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“ ...Molti anni fa, ho letto una frase
che diceva che le persone non falliscono perché
mirano troppo in alto e sbagliano, ma perché

mirano troppo in basso e fanno centro. ”
Matteo Bussola, da L’invenzione di noi due
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Abstract

The Ethereum blockchain-based platform was launched in 2015. Its network is composed
of nodes that execute smart contracts. Several vulnerabilities of different importance are
discovered owing to the scripting natures of the Solidity language and the immutability
features of blockchain.
The research takes into account the analysis of Ethereum blockchain smart contracts

with a focus on gas optimization.
The excess of the maximum amount of gas generates improper programming problems

with unbounded operations.
The objective of the thesis is to detect specific costly patterns, give possible solutions

in order to optimize and improve smart contract performances. To achieve this goal, it
was necessary to find the perfect methodology that allows detection.
The exploration of different security analysis methods used in the improvement of

vulnerability detection frameworks, enables the selection of static methodology and,
subsequently, the choice of a specific tool, Slither.
Slither was tested in order to understand all its functionalities. The focus was on the

automated detection of vulnerabilities. A dataset of contracts taken from the public
repository Etherscan was examined.
Thanks to Slither’s interactive structure, the implementation of own targeted space-

saving gas detectors was tested on the set of smart contracts.
The outcomes gave the general scenario of how important optimization is in smart

contracts.



Introduction

Blockchain technology is an emerging technology that enables new forms of decentralized
architectures.
From a data management point of view, a blockchain is a distributed database, which

logs an evolving list of transaction records by organizing them into a hierarchical chain
of blocks. From a security perspective, the blockchain is created and maintained using a
peer-to-peer network. It offers an innovative methodology to store information, execute
transactions, and perform functions combining private key cryptography, peer-to-peer
networking, and the consensus protocol technologies in order to distribute digital infor-
mation in a secure way.
The evolution from the first generation of blockchain to the second one has allowed

the potential of this technology. Indeed, since 2015, thanks to the introduction of Smart
Contracts by Ethereum, it has been possible to run programs on the blockchain. Smart
contracts are programs that run on blockchains: their code and state is stored on the
ledger, and they can send and receive coins.
A focused security analysis of smart contracts is thus crucial for the trust of the society

in blockchain technologies and their widespread deployment. Unfortunately, this task
is quite challenging for several reasons.
First of all, Ethereum smart contracts are developed in an ad-hoc language, Solidity,

which is similar to JavaScript but features specific transaction-oriented mechanisms.
Indeed, any action that requires modification of the blockchain costs gas, which corre-
sponds to a fraction of the currency used by that given blockchain, and therefore to real
money.
Secondly, smart contracts are uploaded on the blockchain in the form of Ethereum

Virtual Machine bytecode, a stack-based low-level code featuring dynamic code creation
and invocation and, in general, very little static information, which makes it extremely
difficult to analyze.

1.1 Motivation

With the increasing popularity of Ethereum technologies in recent years, it has become
the widely adopted platform which enables the transfer of currency. During the im-
provement of the research, it was evident that the Ethereum system has to face the
inadequate management of the vulnerabilities and solution approach.
Moreover,there is a lack of deep understanding on the rigorously defined properties

and analysis methodologies that are sufficient for analyzing the desired properties of
blockchain-based systems. This undefined management related to this field makes it a
challenging area of interest. As it is widely spread, several vulnerabilities turned up due
to the user’s freedom and a lack of protocols of security.
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As far as smart contracts are concerned, they offer a particularly unique combination
of security challenges. Due to the persistent nature of the blockchain, once initialized,
the contract code cannot be updated.
Furthermore, contracts are relatively difficult to test, especially since their runtimes

enable them to interact with external services and other contracts. In addition, they
can be invoked repeatedly by transactions from a large number of users. Third, since
coins on a blockchain have a crucial value, attackers are highly incentivized to find and
exploit bugs in contracts that process or hold them directly for profit.
As a consequence, the issue of smart contract security is crucial. Additional problems

derive from the gas mechanism which is typical and unique in Ethereum blockchain
through which the smart contracts’ execution is managed. The required gas is propor-
tional to the amount of computational power required to perform the operation so it
serves as an incentive system both for miners, to spend hardware and electricity costs
to validate transactions, and against attackers, who would spend money to perform an
attack. Gas corresponds to real money, and those transactions can fail because of an
insufficient amount of gas. Furthermore, if on the one hand it is not easy to make an
accurate estimation of the gas necessary for the execution of a specific smart contract,
on the other hand the setting of a gas limit could be seen as a security setting, because
without it if there is a bug all the gas will be wasted.
In addition, security attacks targeting smart contracts have sharply risen and there

has been an increase in financial losses and in the erosion of trust. As several re-
search highlights, smart contracts may contain bugs which can be exploited by malicious
attackers for financial gains. So it is clear that it is fundamental to enable developers to
find out security vulnerabilities in these contracts before their deployment. Moreover,
the immutable and irreversible nature of Ethereum transactions increases the possibility
of losses which cannot be recovered. There have been many bugs in smart contracts
that have been detected in the recent past.
The identification and the analysis of the discovered vulnerabilities give the possibility

to overcome security problems that are linked to them and have an impact on the whole
system. Different typology of approaches has been developed to overcome these issues
and each of them is related to a specific security analysis method. The most common
categorization of methodologies splits them into static and dynamic analysis and formal
verification methods.
A static analysis framework should provide a balance of several properties like a cor-

rect level of abstraction that enables an accurate semantics which captures common
usage patterns, a robustness that allows to successfully analyze real-world code, perfor-
mance and accuracy : it should allow for the development of detectors that find most
potential issues while maintaining a low false positive rate.

1.2 Aim of the research

The research has followed several stages that aim to improve the knowledge of the
theoretical and practical approaches related to the need to make smart contracts
much secure and optimized. The next step has concerned the analysis of the most
common security analysis techniques. Once the static method has been analyzed and
picked, the Slither framework has been selected in order to test real-world codes chosen
from the Etherscan public repository. The focus of the research was to detect gas-
costly patterns and provide advice in order to improve their efficiency. It is difficult
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to optimize smart contracts in terms of gas-efficiency, because it requires deep under-
standing of different characteristics such as EVM’s instructions, gas consumption for
different operations, and data locations accessed by operations. The research outlines
a series of gas-costly patterns which are focused on saving gas.
One of the main issues of gas mechanisms is related to the fact that the estimation

in advance of the execution costs is difficult, with the risk of making the execution of
the associated transaction fail. But the need to have gas saving techniques is therefore
clear, indeed all operations used to manipulate memories cost gas so they have to be
reconsidered. The most expensive ones are those affecting the Storage.
During the testing process, from the whole list of detectors, those related to the

optimization field are selected and their results are analyzed. In addition, an ad-hoc
detector was improved to detect used storage variables used in the line code of the
targeted contract. The results of the testing phase allows to have an idea of all the
possible changes that could be made in terms of efficiency.

1.3 Structure of the thesis

The thesis is structured in four chapters. In Chapter 2, we introduce the basic notion
of blockchain and we take into consideration the roadmap that its evolution pursued.
Then, we focus our attention on the second generation of blockchain technologies and
we present the development of the concept of agreement and the introduction of smart
contracts in the Ethereum system which is analyzed in a specific section.
In Chapter 3, we give an explanation of what a vulnerability is in a blockchain

scenario. Looking in detail, we illustrate how Ethereum covers these pitfalls and then
we analyze the most common technical methods used to implement security analysis on
smart contracts and then, we introduce several tools that implemented those method-
ologies.
Chapter 4 is the core of the thesis. We present Slither, the framework picked to test

a dataset of contracts whose resulting tables have done are in Appendix 5. Then, we
highlight the patterns which are an area of interest for our research. Once we provide
information about its scopes, we illustrate a case that enables us to show Slither
functionalities and our contribution in order to detect an optimization problem which
concerns the unused storage variables recognition.
Finally in Chapter 5, we sum up the goals achieded from the thesis and define possible

further improvements that could be done in order to proceed with the work. Indeed,
we introduce upgrades that take into account Slither engine, its theoretical analysis
methodology, its detectors selection and a different testing phase.
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Background

This first chapter is a presentation of the most important theoretical concepts of the
thesis. It gives a detailed presentation of the environment which the research belongs
to.
In Section 2.1, we illustrate the concept of blockchain technology, its emergence

and its evolution. First of all, we introduce Bitcoin as an example of Blockchain 1.0
following this, we show the Blockchain 2.0 that deals with registering and transferring of
smart contracts. Then, we take into account extension of Blockchain related to several
domains like governance and education which is known as Blockchain 3.0. At the end,
we provide information about Blockchain 4.0 that is linked to the Industrial sector
like finance in the form of digital assets, remittance and online payments or healthcare
industry, and technology in IoT.
In Section 2.2, we introduce the concept of contract. Starting from its traditional

meaning, we explain its development throughout the ages, then we focus our attention
on smart contracts notion from the revolutionary article written by Nick Szabo and we
provide technical explaination of those smart agreements.
In Section 2.3, we analyze Ethereum, the distributed ledger system taken into ac-

count in our research. Then, we breifly introduce the Ethereum environment and its
engine. Moreover, we treat the memory usage mechanism used by EVM.

2.1 Blockchain

Figure 2.1: Blockchain Evolution.

