
How to break in
Tecniche avanzate di pen testing in ambito

Web Application, Internal Network and Social Engineering

Agenda
Time Agenda Item

9:30 – 10:00 Introduction

10:00 – 10:45 Web Application Penetration Test

10:45 – 11:00 15min break

11:00 – 11:45 Social Engineering

11:45 – 12:00 15min break

12:00 – 13:00 Windows Challenge

13:00 – 15:00 Lunch

15:00 – 16:00 Internal Penetration Test

16:00 – 16:15 15min break

16:15– 17:00 Physical Social Engineering Test

17:00 – 18:30 Pi Challenge

./Whoami
• Mike Manzotti, Lead Consultant @ Dionach UK

• CISSP, CRT, CCT Inf, OSCP, OPST, CCNA, CCNA Security

• ~5 years of experience

• Penetration testing:
– Web applications

– Mobile apps

– Internal & External Networks

– Social Engineering

– Red Teaming

• Security Audit:
– ISO 27001

Penetration Test ?
• is an attack on a computer system with the intention of

finding security weaknesses, potentially gaining access to it,
its functionality and data (Wikipedia)

• Commonly associated to Hacking… but yeah it’s a real job 

• is a process which involves the following phases:
– Information gathering

– Identifying vulnerabilities

– Manual testing and verification of false positives

– Reporting

• Who needs a pen test?

Web Application
Penetration Test

Introduction

• The Open Web Application Security Project

• https://www.owasp.org/

• “OWASP is an open community dedicated to
enabling organizations to conceive, develop, acquire,
operate, and maintain applications that can be
trusted”

https://www.owasp.org/
https://www.owasp.org/

Introduction

• OWASP support several projects to increase web
application security

• This presentation focuses on the OWASP Top 10
Project, which aims to increase awareness of web
application security and to provide a broad
consensus of what the most critical web applications
security flaws are

OWASP Top 10 2013

1. Injection

2. Broken Authentication & Session Management

3. Cross-Site Scripting (XSS)

4. Insecure Direct Object References

5. Security Misconfiguration

OWASP Top 10 2013 (cont.)

6. Sensitive Data Exposure

7. Missing Function Level Access Control

8. Cross-Site Request Forgery (CSRF)

9. Using Known Vulnerable Components

10. Unvalidated Redirects and Forwards

A1: Injection
• Injection attacks occur when user supplied data are not sanitised or encoded prior to

submitting to an interpreter. These typically allow an attacker to access data or execute
commands they are not authorised to.

• SQL queries, LDAP queries, XPath queries, OS commands, program arguments, etc.

• This is a critical risk that could impact confidentiality integrity and availability. This could
allow an attacker to gain access to the entire database or execute system commands
which could lead to a full system compromise.

A1: Injection
• SQL Injection:

• http://192.168.163.126/staff.php?id=2'#

• http://192.168.163.126/staff.php?id=2%27+union+select+1,@@version,3,4,5%23

• Code Injection:

• https://x.x.x.x/bugtracker/manage_proj_page.php?sort=']);}error_reporting(0);system(“cat
/etc/*-release”);%23

http://192.168.163.126/staff.php?id=2'
http://192.168.163.126/staff.php?id=2'
http://192.168.163.126/staff.php?id=2'+union+select+1,@@version,3,4,5
http://192.168.163.126/staff.php?id=2'+union+select+1,@@version,3,4,5
https://x.x.x.x/bugtracker/manage_proj_page.php?sort=']);}error_reporting(0);system(“cat /etc/*-release”);
https://x.x.x.x/bugtracker/manage_proj_page.php?sort=']);}error_reporting(0);system(“cat /etc/*-release”);
https://x.x.x.x/bugtracker/manage_proj_page.php?sort=']);}error_reporting(0);system(“cat /etc/*-release”);
https://x.x.x.x/bugtracker/manage_proj_page.php?sort=']);}error_reporting(0);system(“cat /etc/*-release”);
https://x.x.x.x/bugtracker/manage_proj_page.php?sort=']);}error_reporting(0);system(“cat /etc/*-release”);
https://x.x.x.x/bugtracker/manage_proj_page.php?sort=']);}error_reporting(0);system(“cat /etc/*-release”);
https://x.x.x.x/bugtracker/manage_proj_page.php?sort=']);}error_reporting(0);system(“cat /etc/*-release”);
https://x.x.x.x/bugtracker/manage_proj_page.php?sort=']);}error_reporting(0);system(“cat /etc/*-release”);

A2: Broken Authentication and Session
Management

• Broken authentication and session management could allow an attacker to compromise
passwords, keys, session cookies, or exploit other implementation flaws to assume
other users’ identities.

