are similar to the rules
for the desk calculator in Example 5.3. In the desk-calculator example, a term
z * y was evaluated by passing = as an inherited attribute, since z and * y
appeared in different portions of the parse tree. Here, the idea is to build a
syntax tree for z + y by passing z as an inherited attribute, since z and + y
appear in different subtrees. Nonterminal E' is the counterpart of nonterminal
T' iri Example 5.3. Compare the dependency graph for a — 4 + ¢ in Fig. 5.14
with that for 3 * 5 in Fig. 5.7.

Nonterminal E’ has an inherited attribute inh and a synthesized attribute
syn. Attribute E’.inh represents the partial syntax tree constructed so far.
Specifically, it represents the root of the tree for the prefix of the input string
that is to the left of the subtree for E'. At node 5 in the dependency graph in
Fig. 5.14, F'.inh denotes the root of the partial syntax tree for the identifier a;
that is, the leaf for a. At node 6, E'.inh denotes the root for the partial syntax
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PRODUCTION SEMANTIC RULES
1) E-TE E.node = E'.syn
E'.inh = T.node

2) E'—+TE| | Ei{.inh=mnew Node('+', E'.inh, T.node)
E'.syn = E}.syn
3) E' - —TE}] | Ej.inh=mnew Node('-', E'.inh,T.node)
' ' E'.syn = Ej.syn

4) E' —e€ E'.syn = E'.inh

5 T—->(FE) T.node = E.node

6) T —id T.node = new Leaf (id, id.entry)

7) T — num T.node = new Leaf (num, num.val)

Figure 5.13: Constructing syntax trees during top-down parsing

~ FE 13 node

ﬁode inh 5 E™12 5yn

entry — T 4 Tiode mh6 E™11 syn

T

num 3 val + o 8 Tode

!

id 7 entry €

9 Bt

Figure 5.14: Dependency graph for a — 4 + ¢, with the SDD of Fig. 5.13

tree for the input a — 4. At node 9, E'.inh denotes the syntax tree for a — 4 + c.

Since there is no more input, at node 9, E'.inh points to the root of the
entire syntax tree. The syn attributes pass this value back up the parse tree
until it becomes the value of E.node. Specifically, the attribute value at node 10
is defined by the rule E'.syn = E'.inh associated with the productlon E' > e
The attribute value at node 11 is defined by the rule E'.syn = E{.syn associated

with production 2 in Fig. 5.13. Similar rules define the attrlbute values at
nodes 12 and 13. O

5.3.2 The Structure of a Type

Inherited attributes are useful when the structure of the parse tree differs from
the abstract syntax of the input; attributes can then be used to carry informa-
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tion from one part of the parse tree to another. The next example shows how
- a mismatch in structure can be due to the design of the language, and not due
to coiistraints imposed by the parsing method.

Example 5.13: In C, the type int [2][3] can be read as, “array of 2 arrays
of 3 integers.” The corresponding type expression array(2, array(3, integer)) is
represented by the tree in Fig. 5.15. The operator array takes two parameters,
a number and a type. If types are represented by trees, then this operator
returns a tree node labeled array with two children for a number and a type.

N
S <

integer

Figure 5.15: Type expression for int[2][3]

With the SDD in Fig. 5.16, nonterminal T' generates either a basic type or
an array type. Nonterminal B generates one of the basic types int and float.
T generates a basic type when T' derives BC and C derives €. Otherwise, C
generates array components consisting of a sequence of integers, each integer
surrounded by brackets.

PRODUCTION  SEMANTIC RULES

T - BC Tt=Ct
Cb=Bt

B — int B.t = integer

B — float B.t = float

C = [num]C; | C.t= array(num.val, Cy.t)
Cib=Cb

C — ¢ Ct=0Cb,

Figure 5.16: T generates either a basic type or an array type

The nonterminals B and T have a synthesized attribute ¢ representing a
type. The nonterminal C has two attributes: an inherited attribute b and a
synthesized attribute ¢. The 1nher1ted b attributes pass a basic type down the
tree, and the synthesized ¢ attributes accumulate the result.

An annotated parse tree for the input string int[2][3] is shown in Fig. 5.17.
The corresponding type expression in Fig. 5.15 is constructed by passing the
type integer from B, down the chain of C’s through the inherited attributes b.
The array type is synthesized up the chain of C’s through the attributes ¢.

In more detail, at the root for T — B C, nonterminal C' inherits the type
from B, using the inherited attribute C.b. At the rightmost node for C, the



..

5.3. APPLICATIONS OF SYNTAX-DIRECTED TRANSLATION 323

production is C' = €, so C.t equals C.b. The semantic rules for the production
C — [num ] C; form C.t by applying the operator array to the operands
num.vel and C;.t. O

T.t = array(2, array(3, integer))

. C.b = nteger
B.t = wnteger C.t = array(2, array(3, integer))
. /// C.b = integer
int [ 2 ] .t = array(3, integer)

c
: 3//]/ \C.b = integer

C.t = integer

Figure 5.17: Syntax-directed translation of array types

5.3.3 Exercises for Section 5.3

Exercise 5.3.1: Below is a grammar for expressions involving operator + and
integer or floating-point operands. Floating-point numbers are distinguished
by having a decimal point.

E—-E+T|T
T — num . num | num

a) Give an SDD to determine the type of each term 7' and expression E.

b) Extend your SDD of (a) to translate expressions into postfix notation.
Use the unary operator intToFloat to turn an integer into an equivalent
float.

Exercise 5.3.2: Give an SDD to translate infix expressions with + and * into
equivalent expressions without redundant parentheses. For example, since both
operators associate from the left, and * takes precedence over +, ((a*(b+c))*(d))
translates into a * (b + ¢) x d.

Exercise 5.3.3: Give an SDD to differentiate expressions such as z * (3 * & +
x * x) involving the operators + and *, the variable z, and constants. Assume
that no simplification occurs, so that, for example, 3 * & will be translated into
3x14+0xx.