Since the beginning of the new century there has been a slight increase in the usage
of data and this has produced changes in different technological areas.
This evolution caused the introduction of new models and new architectures that are

designed to integrate data and customer demands for providing better decisions and
enrich the user experience.
Even if the amount of data has become increasingly large, the need to maintain
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security standards is still the same, indeed it is fundamental in a distributed environment
to ensure trust and transparency on processes over the blockchain.
In 2008, the article Bitcoin: A Peer-to-Peer Electronic Cash System[29], signed by

Satoshi Nakamoto, introduced the concept of blockchain as a Bitcoin Cryptocurrency
but nowaday it is used as a trusted platform that allows the exchange of any kind of
services and transactions over the distributed network. It is evident that blockchain
has revolutionized the digital economy by providing new dimensions to security and
efficiency of systems. It represents an efficient solution in decentralizing transactions
and providing consensus and trust among participating peers from several authoritative
domains.

Figure 2.2: Distributed Ledger Architecture.

As the Figure 2.2 illustrates, blockchain is a shared and immutable ledger that keeps
transactions in a distributed peer-to-peer network. The peers are nodes called miners
and each one maintains a consistent copy of the ledger. Each Transaction is collected
into blocks and it is hashed-chained with the previous block in the blockchain data
structure.
Its decentralized characteristic has enabled service providers to register, confirm trans-

actions via contracts and transfer credits without the presence of third trust parties.
Every time miners collect their choice of new transactions in a new block. The trans-
actions are hashed, verified and then mined into blocks that are added to the chain
by miners using a consensus mechanism. This protocol uses a probabilistic algorithm
for electing the miner who will publish the following block in the chain. Nodes have
to perform a procedure called proof-of-work that is composed by the resolution of a
computationally demanding cryptographic puzzle. The correctness of it is done by all
others miners, in positive case they update their local copy of the chain adding the new
block. The mined block is added to the longest valid chain and this rule ensures the im-
mutability of the block, indeed any change to the block will also change the hash value
and will provoke the invalidation of blocks. Thus, the valid chain contains a history of
transactions as log that can be verified and created at any moment in the network.
In traditional systems, like the one represented in the Figure 2.3 where two parties

have to share documents, both the users must have the updated shared data. In order
to make some changes a user has to download the copy of the data over the network,
make the changes and once the new copy is uploaded to the network, it is forwarded to
the other user. This mechanism needs the use of multiple copies of the same data as

12



Figure 2.3: Traditional sharing document.

redundancy and makes the location of the most recent copy hard to find. Furthermore,
a user has to wait for the other one to make changes and then only the exchange can
proceed with modifications. The Figure 2.4 shows the evolution of previous scenario.

Figure 2.4: Shared Centralized System.

The advanced structure imposes the presence of a cloud server that resolves the issue
of the recently updated version and waiting time.
In the centralized shared system, both parties which want to edit the document

can share the same space simultaneously.
The main drawbacks of this approach are that all data is on a central server so it

may soffer of bottleneck situations and operations may be performed based on network
connectivity. In addition, cloud based systems faced many challenges like the insufficient
bandwidth with high amount of jitter caused by the low Quality-of-Service and the
heterogeneity of networks. Moreover, this scenario may have several security attacks
because it is difficult to maintain confidentiality, integrity and availability so central
servers are more subject to Denial of Service attacks.
For these reasons, centralized shared databases are then replaced with distributed

databases, represented in Figure 2.5, as they are more robust in event of network
failures.
They main negative aspect is that they operate over synchronous and asynchronous

networks, hence packet delivery may experience congestion, failure, or message may
wait in queue. Secondly, this system may overlook consistency using weak enforcement
of properties over scalability normally in case of replication systems. In addition, a
byzantine attack may occur where all nodes could not be working as intended and
it causes the achievement of an incorrect consensus. Also, in situations with highly
scalable distributed databases, multi document transactions in parallel are not allowed
becasue of efficiency issues.
In the blockchain environment, the nodes continuously check other nodes integrity

using a consensus protocol to agree on a common state of the chain. The chains are
cryptographically auditable indeed they rely on Merkle root value and order-execute
architecture. The blockchain network orders the transactions first using a consensus
protocol and then sequentially executes them in the listed order in all peer nodes.

13



Figure 2.5: Blockchain Architecture.

As shown in Figure 2.5, Alice and Bob are the users involved in the transaction. Once
the document is updated, it is added by computing its hash value which could be
digitally signed using users’ private/public key pairs and added to the chain.
The validation of the transactions is done by miners which add a block to a chain.

The hashing process of the data blocks is responsible for the logical chaining. This
mechanism is based on the fact that any block Bi stores the hash of its previous block
Bi−1.
The hash in any i-th block is computed as Hi = f(inputi, IDi, Timestamp, Hi−1)

where inputi is the input document, IDi is the digital identifier associated with the
document, Timestamp is the current timestamp value and Hi and Hi−1 are the hashes
of current and previous blocks respectively.
All the blocks link to create a trace back to the genesis block, allowing consensus in a

blockchain network, as Figure 2.6 illustrates. All hashes are computed and used in order
to form the hash at the next higher level of the chain.

Figure 2.6: Merkle Tree Structure.

This is the concept of the Merkle tree, a
type of binary tree, that appeared for the
first time in 1979 and took its name from
the computer scientist Ralph Merkle who
wrote a paper titled “A Certified Digital
Signature”[28] where he explained a new
method of creating proof.
The Merkle tree is a multi-level data

structure that allows a large amount of in-
formation to be verified for accuracy in an
efficient and quick way. It is based on the
concept that it is sufficient to present only
a small number of nodes in a Merkle tree
to give proof of the validity of a branch. A
Merkle tree is composed of aset of nodes
with a large number of leaf nodes at the
bottom of the tree containing the underlying data, a set of intermediate nodes where
each node is the hash of its two children, and finally a single root node, formed from
the hash of its two children, that id the root of the tree. If a malicious user tries to
swap in a fake transaction into the bottom of a Merkle tree, this change will produce
a change in all nodes above it, from the previous one to the root of the tree. Moreover
the hash of the block will be changed and the protocol to register it as a completely
different block.
To add a block, a miner must solve a cryptographic puzzle by discovering starting

bytes of the block in such a way that the hash of the block is smaller than the acceptable
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target hash value. Each block acts a puzzle for a miner which is termed as nonce or
difficulty value. Once the nonce is solved by a miner, the block gets appended to the
existing validated chain by appending the hash value of the chain to the block and this
represents the Proof-of-Work in a blockchain network. In order to compensate miners
for this computational effort, the winner miner of each block has a reward. In addition,
whether any transaction has a higher denomination in its inputs tha in its outputs, the
difference goes to the miner as a transaction fee. The copies of the new block are added
to all nodes in the network in order to maintain consensus.
Sometimes, it may happen that miners can generate different blocks of the same

transactions and a fork of the chain. Thus, forking creates a problem, so as one branch
becomes longer, all the miners prefer adding blocks to that branch. This rule of longest
chaining increases security in the system indeed the creation of a longer chain by the
attacker requires more computational power and resources than the rest of the network
in a very short span of time (hence, 51% attack).
The only possibility is that the blocks are added in a slow manner or there are many

fork operations in a chain, which makes it more time consuming to elect the longest
chain. The attacker can create his chain to be the longest and force the miners to add
blocks to its chain making it look like a legitimate chain. However, the propagation
latency of adding blocks in a network is small, hence the probability of such an attack
is really low and for this reason the blockchain network is very secure in a distributed
environment to achieve common consensus. Hence, the blockchain network solves the
current limitations of the database system and achieves consistency in a shared and
distributed platform.

2.1.1 Blockchain 1.0

Figure 2.7: Bitcoin’s Ledger.

The first generation technologies have to improve the existing monetary system and
clients can send transactions relying on cryptography. It is clear that the digital currency
becomes a medium to buy and sell goods and services over the anonymous network.
Cryptocurrency are digital cyrrency that entails the use of cryptography in order to

achieve a secure transaction. It can be used as a secure way of exchange, indeed it
uses high cryptography to ensure verifiability of asset transfer. Each coin defines an
electronic signature where the private key is used for signing the transaction and the
public key is used for verification.
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The first blockchain, Bitcoin, was conceptualized by Satoshi Nakamoto in 2008. The
Bitcoin ledger is a Finite State Transition Automaton with states as ownerships of all
existing bitcoin users and transactions that are transitions between the states.
It is a decentralized anonymous system that does not need a third trusted party to

validate the transactions but the same users can control their fund and do transactions.
The output of any state is a transactional value if the transaction is successful so there
are enough bitcoins (BTC), or error, otherwise. The state transition function allows us
to reach a new state. As a ledger system, every peer of the network keeps a copy of
this finite state transition system. The PoW is carried out using the hashing scheme
Bitcoin based on HashCash and SHA-256 hash function.
There are a number of benefits and drawbacks in relation to the use of Bitcoin

Blockchain. Firstly, the transactional costs are lower than the ones associated with
other electronic payment channels. Secondly, transactions are anonymous and they
provide a secure and transparent mechanism, so counterfeiting is not possible. Despite
these positive aspects, there are also some negative effects. First of all, the approval
of transactions are slow in comparison to other electronic channels. Another point to
consider is that they have launched several fraud schemas over Bitcoin wallets like Ponzi
Schemes or Bitcoin Mining Scams. It represents one of the first generation technologies
that is based on the Proof-of-Work algorithm and its main aim is recording transactions.

2.1.2 Blockchain 2.0

Figure 2.8: Traditional contract compares to smart one.