• These vulnerabilities could affect areas such as logout, password management,
timeouts, remember me, secret question, account update, etc.

• The vulnerability could be caused by:
1) Weak password complexity - 2) No account lockout
3) Predictable session cookie - 4) Session cookie not marked secure or HTTP only
5) Session fixation - 6) Plain text passwords in DB
7) Change account details of other users - 7) Plain text HTTP instead of HTTPS

• Risk ranges from Low to Critical. Successful exploitation could allow an attacker to

compromise users accounts, thus accessing their data or escalating their privileges.
• This could have reputational, financial and compliance impact.

A2: Broken Authentication and Session
Management

• The following example shows a vulnerability discovered in an application that allowed
an attacker to reset any user’s password. The attacker only needs to submit the
username and their chosen password:

POST http://X.X.X.X/STG/servlet/BrowserServlet

command=repeatpassword&requestType=UTILITY.ROUTINE&routineName=OS.PASSWORD
&routineArgs=PROCESS.REPEAT%3APENTGLOB1%3ADionach20%3ADionach20

http://x.x.x.x/STG/servlet/BrowserServlet
http://x.x.x.x/STG/servlet/BrowserServlet

A3: Cross-Site Scripting (XSS)
• XSS attacks occur when user supplied data are not sanitised or encoded prior to

displaying them in the users browser. Three types:

1. Stored XSS

2. Reflected XSS

3. Dom based XSS

• This could be either a critical or a high risk. It could allow an attacker to hijack users
session and access their data or escalate their privileges. An attacker could also use it to
take control of the victims browser in order to perform drive by downloads or redirect
the user to a malicious website.

• Stored XSS could also allow attacker to deface the website.

• Reputational damage.

A3: Cross-Site Scripting (XSS)
• http://XXXX.XXX/intranet/documents/documents/data_search.php?area[]=&in_docs=&in_doc_folders=&in_pages=&in_pub

_folders=&in_forum=&q=&x=0&y=<script>alert(document.cookie)</script>#

• http://www.xxxx.xxx/static/flash/duckburg/duckburg.swf?home=javascript:alert("XSS")

http://xxxx.xxx/intranet/documents/documents/data_search.php?area[]=&in_docs=&in_doc_folders=&in_pages=&in_pub_folders=&in_forum=&q=&x=0&y=<script>alert(document.cookie)</script>
http://xxxx.xxx/intranet/documents/documents/data_search.php?area[]=&in_docs=&in_doc_folders=&in_pages=&in_pub_folders=&in_forum=&q=&x=0&y=<script>alert(document.cookie)</script>
http://www.xxxx.xxx/static/flash/duckburg/duckburg.swf?home=javascript:alert("XSS")
http://www.xxxx.xxx/static/flash/duckburg/duckburg.swf?home=javascript:alert("XSS")
http://www.xxxx.xxx/static/flash/duckburg/duckburg.swf?home=javascript:alert("XSS")
http://www.xxxx.xxx/static/flash/duckburg/duckburg.swf?home=javascript:alert("XSS")

A4: Insecure Direct Object References

• The vulnerability allows an attacker to change direct object references and access data
they are not authorised to access.

• Objects could be files, directories or database keys.

• This is a high risk and could have an impact on confidentiality and integrity. This could
have reputational, financial and compliance impact.