In 2015 the Ethereum blockchain-based platform was launched and the concept
of blockchain evolves into a second generation category driven by the requirement of
general purpose application. This platform is not a simple cryptocurrency but it is a
digital environment that can be used for decentralized projects.
The most remarkable innovation of Ethereum is the enablement of smart contracts

that provide security to transactions verifying the execution of all conditions by all the
peers and processing the transaction as the result of this execution.
In addition, smart contracts are precise and store all terms and conditions which are

fully visible to all transactional involved node peers.
The Blockchain 2.0 are very popular as they can be extensively applied in many

areas, still some serious challenges and limitations that make usage of smart contracts
vulnerable.
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2.1.2.1 Transactions

A public blockchain is a globally distributed database. Each node of the blockchain
network has a copy of the digital ledger, it is enabled to read entries in the database
and it checks the validity of each transaction. In order to to change something, the
node has to make a transaction which has to be accepted by all others. If a majority
of nodes say that a transaction is valid then it is written into a block.
If the transaction successfully terminates, the remaining gas is returned to the caller,

otherwise all the gas allocates for the transaction is lost. If a computation consumes
all the allocated gas, it terminates with an out-of-gas exception and the caller loses
all the gas. As the blockchain is a distributed network, the change the node wants to
make will be eventually broadcast throughout the network.
Once the transaction is applied to the database, no other transaction can alter it.

Furthermore, a transaction is always cryptographically signed by the creator and this
mechanism enables to avoid specific modifications of the database.

2.1.2.2 Consensus Mechanism

Blockchains by definition are decentralized systems and do not need a third party
trusted authority. In order to guarantee the reliability and consistency of the data
and transactions, they used a decentralized consensus mechanism that is due to a
transformation of the Bizantine General Problem.
According to this scenario, there is a group of generals who command a portion of

Byzantine army circle the city. Some of those prefer to attack whereas others want to
retreat. The attack would fail if only part of the generals attack the city. They have
to reach an agreement to decide their future action. The achievement of a consensus in
distributed environment is challenging both in Bizantine scenario and in blockchain net-
work. Indeed, in the latter, there is no central node that ensures ledgers on distributed
nodes are all the same.
In the existing blockchain systems, the most common approaches to reach a consensus

are:

• PoW , Proof of Work

• PoS , Proof of Stake

• PBFT , Practical Byzantine Fault Tolerance

• DPoS , Delegated Proof of Stake

• PoB , Proof of Bandwith

• DPoS ,Proof of Authority

Ethereum as one of the most popular blockchain systems uses the PoW consensus
algorithm and it incorporates the PoA, whereas other cryptocurrencies also use the PoS
mechanism (i.e. PeerCoin or ShadowChash).
As far as PoW mechanism is concerned, the idea was conceptualized in 1993 by

Cynthia Dwork and Moni Naor[17] but the term Proof of Work was coined in 1999 by
Markus Jakobsson[22]. Bitcoin uses this algorithm to achieve consensus in its P2P net-
work. PoW protocol has the main goal of deterring cyber-attacks such as a distributed
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denial-of-service attack (DDoS) which has the purpose of exhausting the resources of a
computer system by sending multiple fake requests.
Typically, in Bitcoin, each block constains PrevHash, nonce and T. PrevHash is the

hash value of the last generated block, and the Ts are the transactions of this block
which are stored in a memory called mempool.
The procedure of mining allows the verification of a transaction and, once it obtains

a successful result, the transaction will be added in the next block. Miners’ task is
to get to know the cryptographic hash value of the recorded block because it must be
referenced for creating the next block. All the network miners compete to be the first to
solve the value of the nonce by solving the Pow puzzle that is a mathematical problem.
In particular, a correct nonce should satisfy as it is shown in the Equation that the
hash value is less than a target value.

SHA256(PrevHash||Tx1||Tx2||...||nonce) < Target (2.1.1)

This solution cannot be solved in other ways than through brute force so that essentially
requires a huge number of attempts. The miner who finds the hash of the last recorded
block and solves the mathematical puzzle, receives the reward and broadcasts it to
the whole network. Then, a new block is created that has all the transactions in the
mempool post verification.
Looking in detail, the miner has to solve a asymmetric cryptographic puzzle. The

computational difficulty of the puzzle will gradually rise if the solution of the puzzle
is easily find. This grow means that the miner nodes have to use ever-increasing com-
puting power so other kind of consensus algorithm are improved in order to resuce this
drawback.
Proof of stake mechanism uses the proof of ownership of cryptocurrency to prove

the credibility of the data. In PoS-based blockchain, instead of miners, validators decide
to stake their cryptocurrencies for the transaction verification. The larger the amount
of stake and the longer the duration of the stake, the better are the chances of the
staker to get transaction validation responsibility. All cryptocurrencies in this network
are already created, and there is not the mining process. This change eliminates the
need to solve a complex cryptographic puzzle and its resulting computational cost.
In this scenario, the forging is the transaction validation process where it is not nec-

essary the involvement of the whole network. So, this mechanism improves scalability.
PoS allows the sharding which is the implementation of other technology solution and
it enables the store of horizontal portions of the network in different groups of nodes.
Each node has its own perception of the network so sharding can not be implemented in
conjunction with POW algorithm, and PoS is needed with separate stakers for separate
shards.

2.1.2.3 Blocks

In order to overcome double-spend attack which happens if two transactions in the
network want to empty an account. Only the first accepted transactions can be valid
but in a peer-to-peer environment, the concept of first is not an objective term. The
countermeasure of this kind of issue is the creation of a globally accepted order of the
transactions. Indeed, the transactions are stored in a block and then they are executed
and distributed among all nodes of the network. If two transactions contradict each
other, the one that ends up being second will be rejected and not become part of the
block.
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Figure 2.9: Block structure in blockchain system.

As far as the blocks are concerned, they form a linear sequence in time. Blocks are
added to the chain in rather regular intervals1. As part of the mining process, blocks
may be reverted from time to time, but only at the tip of the chain. The more blocks
are added on top of a particular block, the less likely this block will be reverted.
In the blockchain, each full node saves the information of all blocks. The block

propagation mechainisms are the basis of the consensus and trust of this network and
they can be categorized in the following way:

• Advertisement-based propagation: this is a Bitcoin scenario. When a node A ob-
tains information of a block,A will send an inv message to the connected peers.
Once the node B gets A’s inv message, it will reproduce the message to its linked
peers. If the node B already has information of this block, it will do nothing,
otherwise, it will reply to node A. When a node A receives the reply message from
node B, node A will send the information to B.

• Sendhaeders propagation: this mechanism is an improvement of the advertisement-
base propagation. Node B will send a sendheaders message to A. Once A receives
the information of the block, it will forward the block header to B. In this situation
there is a speedup of the mechanism, indeed, node A does not transmit the inv
messages.

• Unsolicited push propagation: once the block is mined, the miner will broad-
cast the block to the other peers. This transmission does not require inv and
sendheaders messages so it increases the speed of the block propagation.

• Relay network propagation: in this situation, all the miners share a transaction
pool. Each transaction has its own global ID, that will reduce the broadcasted
block size, the network load and improve the propagation speed.

1In Ethereum environment, the blockchain is updated every 17 seconds.
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• Push/Advertisement hybrid propagation: this scenario is used in Ethereum. In
our generic scenario A has n linked peers. A will push the block to

√
n nodes in

a direct way. The other n−
√
n connected peers, node A will advertise the block

hash to them.

2.1.3 Blockchain 3.0

The ever-growing climb of smart contracts produces a large flow of micro-transactions.
Even if Ethereum improved the transaction rate to 15 tps (over Bitcoin 7 tps), it is not
sufficient to support today’s economic trends.
Hence, Blockchain moves to decentralized internet, which will combine data storage,

communication Networks, Smart Contracts and Open standards platforms and uses
DApp - Decentralized Applications. Thus, an ultimate blockchain application

Figure 2.10: Dapps Architecture.

should be DApp hosted on a peer network as it does not require maintenance, governance
ore human intervention.
As a consequence, there is the formation of Decentralized Autonomous Organizations

(DAO) in which profit is shared by all members by simply recording their activities on
the Chain.
Its first positive effect is that no single node controls the transaction which could have

become a single point of failure. Moreover, the transactional speed is increased about
100 times in distributed environment systems.
On the other hand, one of the drawbacks is taking into account updates and bug fixes

that are difficult because all copies in the network need to be updated.
Another point to consider concerns the achievement of consensus, indeed complex

protocols need to be implemented to get data validation, thus restricting the network
scalability.

2.1.4 Blockchain 4.0

The use of decentralized applications suddenly rises and a platform that can integrate
several services and architectures by allowing cross-chain communications becomes es-
sential.
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Figure 2.11: Blockchain related to Industry.

The use of a scalable network which increases degree of trust and privacy is funda-
mental and for this reason the Blockchain evolved to a new level known as Blockchian
4.0. It allows users from different platforms to work together as an own unit, thus
making an integration towards business needs and demands of Industry 4.0.. Industry
4.0 requires an enterprise resource planning platform which can provide automation and
integration of different execution platforms as a coherent unit. Blockchain 4.0 enables
IT systems to do business integration, operates on Cross-Blockchain business processes
like allowing for autonomously placing an order via smart contract as well as ensuring
safety to machines.
In conclusion, “the use of Blockchain is not only limited to provide trust and privacy

as a means of crypto currency, but be a business provider in current industry and market
demands. Blockchain is the biggest disruptive technology that has hit the markets and
most industries are gradually shifting to blockchain platforms.”

2.2 Smart contracts

The term smart contract appeared over twenty years ago and it was strongly related to
blockchain technology.
The idea of them has been offered by the cryptographer Nick Szabo. This innovation

has impacted on technology from IoT to AI and the application of blockchain has fastly
diffused.

2.2.1 History

The concept of contract has always been present in human social relationships. Since
the dawn of time, the need for respecting the rules of in the various period of time has
given birth to several kind of contracts.
In primitive societies, these rules consisted in the basic regulation of barter and, then

they evolved in ancient legal codes of written rules. Indeed, in the Code of Hammurabi2

which regulated the Babylonian society, there were several references to the correct
behaviour of a dweller in exchange circumstances (rules 100-198). The first significant
evidence of contracts in Wenstern societies can be found in the Greek civilization.
The Greeks were navigators and merchants and they used written rules which could
21750 BC
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look like our basic contracts. The philosopher Plato3 dealt with this topic in the
eleventh book of The Laws4 where he highlighted that contracts were a well-understood
and familiar part of contemporary civic life in Athens. He warned about what might
happen if a man (probably only men could undertake contracts then) breaks a contract,
and who should arbitrate between the disputing parties. He also suggested that not all
contracts were valid — for instance, when someone engaged in illigal conduct, when one
on of the parties was under pressure, or when the breach of the contract was due to a
third party not involved in the contract.
In ancient Roman law, a contract did not necessarily imply an agreement - the con-

ventio - but it constituted the contractual obligation which bonded two entities - the
negotium contractum or contractus negotii. The contract gained several solemn
forms and most of them were oral. There were two different types of formal agreements;
the former were verbal like the sponsio, the stipulatio, the dotis dictio or the promissio
iurata liberti and the latter were written like the nomen transcripticium, the singrafe
or the chirografo.
By contrast, since the Justinian Roman law (and also in the modern law), the contract

has been defined as an agreement between two or more parties and it has represented
a legal relationship recognized by the law.
Over the centuries, it is evident that the medieval society was based on the personal

relationship of feudal subordination between the vassal and his lord. The vassal’s obli-
gation to the lord was an exchange of complete allegiance whereas the lord offered to
protect the vassal from external forces. It was an actual bilateral contract which could
be broken by the default by one of the two contracting parties. This kind of subor-
dination has persisted throughout the centuries and it caused wars that aimed to the
freedom of princes.
As far as the fundamental function of the contract law is concerned, it is necessary

to mention Hobbes’ idea5 outlined in the Leviathan.
According to this, the contract has to deter people from behaving opportunistically

toward their contracting parties and “if a covenant be made wherein neither of the
parties perform presently, but trust one another, in the condition of mere nature . . .
upon any reasonable suspicion, it is void: but if there be a common power set over them
both, with right and force sufficient to compel performance, it is not void.”

3Plato (ca. 427-347 B.C.E.) was an Athenian philosopher who is recognized among the most im-
portant philosophers of the Western world. Plato can be plausibly credited with the invention of
philosophy as we understand it today – the rational, rigorous, and systematic study of fundamental
questions concerning ethics, politics, psychology, theology, epistemology, and metaphysics. He wrote
primarily in dialogue form.[3]

4The Laws - Νόμοι- is Plato’s last, longest work written in the 4th century BC. The book is a
conversation on political philosophy between three elderly men. These men work to create a constitution
for Magnesia, a new Cretan colony. The government of Magnesia is a mixture of democratic and
authoritarian principles that aim at making all of its citizens happy and virtuous.

5Thomas Hobbes (1588-1679) is an English philosopher known for his political thought. His vision
of the world is strikingly original and still relevant to contemporary politics. His main concern is the
problem of social and political order: how human beings can live together in peace and avoid the danger
and fear of civil conflict. His political philosophy is articulated in the masterpiece Leviathan or The
Matter, Forme and Power of a Commonwealth Ecclesiasticall and Civil [2]. It is written in
1588–1679 and published in 1651. It argued that civil peace and social unity could be achieved by the
establishment of a commonwealth through social contract. Hobbes’s ideal commonwealth is ruled by
a sovereign power responsible for protecting the security of the commonwealth and granted absolute
authority to ensure the common defense. In his introduction, Hobbes describes this commonwealth as
an "artificial person" and as a body politic that mimics the human body. .
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2.2.2 Origin

The concept of traditional contract implies the presence of a trusted third party that
manages and validates the transaction from one to another. The role of this third party
is essential and it defines a generic centralized scenario.
From the end of XX century, this contract needed to be smarter, and therefore the

idea of smart contracts spread out. Smart contract technology are intended to replace
the traditional contracts without loosing important properties like safety, efficiency, and
reduce possible issues.
The naming smart contracts appeared in 1996 on the Extropy magazine, the cryptog-

rapher Nick Szabo wrote an article Smart Contracts: Building Blocks for Digital
Markets where he gave his definition of this revolutionary and innovative concept.
Szabo explained that a generic contract is a “set of promises agreed to in a meeting of
the minds [which] is the traditional way to formalize a relationship”.
In addition, he defined a smart contract as a “ set of promises, specified in digital form,

including protocols within which the parties perform on the other promises” without the
use of artificial intelligence.
In 2016, the lawyer Josh Stark[34] gives an overview of two different ways that the

term smart contract is commonly used:

• the former is named smart contract code , is operational and involves software
agents but not necessary on a shared ledger. In this scenario, the contract specifies
that software agents are performing obligations and practicing specific rules. The
agents may take control of some assets within a shared ledger. This concept of
contract does not need consensus, indeed each definition is different in suble ways.

• the latter is known as smart legal contract and it is focused on the legal point
of view. It analyzes how legal contracts can be expressed and implemented. It
contains operational aspects, issues relating to how legal contracts are written and
how the legal aspects should be interpreted.

It is clear that the term smart contract should cover both versions, so it is possible
to give this definition: a smart contract is an automatable and enforceable agreement.
Automateble by computer, although it requires human input and control. Enforceable
by legal enforcement of rights and obligations. Indeed, this explanation contains smart
contracts as legal agreements and their automated software 6.

2.2.3 Explanation

The smart contract is a legal contract between mutually distrusting participants without
interference of any third party in the form of programming code and it is stored in the
blockchain by a contract-creation transaction.
As it is clear from the Figure 2.12, all the transactions of the smart contract are

processed by the blockchain when the conditions in the agreement are matched. Data
in the blockchain are guaranteed to be valid in line with certain predefined rules of the
system, they are public and everyone can access a copy of them. The agreement is
enforced by the consensus mechanism of the blockchain. Each smart contract account
holds an amount of virtual coins and an own state and storage.

6It may not necessarily be linked to a formal legal agreement.
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Figure 2.12: Smart Contract System.

2.2.3.1 Benefits of Smart Contracts

The introduction of smart contracts has several positive aspects.
Accuracy is one of the advantages that the implementation of smart contracts en-

hance. In the process of setting up a smart contract, all the information concerning the
contract is expressed in a conditional format in if-then statements. The expression of
all terms and conditions in a contract must be explicitly and accurate. This is a critical
requirement because transaction errors may emanate from any omission. The automa-
tion in the definition of smart contracts would avoid the majority of the problems that
are detected in the traditional contracts.
Another positive effect is the clear communication and transparency. Once the

agreement is established, changes cannot be easily implemented. Each transaction is
monitored and controlled by the other network peers in the blockchain. In this scenario,
trasparency is provided and issues are decreased. Moreover, unlike the traditional con-
tract where the organization would have to use the legal framework as third party, in the
network are needed other nodes which ensured that each of the transaction pertaining
to the contract is accurate and correct. In addition, smart contracts implementation is
managed by other nodes in the blockchain network. So, once the contract is triggered,
the contract self-executes. This procedure is achieves through the use of trigger events
during the scripting of the contract. A trigger event may be, for example, a date, time,
or an activity started by a party of the contract, such as the transfer of an amount of
cryptocurrency from the customer’s wallet to that of the receiver.
This means that smart contracts are more efficient than traditional ones and they

do not require human verification, as a matter of facts all the checks are done by
the nodes in the network. Each contract is a separate entity and each transaction is
always validated. This mechanism produces a fast, resilent and robust way of contract
execution. According to the research carried on by Marino and Juel[27] in 2016, smart
contracts used one of the highest security measures. The peers of the network are
non-trusting and this ensure that each trnasaction is carried out in the best way.
In addition, all the nodes have a uniform view of the status of the transactions.

Moreover, the whole technology is implemented through cryptography techniques which
provide an high encryption of data and enable the use of private and public keys. The
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security of the smart contracts is enhanced by the validation mechanism, indeed, before
any node commits a transaction, the transaction must first be validated by all the peers
across the blockchain network. Another advantage that is strictly related with the
security concept is the cost reduction. The implementation of smart contracts through
a distributed ledger technology removes the rule of a middleman and cuts the overall
organizational costs.

2.2.3.2 Limitation of Smart Contracts

Apart from several positive aspects involved in the implementation of smart contracts,
they have some limitations and disadvantages which limit their application in certain
scenario.
The main drawback is the difficult modification after the setting up phase. In

traditional agreements, change of terms and conditions are often used and they keep
changing throughout the contracts life. Furthermore, the conventional contracts allow
their annulment, embedment, and modification as explained in the research provided
by Huckle et al [21].
By contrast, in smart scenario, the alteration of contracts terms may cause practi-

cal problems, compromise security apparatus, and require further strengthening of the
transaction controls. These countermeasures may prevent to initiate invalid transaction
or transactions that are aimed at unauthorised manipulation of records. Due to the
complexity of the smart contract and blockchain technology, it may be necessary to
ensure that the correct permission is granted to the right node, and that all the nodes
can monitor the amendment of the contract.
Moreover,blockchain technology involves the sharing of smart contracts across all the

node of the network and all transactions are stored on a distributed ledger using encoded
permissions in each of the nodes. This technology provides anonymity, indeed all the
participiants are anonymous and secured.
However, there is not any security guarantee during the contract excution, because

the nodes are anonymous in their operations, the ledger is public, and the transactions
are visible. Buterin supports that, despite anonymity of the nodes, the maintenance of
a public ledger in the distributed environment causes a loss of privacy[11].
Besides, smart contracts need to develop a protocol that can ensure the validation of

transactions without reading the contents of the transaction. As a matter of fact, trans-
action may be anonymous whereas the contents are not and can be read and accessed
by each peer of the network. Kim and Laskowski show that the main characteristics
of a legally enforceable contract are: “the acceptance by the other party or parties, a
promise, consideration, and legal capacity mutuality [25] ”. All these elements are not
applicable to smart agreements.