• http://XXXX.org.uk/intranet/people/photos/5.jpg

• http://example.com/app/accountInfo?acct=NOTMYACCT

http://xxxx.org.uk/intranet/people/photos/5.jpg
http://xxxx.org.uk/intranet/people/photos/5.jpg
http://example.com/app/accountInfo?acct=notmyacct
http://example.com/app/accountInfo?acct=notmyacct
http://example.com/app/accountInfo?acct=notmyacct

A5: Security Misconfiguration
• Security Misconfiguration also includes hardening

• Issues can include:

– Old versions of software
– Unnecessary services
– Default passwords
– Detailed error messages
– Default settings

• Risk ranges from low to critical. For instance, detailed error messages are
low risk as the information included is limited but a default administration
service left enabled could be critical.

A5: Security Misconfiguration
• Example 1 Default Administration

service with default password - By
default the ‘Tomcat’ web server has a
management console which uses a well
known default username and password.
If this is not disabled or changed an
attacker could log in and upload a
special ‘command shell’ program,
allowing them to run commands on the
web server.

A6: Sensitive Data Exposure
Storage or Transport. First, Storage

• Web applications should store sensitive information, such as passwords, in an encrypted format

• Many types of encryption are available, and while many are very strong others have known

weaknesses or can easily be broken and therefore should not be used

• Data must be unencrypted at some point in order to be displayed. Attackers may attempt to exploit
the application at this point to access the data in clear text

• Data that should be encrypted, such as credit card details, may not be encrypted at all

• If data can be obtained in clear text then the risk would most likely be high or critical depending on
the type of information stored.

A6: Sensitive Data Exposure
• Example 1 Weak Encryption – A web application stores passwords

using an unsalted hash

• If an attacker could obtain the list of passwords, the list could be brute
forced (guess every combination until the correct one is found) in a
matter of days compared to the years (or thousands of years) it would
take to brute force salted hashes.

• In the first screenshot I hash ‘password1’ and search for the result, the
third result in Google shows the clear text password in the description

• In the second search I hash the same password but use the salt ‘salt1’
and Google shows no results

• (A ‘hash’ is a type of encryption that is designed to work one way. Clear text
can be easily hashed but it is hard to impossible to use a hash to calculate the
clear text)

• (A ‘salt’ is a length of random data added to the clear text when making the
hash. This changes the value of the hash and makes it harder to guess the
password from looking up recognised hashes)

A6: Sensitive Data Exposure

Storage or Transport. Second, Transport

• This allows an attacker to listen in on communication between the web browser and the server.

• Issues commonly arise when websites do not encrypt sensitive data using SSL connections
(HTTPS://) or when SSL has been configured incorrectly.

• If encryption isn’t used, or a misconfiguration can be exploited, then an attacker could intercept all
traffic between the user and the web server.

• Risk varies from low to medium. Many issues rely on other vulnerabilities and normally require an
attacker to be on the same local network, such as an open wireless network.

A6: Sensitive Data Exposure

• Example 1 No SSL – An attacker
uses the open wireless in an
coffee shop

• The attacker uses the program
‘ettercap’ to monitor traffic
from other users on the
network and automatically
capture conversations to an
online instant messaging
service which does not encrypt
traffic with SSL.

A6: Sensitive Data Exposure

• Example 2 Misconfiguration – Facebook used
to log users in using HTTPS but then used
HTTP for the site content

• This meant that although the users password
was sent encrypted the session cookie (a
small token used to keep the user logged in)
was not. This could be easily exploited using
the Firefox ‘Firesheep’ plugin, which provided
a list of users on Facebook on the same
network and allowed you to select a user in
order to access Facebook as that user.

A7: Missing Function Level Access Control
• This vulnerability allows users to access pages that they are not supposed

to have permission to. For example, an anonymous user may be able to
access profile pages and a normal user may be able to access
administration pages.

• This occurs when a web app restricts access to pages by not displaying
links to the page unless the user has permission but does not restrict
access within the page itself. Therefore, an attacker could manually
browse to the page in order to access it.

• Risk could range from low to critical depending on the nature of the pages
accessible and the functions that can be performed on them.

A7: Missing Function Level Access Control

• Example - Bob and Jack both use a blog. Bob can edit his
own post by using the URL ‘/#/edit’. He does not have a
link to edit Jack’s post but, as this page does not restrict
the URL access, Bob can manually type the URL, using the
number for Jack’s post, in order to edit another user’s
post.