2.2.3.3 Technical Explanation

The initial step to develop smart contracts is its compilation and it is done with the
help of Solidity compiler, solc, that creates two main objects:

• Application Binary Interface - ABI - definition,

• Contract bytecode.
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The former allows to invoke functions the contract and is composed by declarations of
external and public funnctions with parameters and return types. The ABI creates a new
instance for the contract that is used when any caller calls the contract function. The
latter is a low-level rapresentation of the smart contracts, indeed it is an assemply
language made up of multiple opcodes. Each opcode perform a specific action on the
Ethereum blockchain.
Once the ABI definition generates a new instance for the contract that generates

a new transaction, it is possibloe to go on with the mining phase. After this, the
contract is accesible at an address firmed by Ethereum. when the contract is deployed
in Ethereum Virtual Machine, the contract and its functions can be invoked byt the use
of the created address.

2.3 Ethereum

Figure 2.13: Ethereum Network.

Ethereum is a decentralized virtual machine, which runs smart contractsupon
request of users. Contracts are sets of functions and they are written in EVM bytecode.

Figure 2.14: Architecture of the Ethereum blockchain.

As Figure 2.14 shows, Ethereum blockchain has a 4-layer architecture and it operates
across them.
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First of all, there is the application layer where clients execute smart contracts
which are, usually, written in Solidity, the most mature high-level smart contract lan-
guage and are associated with Ethereum accounts.
Ethereum supports two kind of accounts that Figure 2.15 takes into consideration:

• externally owned accounts, also known as EOA;

• contract accounts.

Figure 2.15: Ethereum Accounts.

On the one hand, the former stores the user’s funds and it is associated with a public
key. The EOA represent participants, including callers (who call functions of smart
contracts), deployers (who deploy smart contracts on Ethereum), and miners (whose
nodes work to do contribution to the ledger).
On the other hand, the latter is a type of programs, a piece of executable bytecode

which defines the logic of interest. Both the accounts has a dynamic state with a
common structure that is defined by:

• the nonce tracks the number of transactions that are initiated of the owner of the
EOA or it represents the number of contracts created by the contract account;

• the balance shows the amount of owned Wei (i.e. 10-18 Ether);

• the storageRoot is the hash of the data structure trie that contains variables
associated to a piece of bytecode;

• the codeHash represents the hash value of the contract account’s blockchain.

Second, the data layer defines the data structure of the blockchain. The execution of
the transaction allows to update the states of the accounts involved and also the state
of the whole blockchain.
A sender constructs a transaction, digitally signs it and submits it to a client. A trans-

action is a single cryptographically-signed instruction and they can be classified from
two dimensions. According to the data in the transaction first category, transactions
can be classified into:

• Ether transfers involves the exchange of Ether from one user account to another;
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• contract executions represents that an account calls a function of a smart con-
tract with some data as the input and some Ether as reward for executing the
contract.

By contrast, the second group is focused on the transaction initiator and it illustrates
that a transaction can be divided into:

• external transactions that are intiated by user accounts

• internal transactions which are mad by smart contract accounts.

Figure 2.16: Relation between the two classification of actions.

Figure 2.16 provides information about the relationship between the two categories. If
the target account of a transaction is a user account, the transaction belong to Ether
transfer, whereas if the target account is a contract account, the transaction belong to
contract execution.

Transaction Setting

money-transfer transaction
The specific valvalue is transferred from
the sender’s EOA to the recipient’s EOA
contract account

contract-creation transaction
The input is a piece of bytecode,
a new contract account is created
and is associated with the bytecode

contract-invocation transaction

The recipient is a callee contract and
input uniquely identifies the callee
function, the bytecode associated to the
callee contract account is loaded into the EVM.

Table 2.1: Setting for each kind of transaction.
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In general, a transaction contains common field:

Figure 2.17: Transaction Structure.

• nonce: this value is the number of
transactions sent by the sender;

• gasPrice: it represents the number
of Wei to be paid per unit of gas and
it is the cost of the execution of the
transaction;

• gasLimit: it is the upper bound of
gas used in executing the transac-
tion. This is paid up-front, before
the beginning of the computation
and it cannot be modified;

• to: it is a 160-bit field that stores
the message’s call recipient;

• value: the scalar constitues the
number of Wei transferred to the
message call’s receiver or it is a field
for the newly created account;

• v, r, s, Tw, Tr, Ts: it is the signa-
ture of the transaction that estab-
lishes the sender.

In addition, the contract creation transaction holds the init field, an unlimited size
byte array that specifies the EVM-code for the account initialization mechanism.
By contrast, the message call transaction contains the data value, an input data of

message call. Following this,the client validates the received transaction and broadcasts
it to the network. Once the miner clients have received the transaction, they will update
their pool. Subsequently, the miner executes a set of transactions and creates a new
block and then the whole state of the blockchain is updated.
Looking in detail, a block consists of the block header an the block body, as shown

in the Figure 2.18. In particular, the block header is unique, and each such block is
identified by its block header hash individually. The header of the block stores several
important data such as:

• parentHash: it is a 32-byte field that contains the hash of the previous block
header. It contains a pointer to the previous block and it constitutes an important
field for the blockchain, indeed its change would affect the previous block and
consequently the entire blockchain;

• stateRoot: it is the root node of the whole state;

• transactionsroot: it shows the the root node of transaction hash;

• receiptsRoot: it represents the root node of the receipt hash;

• difficulty: it is a 4-byte value that illustrates how difficult is to get the hash;
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Figure 2.18: Block Header Structure.

• timestamp: it is a 4-byte field that give information about the time when mining
ends7;

• number: it is the counting value of the block which is sequentially incremented
( 0 is a genesis block.);

• gasLimit: this value represents the maximum amount of gas allowed in a block.
It defines how many transactions can be kept on the sum of gas;

• gasUsed: this field contains the amount of all the gas used by all transaction of
the block;

• nonce: it is 4-byte file that is a one-time code randomly chosen to prevent replay
attacks. This is a Proof-of-work nonce that is used as a meaningless number when
mining;

• extraData: this is an optional and free field to deposit extra data.

The block body is composed of a transaction counter and transactions. The maximum
amount of transactions that a block can contain depends on the size of the block and
of each single transaction.
The miner has to solve a PoW by finding a random nonce such that the hash value

of the block is smaller than a threshold value. This puzzle solving method prevents
cheating from several perspectives, such as leveraging powerful computing resources,
forming colluding partners, altering the proof of the correct puzzle answer. Moreover,
miners have to find the correct hash value to show the proof of work, but each node
on the network can easily confirm that the hash value is correct. By combining the
account nonce with the proof of work nonce, Ethereum can speed up the time required

7The timestamp begins when the miner started the hashing the header. This value must be strictly
greater than the median time of the previous 11 blocks. Full nodes will not be accepting blocks with
headers that are more than 2 hours in the future according to their clock
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to mine a block significantly compared to Bitcoin, without substantially weakening the
resilience of blockchain against malicious manipulation. Upon creating a block, the
miner broadcasts to the network this value and,once the block is validated, it is added
to the blockchain.
The next layer is the consensus one that assures a consistent state of the blockchain.

Ethereum proof of work is designed in a similar way as that of Bitcoin. A new block
can be accepted by the network after being validated through mining. Miners may mine
any unverified blocks on the network by solving a puzzle and complete with one another
until a winner gets the successful results.
If a miner first finds a hash that matches the current target, it broadcasts the block

across the network to each node. Once the block passed the verification, each node adds
this block to their own copy of the ledger.
If another miner finds the hash faster, the rest of the miners will stop working on the

current block and start the mining process for the next block.
Mining mechanism is simultaneously repeated by multiple miners. When two miners

mine the next block at the same time, the network will decide which one will ben the
main chain. When two blocks X and Y are mined at the same time. Miners would accept
the first block that was broadcasted to them. Thus, some miners accept X and others
Y. The block that is accepted by the major part of the network (52% or more) will be
the winner. Miners who accepted block X will continue to mine the next block on the
top of the blockX, whereas those accepted block Y will continue to mine he next block
on the top of Y.
If the next block is found and added on the top of block X faster, then the miners

working on top of block Y will turn to the X chain, which is the main chain. The block
X will be the winner and the block Y will become an orphaned block.
Ethereum uses a variant of the GHOST consensus protocol which ensures that

any attempt to tamper with the transactions and selects the heaviest branch as the
main chain that has the highest block difficulty. This blockchain rewards the regular
blocks (with 2 ETH) and also the uncle blocks (that receives 1/32 of the reward given
to the regular blocks). Like the PoW in Bitcoin, a system-defined timer controls the
hardness of the hash puzzle to ensure that a block can be validated in approximately
every 12-15 seconds.
However, in order to overcome the negative aspects of the Proof-of-Work mechanism

(i.e. power consumption as it is pointed out above in 2.1.2.2 section), Ethereum is
gradually shifting to more efficient Proof-of-Stake procedure which enables to mine
blocks according to the amount of money owned by the stakers.
The network layer is the last one and it is characterized by the Ethereum structure

Peer-to-Peer network composed by nodes that stored a copy of the whole blockchain.
In the synchronization process on the Ethereum blockchain, node A can request block

synchronization from node B following four stages as it is illustrates in Figure 2.19:

1. Node A transmits a GetBlockHeaders message where it requests the header of
the previous block from the node B. Node B will reply to A with a BlockHeaders
message containing the block header needed by A.

2. In order to find ancestor from node B, node A calls for MaxHeaderFetch8.
8The default value of MaxHeaderFetch is 256 and the number of block headers send from B to A

should be less then this value.
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Figure 2.19: Block synchronization process between nodes.

3. If A finds a common ancestor, A will sychronize with the ancestor by the request
MaxHeaderFetch.

Looking in detail, to execute a smart contract, a sender has to send a transaction to
the contract and pay a fee that is derived by the computational cost of the contract,
measured in units of gas. A gas-limit for contract execution is set in order to avoid
system failure and out-of-gas exceptions are verified once this limit has been reached.
In addition, smart contracts can call other accounts on the Ethereum network and this
allows both to call a function in another contract and to send Ether, the currency in
Ethereum, to an account.
Due to the rise of its popularity, this technology has revealed several vulnerabilities

of different importance. Despite blockchain technology offering many cryptographic ad-
vantages such as digital signature and hashing, Ethereum platform suffers from critical
cybersecurity threats indeed smart contracts are irreversible and immutable, once de-
tected bugs can not be easily patched. Moreover, the correctness of execution alone is
not sufficient to make smart contracts secure.

2.3.1 Solidity

Solidity is a high-level contract-oriented language similar to JavaScript and C lan-
guages. It enables to develop contracts and compile to EVM bytecode. There are other
three languages - Serpent, Lisp-Like Language and Mulan - in the Ethereum proto-
col and they have the same level of abstraction but Solidity is the most common one.
Ethereum smart contract account is composed by a executable code and a state
consisiting of private storage and amount of virtual coins - Ether - (i.e. the contract
balance).
Peers transfer Ethers using transactions, moreover they are able to invoke contracts

using contract-invoking transactions. A the lowest level the code of an Ethereum smart
contract is a stack-based bytecode language run by an Ethereum Virtual Machine
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(EVM) in each node. Developers define contracts using high-level programming lan-
guages. The most commun one is Solidity, a JavaScript-like language that is compiled
into EVM bytecode.
Once a smart contract is created at a specific address X, it is possible to invoke it by

sending a contract-invoking transaction to the address X. A typical invoking transaction
to the generic address X is composed by the payment for the execution and the input
data for the invocation.

1 pragma solidity >=0.4.16 <0.8.0;
2 contract Storage {
3 uint storedData ;
4 function set(uint x) public {
5 storedData = x;
6 }
7 function get () public view returns (uint) {
8 return storedData ;
9 }

10 }

The Storage is a simple example of smart contract structure. The first line specifies
that the source code is written for Solidity version 0.4.26 of a newer version but version
0.8.0 is not included. In thsi way, it is ensure that the contract is not compatible with
a new compiler that behave differently. pragma is a common instruction for compilers
which specifies how the source coed has to be treated.
In general, a Solidity contract is a set of code - its functions and data - its state that

are in a address of the Ethereum blockchain. uint storedData ; is the statement of
the storedData variablr of type uint which stands for unsigned integer of 256 bits.
In the example, the contract defines the getter and setter functions in order to enable

the modification and the recovery of the variable. that rewards anyone who solve a
solution and submits the solution to the smart contract. This contract allows anyone to
store a single number that is accessible by anyone that could call set with a different
value and overwrite the value number. The Coin contract enables the creation of a new
coin.

1 pragma solidity >0.5.99 <0.8.0;
2 contract Coin {
3 address public minter ;
4 mapping ( address => uint) public balances ;
5 event Sent( address from , address to , uint amount );
6 constructor () {
7 minter = msg. sender ;
8 }
9 function mint( address receiver , uint amount ) public {

10 require (msg. sender == minter );
11 require ( amount < 1e60);
12 balances [ receiver ] += amount ;
13 }
14 function send( address receiver , uint amount ) public {
15 require ( amount <= balances [msg. sender ], " Insufficient balance .")

;
16 balances [msg. sender ] -= amount ;
17 balances [ receiver ] += amount ;
18 emit Sent(msg.sender , receiver , amount );
19 }
20 }

The address public minter ; declares a state variable of type address which is a 160-
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bits value which is suitable for storing addresses of contracts. The public keyword
automatically produce a function that enables the get access the value of the state
variable from outside of the contract9.
In the next line, mapping ( address => uint) public balances ; creates a public

complex datatype which maps addresses to unsigned integers10.
The line e event Sent( address from , address to , uint amount ); declares the

event emitted in the last line of the send function. Like for web application users,
Ethereum client can listen for these event. The constructor is a special function
executed during the creation of the contract and cannot be called later. It permanently
stores the address of the user creating the contract. The msg variable (together with tx

and block) is a special global variable that contains properties which enable the access
to the blockchain. msg. sender is the address where the current (external) function call
came from. The contract is composed by mint and send functions. The mint function
transfer an amount of newly created coins to another address. The require function
call defines conditions that reverts all changes if not met.
For instance, require (msg. sender == minter ); confirms that only the creator of

the contract can call mint, whereas require ( amount < 1e60); ensures that there are
no overflow errors in the future.
Moreover, the send function can be used by anyone to send coins to anyone else. If

the sender does not have enough coins to send, the require call fails and provides the
sender with an appropriate error message string.

2.3.2 EVM

The Ethereum Virtual Machine is a runtime environment for Ethereum smart con-
tracts. It is a quasi-Turing complete machine and the quasi qualification comes from
the fact that the computation is bounded through the gas setting which restricts the
total amount of computation done. All smart contracts are sets of bytecode instructions
that sequentially executed. Furthermore, the bytecode enables jumps allowing a Turing
complete behaviour.
In Solidity, once a contract is compiled, it is converted into a sequence of opcodes that

are operation codes and they are identified by abbreviations. Table 2.2 shows the most
common opcodes used and their fourth column reports the predetermined amount of
gas assigned to each of them. This value establishes the computational effort required
to perform that operation. The EVM executes bytecodes that are similar to opcodes
but they are represented by hexadecimal numbers. 21,000 gas is the minimum quantity
of gas that affects the state of the EVM, indeed, this amount is required in order to
transfer Ethers through accounts. According to this, execturing a function requires
21,00 gas and the gas needed to preform the certain operation. As far as the read
operations are concerned, they are simple views of the state of the EVm so they do not
have an execution fee.
In a general scenario, before preforming an operation, the user sets a gasLimit that is

the maximum amount of gas that he is willing to pay and two scenari can occur. In the
former the quantity of gas overcomes the gasLimit, so the operation will be aborted,
the modification will be rolled-back and the spent gas will be lost. By contract, in the

9without the keyword, other contracts cannot access to the variable.
10Mappings can be seen as hash tables which are virtually initialised such that every possible key

exists from the start and is mapped to a value whose byte-representation is all zeros.
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latter the user has set a gasLimit higher than the required, the operation will end, and
only the used gas will be taken.
The gas mechanism is an incentive system for miners, to spent hardware and power

costs to validate transactions, and it is a prevention for attackers. Furthermore, Turing
complete characteristic of the EVM ensures a limit on the amount of gasLimit to set
of computable functions.

Opcode Name Description Gas
0x00 STOP Halts execution 0
0x01 ADD Addition operation 3
0x02 MUL Multiplication operation 5
0x03 SUB Subtraction operation 3
0x04 DIV Integer division operation 5
0x08 ADDMOD Modulo addition operation 8
0x09 MULMOD Modulo multiplication operation 8
0x10 LT

Comparison operations 3
0x11 GT
0x12 SLT
0x13 SGT
0x14 EQ
0x16 AND

Bitwise operations 30x17 OR
0x18 XOR
0x31 BALANCE Get balance of the given account 700
0x50 POP Remove word from stack 2
0x51 MLOAD Load word to memory 3*
0x52 MSTORE Save word to memory 3*
0x54 SLOAD Load word from storage 800
0x55 SSTORE Save word to storage 20,000**
0x56 JUMP Alter the program counter 8
0x57 JUMPI Conditionally alter the program counter 10
0x70 PUSH

Stack operations 30x80 DUP
0x90 SWAP
0xf0 CREATE Create a new account with associated code 32,000
0xf1 CALL Message-call into an account 25,000

Table 2.2: Table of the most used opcodes.
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2.3.2.1 Memory Usage in Ethereum

Figure 2.20: Ethereum Virtual Machine Architecture.

As the Figure 2.20 indicates, the EVM has three areas where it stores data. The EVM
is a stack machine as a matter of fact, all computations are carried out on a data area
called stack that contains aal the smart contracts state variables. It has a maximum
size of 1024 elements and contains words of 256 bits. The access to this memory area
us limited to the top end and it pursues a process that allows to copy one of the top
16 elements to the top of the stack or swap the top element with one of the 16 ones
below it. All the other operations, in general, use the fist two elements from the stack
and push the result onto this volatile memory. In addition, it is possible to move stack
elements to storage or memory to obtain deeper access to the stack but it is not possible
to log in arbitrary elements deeper in the stack without removing the top one. In this
region,the opcodes to operate with it are SLOAD and STORE.
The memory is the second data region. A contract gets a new cleared instance of it

for each message call. Memory is linear and can be addressed at byte level, but reads
are restricted to a width of 256 bits, whereas writes can be either 8 bit or 256 bits
large. Memory is expanded by a 25-bit word when accessing a unmarked memory word.
At the time of expansion, the cost in gas must be paid and its cost steadily increases
according to its growth. MLOAD, MSTORE, and MSTORE8 are the only three
instructions that enable the access to memory area.
Each account has a data area called storage, that is persistent between function calls

and transactions. It is a key-value store which maps 265-bit words to 256-bit words. Its
operations are extremely expensive so the user minimize the amount of data stored in
this persistent storage to what the contracts has to run. In this kind of memory, it is
stored data like derived calculations, caching, and aggregates external of the contract.
A contract can neither read nor write to any storage apart from its own. It can be
accessed with different instructions, such as PUSH, POP, COPY, SWAP, and other
ones.
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Vulnerabilities

In this chapter, we provide information about the concept of vulnerability in this
research area and we give a wide explanation of what kind of vulnerabilties are already
found. The analysis of this topic makes us aware of the diffusion of issues that are
hidden in the whole blockchain engine.
Moreover, the chapter tskes into account analysis methods that enable the developing

strategies which aim to detect and mitigate the ever-detecting security flaws and their
consequenties.
In Section 3.1, we explain of the most relevant surveys related to Ethereum vul-

nerabilities so far made, then we introduce the classification that allows us to choose
the kind of vulnerability took into account in this research.
In Section 3.2, we analyze how Ethereum faced with different security attacks.