A8: Cross-Site Request Forgery (CSRF)
• A CSRF vulnerability allows an attacker to force the victim’s browser to perform actions

the user did not intend to perform which the application thinks are legitimate requests
from the victim.

• Affects HTTP GET and POST requests

• Victim would need to be logged in to the vulnerable application and then visit a website
under the attackers control. Attackers could use XSS, image tags or various other
techniques.

• This is a medium risk vulnerability. Successful exploitation could affects data integrity.
• This could have reputational impact.

A8: Cross-Site Request Forgery (CSRF)
• Legitimate request:

• http://example.com/app/transferFunds?amount=1500&destinationAccount=4673243243

• Attack website:

• <img
src="http://example.com/app/transferFunds?amount=1500&destinationAccount=attackersA
cct#“width="0" height="0" />

http://example.com/app/transferFunds?amount=1500&destinationAccount=4673243243
http://example.com/app/transferFunds?amount=1500&destinationAccount=4673243243
http://example.com/app/transferFunds?amount=1500&destinationAccount=4673243243

A9: Using Known Vulnerable Components

Components, such as libraries, frameworks, and other
software modules, almost always run with full
privileges. If a vulnerable component is exploited, such
an attack can facilitate serious data loss or server
takeover. Applications using components with known
vulnerabilities may undermine application defences
and enable a range of possible attacks and impacts.

A9: Using Known Vulnerable Components

Example

• jQuery is a very popular JavaScript
library/component

• http://www.cvedetails.com/cve/CVE-2011-4969/

– XSS vulnerability

• Not your own code, but your website is vulnerable if
you use this old version

http://www.cvedetails.com/cve/CVE-2011-4969/
http://www.cvedetails.com/cve/CVE-2011-4969/
http://www.cvedetails.com/cve/CVE-2011-4969/
http://www.cvedetails.com/cve/CVE-2011-4969/
http://www.cvedetails.com/cve/CVE-2011-4969/
http://www.cvedetails.com/cve/CVE-2011-4969/
http://www.cvedetails.com/cve/CVE-2011-4969/

A10: Unvalidated Redirects and Forwards

• Websites use redirects and forwards to send users to another page, often after
performing another action, such as logging in.

• If a website does not properly validate the address of the redirect or forward an
attacker could exploit this to send the browser to a page of their choosing.

• Ranges from low to critical depending on the nature of the site and what the
redirect is being used for.

A10: Unvalidated Redirects and Forwards

• Example 1
– A website uses the ‘returnURL’ parameter to send a user to their account page after

logging in

– An attacker could alter this to request a page to which he would not normally have

access

• Example 2

– A website has links various downloads, they use a parameter to redirect to the pages

– An attacker could change the parameter and use the link in a phishing email. Users will

be sent to the real webpage before the download opens, adding credibility to the attack

A10: Unvalidated Redirects and Forwards

• A real world example of this is the Outlook Web Access
2003 redirect vulnerability

• When clicking a link in an email OWA 2003 used a redirect
to send the user to the right URL

• If the user was not logged in when clicking the link they
would need to enter their username and password

• An attacker could easily make a fake login page, which the
real login page redirects to, showing a fake ‘Incorrect
password’ error, most users would then entered their
password again, unaware that they are using the fake
login page

https://webmail.local/owa/redir.aspx?C=asdf&URL=http://evil.com/fakeloginpage.aspx

https://webmail.local/owa/redir.aspx?C=asdf&URL=http://evil.com/fakeloginpage.aspx

Tools
• Nmap (-p- TCP, common UDP)

• Dirbuster

• Nikto

• Nessus

• SQLmap

• CMSmap

• Burpsuite Pro

• Public resources: exploit-db, inj3ct0r, security focus, github…

 Demo
• SQL Injection (SQLi)

• Insufficient Access Control

• Arbitrary File Upload

• Remote Command Execution (RCE)

• Reflected, Stored DOM Cross-site scripting (RXSS, SXSS, DXSS)

• Cross-site request forgery (CSRF)

Demo

Any Questions