Once we analyzed forking concept and its different categories, we take into account each
fundamental hard fork that has characterized Ethereum evolution. Following this, we
show several known attacks that have occurred in Ethereum blockchain.
In Section 3.3, we illustrate several types of technical methodologies used to imple-

ment their security analysis on smart contract. Once we have introduced the exisiting
surveys of this research area, we focus our attention on tools that use static analy-
sis methods because they represent the perfect starting point for the progress of the
research.

3.1 Relevant Surveys

The identification and the analysis of vulnerabilities in Ethereum smart contracts give
the possibility to overcome security problems that are linked to them and have an impact
on the whole system.
The main surveys that are taken as points of reference are the:

• N. Atzei, M. Bartoletti and T. Cimoli[7] group sixteen vulnerabilities in three
classes, according to the level where they are introduced (Solidity, EVM bytecode
or blockchain respectively).

• M. Bartoletti and L. Pompianu[9] illustrate an empirical analysis of smart con-
tracts, then they categorize them into five types according to their intended ap-
plication domain.

• X. Li, P. Jiang, T. Chen, and X. Luo[26] review the security of blockchain systems.
Moreover they analyzed the security issues of smart contracts in the Ethereum
network.

37



Starting from these important researches, other surveys on smart contracts vulnera-
bilities have been conducted. The most relevant one is the one given by H. Chen, M.
Pendleton, L.Njilla, and S. Xu[12].
It explains vulnerabilities detected by the analysis of important attacks that have

damaged Ethereum network and its engine.

Figure 3.1: A classification of Ethereum vulnerabilities and their treatments.

They analyze the Ethereum system as a layered architecture and they list 44 vulner-
abilities categorizing them according to the layer to which they belong, as it is shown
in the Figure 3.1 1. Once we had a clear vision of the amount of vulnerabilities de-
tected in Ethereum blockchain, we classify them in order to get to the causes. Getting
this notion allowed us to understand the lack of analysis and validation that Ethereum
scenario had.

1There are three different categories of vulnerabilities’ situation: the completely filled squares stand
for the already eliminated issues, the partially ones for those avoidable and the unmarked are the
pitfalls which have to be eliminated.
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Location Causes Field

Ethereum
Application
Layer

enternal dependence
Smart contract

programming issues
improper validation
inadequate authentication
uncontrolled gas consumption
inconsistent exception handling

Solidity language
and toolchain

undefined behaviour
improper syntax
weak types system
buggy compiler

Ethereum Design
and

Implementation

missing input check
missing orphan proof
improper execution model
improper gas costs
flexible block creation

Eth. Data
Layer

insufficient transaction information
uncontrolled state trie

Ethereum
Consensus
Layer

partially sequential PoW
inherent defect of PoW
termination first
greedy incentive
incompatible incentive

Ethereum
Network
Layer

improper RLPx protocol
improper Ethereum Wire Protocol
improper configuration

Human, usability, and
networking factorsEthereum

Environment

insufficient authentication
faulty web development
exposed Internet service

Table 3.1: Categorization of attacks.

The most common issues of blockchain environment help us to list the scope, as shown
in Table 3.1, which we should undertake in order to make a contribution that overcome
a certain pitfall. They show all the vulnerabilities that have been detected since 2015
so it is possible to visualize already patched pitfalls, the ones that can be avoided by
best practices and the open ones.
The research is precise and the additional causes classification gives the possibility to

group the vulnerabilities into areas of interest. Looking at the application layer detected
vulnerabilities, they could be listed in six groups:

1. the ones that are caused by external dependencies,

2. those produced by improper validation,

3. the ones that are originated by the inadequate authentication,

4. those linked to wrong exception handling,

5. the problems followed by the difficult creation of flexible blocks,

6. the issues of the gas consumption.
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3.2 Ethereum Scenario

Despite all the security enhancements, Ethereum has faced with several attacks which
aim to obstruct the natural flow or even fully destroy the network. Pitfalls relating to
cryptocurrency wallets, smart contracts, transaction authentication, mining pools, and
blockchain networks are frequently exploited by adversaries.
Ethereum has incurred on several stages in order to update the whole blockchain

engine and provide solution to detected vulnerabilities. The whole blockchain engine
has modified to provide solution in the detection of noticed vulnerabilities.
Forking is a process that involves the need to make technical improvements and

updates to the code. It implies some temporary or permanent divergences in Blockchain
environment. Public blockchains consist of open source development communities which
carry on the codebase and the miners who run the software and validate the data
structure. In this scenario, forks are common processes for the development of public
blockchains.
It can assume two different forms and both provoke different consequences The former

is caused by an inernal division of the community (i.e.Ethereum and Ethereum Classic)
wherease the latter generates the creation of a new blockchains with important alteration
compared to the source code (i.e. Bitcoin and Zcash).

3.2.1 Different Types of Forks

From a visual point of view, the fork process produces a split of the chain into two
different branches. According to the nature of change, the fork con be categorized into:

Figure 3.2: Soft fork mechanism.

• Soft fork is an update on the blockchain protocol that is backward compatible.

It introduces some changes in the code that do not affect the functional continuity
with older version but it may provoke a temporary divergence in the Blockchain.

According to this, the new forked chain will follow new regulation but the previous
ones are still valid. This type of modification requires only a majority of the miners
upgrading the rules2. New transaction types can be added as soft forks, requiring
only that the participants understand them.

• Hard fork consists of changing the blockchain protocol in a way that is backward
incompatible and it introduces a discontinuity with older version.

It is clear from the Figure 3.3, that the nodes running the previous versions will
not be accepted by the newest one.

2By contrast, the hard fork can be done when all nodes have to upgrade ad agree on the new version.
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Figure 3.3: Hard fork mechanism.

A hard fork is a complete modification of the protocol that sets the validity or
invalidity of blocks and transactions.

Transactions on the new chain will not be valid on the older chain and the whole
network will have to upgrade to the last versions of the protocol in order to be in
the new froked chain. Hard Fork is pursued when the major part of the mining
community.

3.2.2 Ethereum Roadmap

Figure 3.4: Ethereum improvements table.

From the beginning, Ethereum has undergone significant changes over the time in the
form of hard forks that enables the development of the whole network. In July 2015,
there was the launch of Frontier that is the original release of the Ethereum network. It
is a prototype of decentralized applications and enables the mining of Ether. The launch
consisted of a Genesis block, that included 8893 transactions for those who bought Ether
durign the presale. Initially, Ethereum had a fixed gasLimit of 5,000 gas per block.
Each transaction had a basic cost of 21,000 gas, according to it, Ethereum blockchain
only allowed for mining blocks. Once this limit was changed, the gasLimit value raised
to 3 million of gas, subsequently block #46,147 contained Ethereum’s first transaction.
The first production release of Ethereum was Homestead which is introduce in March
2016 and introducing Solidity as smart contract programming language, provided an
improvement of development capability. Moreover, it expanded user accessibility with
the establishment of the Mist wallet and a better interface the procedure of sending and
receiving Ether. On 17th June 2016, a vulnerability detected inside the DAO contract
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Figure 3.5: Ethereum’s first transaction.

had been exploited to drain 3.6 million ETH from the fund. This amount of ETH
funds was frozen for 28 days before they could be transferred. If no action would have
been taken, the attacker would have owned around 4.4% of the total supply of ETH.
A controversial proposal (EIP 779) was drawn up in order to make a countermeasure
and change the code of the attacker’s lockup contract. On July 20th, a major part of
mining power supported a fork that allowed the EIP 779 proposal, while the minority
decided to split off and rename the old chain to Ethereum Classic.
Metropolis represented the third stage of Ethereum roadmap. It aimed to improve

security, scalability, privacy, flexiility, and efficiency to the blockchain network.
It is divided into two parts:

1. Byzantium that was backward compatible upgrade that introduced zk-SNARKS,
a privacy-preserving technology used by Zcash. Another upgrade concerned the
growth of the delay of the “difficulty bomb” which increased block times in order
to reduce block rewards from 5 to 3 ETH. The reduction was an incentive to make
progress towards the proof-of-stake.

2. Constantinople which was an hard fork that was deployed and introduced several
upgrades around maintenance and operations of the chain. It has different phases.

(a) During St.Petersburg, there were pursued improvements that made cheaper
to do thing on-chain. The block reward was reduced from 3 to 2 ETH.

(b) The Istanbul fork introduced more privacy capabilities like a significant re-
balancing of the gas pricing with the computation costs of the EVM opcodes.
In addition, it enhanced denail-of-service attack resilience and made layer 2
solutions more perfomant.

Serenity is the final stap of Ethereum’s development that will make the final transac-
tion from the Proof-of-work consensus algorithm to a Proof-of-Stake engine. This new
consensus mechanism will reduce the computational and electrical resources needed to
secure the Ethereum network.

3.2.2.1 Ethereum Improvement Proposals

Ethereum community enables anyone to make its own contributio in order to improve
Ethereum structure and performances.
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Ethereum Improvement Proposals[1], known as EIP, are strandards that spec-
ifies potential features or processes for Ethereum environment. They hold technical
specifications for the proposed modifications which have to be discussed by the whole
community. There are three kind of EIP3:

1. Standards Track EIP reports any change that affect ethereum implementations
(i.e. modification to the network protocol, in block or transaction directives or
any other proposed application standards/ conventions).

There are four sub-categories of Standards Track:

• Core covers developments that require consensus fork or that concern the
miner/node strategy changes;

• Networking includes network protocol specifications;

• Interface involves advances related to client API/RPC specifications and
standards;

• ERC belongs to application-level standards and conventions like wallet for-
mat, token standards (ERC-20), name registries or URI schemes.

2. Meta EIP describes a process relating to Ethereum or suggest a change to a
process. Compared to the Standards ones,they are used in different area of use4

They present an implementation and they need the community consensus. They
are not just guidelines but they have to be followed.

3. Informational EIP reports an Ethereum design issue, provides common guide-
lines or gives advices to the community but it does not propose a new feature.

3.2.3 Main Attacks

We take into account twelve known attacks which have occurred in Ethereum envorn-
ment in the previous years. We analyze the most famous attacks belonging to the
application layer, then we introduce a network layer attack, the Eclipse attack, which
tries to change the correct peers communication. Moreover, we look over several attacks
against the whole environment that concern decentralized platforms.

• In Ethereum network, a DAO is a Decentralized Autonomous Organization. Its
aim is to order rules and decision, making apparatus of an organization and creat-
ing a structure with decentralized control.This Organization follow specific stages.

First of all, there is the writing of the code of smart contracts, then the Initial
Coin Offering (ICO) step starts. During this period, users add cash to the DAO
by acquiring tokens that represent ownership to allow the store of the needed
resources. Following this, the DAO starts to operate. The token holders propose
to the DAO on how to spend the money and the members. Once a proposal is
adopted by the majority, the amount of money is sent to the proposer’s account.
Moreover, the quantity of money of those did not agree with the proposal is dis-
tributed to each of them via contract accounts creation processes and mechanism
is implemented in the splitDAO () function.

3https://github.com/ethereum/EIPs
4The Standards Track EIPs are focused on the Ethereum protocol field.
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On 17th June 2017, the DAO was attacked by using the reeentrancy vulnerability,
and the attacker started draining Ether from the main address where it was stored.
In detail, as it is shown by the Figure 3.6, the attack follows this process:

Figure 3.6: DAO attack explanation.

1. the minority requests for a refund, the DAO contract creates a new DAO con-
tract account (Step 1 and 2);

2. the investor’s money is tranferred to the new DAO contract (Step 3 and 4);

3. the requesting investor may receive the reward for the previous contribution
(Step 5 and 6).
The issue is verified because the value of the refunded tokens for the in-
verstor is strictly related to the state variables balances [msg. sender ] and
totalSupply that are updated at the end of the function after the msg.send

.call. value ().

4. The attacker may recursively call the function (Step 7) before the state vari-
ables are updated and he may draw more money than he has to obtain.

• A multisignature wallet is a particular smart contract that need multiple private
keys in order to unlock a wallet that protects Ether.

1 contract Wallet {
2 address _walletLibrary = new WalletLibrary ();
3 address owner;
4 ...
5 function () payable {
6 if (msg.data. length > 0) _walletLibrary . delegatecall (msg.

data);
7 }
8 }
9
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10 contract WalletLibrary {
11 ...
12 function initWallet ( address [] _owners , uint _required , uint

_daylimit ){
13 initDaylimit ( _daylimit );
14 initMultiowned (_owners , _required );
15 }
16 17 }

It supported by Parity client contains two contracts:

1. the WalletLibrary that has all the main functions of the wallet;

2. the Wallet which holds a reference (to the library) that sends all the un-
matched function calls to the library contract using the delegatecall.

The Parity multisignature wallet was compromised twice in 2017. The first at-
tack used the delegatecall injection and the erroneous visibility vulnerabilties. The
attacker became the ownership of the Wallet contract and it sent a transaction
to the contract using the msg.data from the initWallet (). Since the contract
Wallet did not check the function, the contract’s fallback function5 was triggered
to delegate the wallet initialization task to the library. Subsequently, the library
replaced the original multi-owner of the contract Wallet with the attacker’s ad-
dress (which is specified in msg.data). In this attack the initWallet () function
was not an internal one so it can be externally call via delegatecall, the li-
brary is a stateful contract and it can change the state of the Wallet, the Wallet’s
fallback function did not verify the function being called.

In the second attack, it was exploited the unprotected suicide and frozen Ether
pitfalls.In order to overcome the issues caused the first attack, the Parity develop-
ers added a modifier, only_uninitialized that protect functioninitWallet ().
However, also the library was defined uninitialized and this enalbed an attacker to
bypass the modifier and set himself as the owner of the library. Once taking over
the library, the attacker invoked the suicide method to kill the library, causing all
of the Wallet contracts relying on the library unusable.

• BECToken6, ERC-20 contract, was attacked on 22nd April 2018 by the exploitation
in the integer overflow vulnerability and it caused an amount of token stolen and
a temporary shutdown of token trading at exchange.

1 function batchTransfer ( address [] _receivers , uint256 _value )
public whenNotPaused returns (bool) {

2 uint cnt = _receivers . length ;
3 uint256 amount = uint256 (cnt) * _value ;
4 require (cnt > 0 && cnt <= 20);
5 require ( _value > 0 && balances [msg. sender ] >= amount );
6
7 balances [msg. sender ] = balances [msg. sender ]. sub( amount );
8 for (uint i = 0; i < cnt; i++) {

5From the Solidity documentation provided by the Community[4], it is possible to know that a
fallback function has no arguments, cannot return anything and must have an external visibility.
Its execution is done during a call to the contract none of the other functions match with the input
signature, or if no data is supplied at all or the is no receive Ether function. It always receives data but
in order to get also Ether has to be set as payable . It can only rely on 2300 gas whether it is used
in place of a receive function.

6https://etherscan.io/address/0xc5d105e63711398af9bbff092d4b6769c82f793d#code
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9 balances [ _receivers [i]] = balances [ _receivers [i]]. add(
_value );

10 Transfer (msg.sender , _receivers [i], _value );
11 }
12 return true;
13 }

The function batchTranfer () has an issue. It enables the tranfer of tokens to
multiple recipients through two arguments:

1. _receivers: the array of the recipients’ address;
2. _value: the number of tokens.

The statement in Line 3 determined the number of tokens the sender should give
for a certain transaction, but it was incorrect as a matter of fact it may have
an integer overflow: if the _value is set to 2255 and _receivers to two account
linked to an attacker, the attack overflows to 256-bit variable amount and makes
it zero. According to this, the attack bypasses the ceckes that are in Line 4 and
5 and allows the send of a large amount of tokens.

• GovernMental contract is an array-based pyramind Ponzi scheme, where the last
partecipant wins a jackpoi whether no one gets the scheme within 12 hours after
the last participant.

In the contract are several pitfalls. Firstly, the DoS with unbounded operations
vulnerability which is verified when the array storing the participants is too large
and the quantity of gas needed for operating on that array will not respect the
gasLimit. As consequence of this issue, the winner cannot receive the 1,000 ETH
jackpot.

Secondly, the unchecked call return value vulnerability is detected whether the
contract does not check the returned value when sending profits to the winner.
The owner of the contract fails the payment:

– calling 1024 contracts before the target callee contract of the payee that
produces the callee contract to return FALSE and this means that it does
not get any payment;

– the caller contract supposes to check this returnd value and then go on but
it does not do it. So, the is a loss of money belonged to the caller contract’s
owner.

Another attack exploits transaction-ordering dependence vulnerability which a
malicious miner can discard same transaction linked to GoverneMental contract
or reorder transaction in order to become the last player in each round.
The last attacke uses the timestamp dependence vulnerability which a miner can
modify block . timestamp to be the winner.

• HYIP is a Ponzi scheme which is “an investment fraud that involves the payment
of purported returns to existing investors from funds contributed by new investors.
The organizers of these scheme often chatch new investors by promising to invest
funds in opportunities claimed to generate high returns with little or no risk. Ponzi
schemes require a constant flow of money from new investors to continue and they
inevitably collapse.”[8] This process is performed by the function performPayouts

() that contains the DoS with unexpected revert vulnerability.

46



1 contract HYIP {
2 uint constant INTERVAL = 1 days ;
3
4 struct Investor {
5 address addr ;
6 uint amount ;
7 }
8 Investor [] private investors ;
9 ....
10 function performPayouts () {
11 ...
12 uint idx ;
13 for ( idx = investors . length ; idx - - > 0; ) {
14 uint payout = ( investors [idx ]. amount *33) /1000;
15 if (! investors [idx ]. addr.send( payout )) throw ;
16 }
17 }}
18
19
20 contract Mallory {
21 address victim = 0 x23 ...;
22 address private owner ;
23 bool private attack = true ;
24 function () payable {
25 if ( attack ) throw ;
26 }
27 function stopAttack () {
28 if ( msg. sender == owner )
29 attack = false ;
30 }
31 }

The attack follows this steps. First of all, the attacker writes the Mallory contract
which is the explotation one where the attacker invests and throws an exception
in the fallback function (Line 24). Following this, the function perfomPayout ()

is used to pay the investors, then the fallback function is invoked, throws an
exception which provokes a reversion of the money transfer (Line 15) and DoS to
HYIP.

Subsequentialy, the attacker can blackmail HYIP by undoing the throw opera-
tion (Line 25) via function stopAttack () that can be done by the owner of teh
contract.

• Fomo3D7 was a very popular Ponzi game in 2018, where the last participiant who
buys key before the timer runs out won the jackpot. The price of the keys con-
stantly rises with the number of buyers. When a key was sold, the countdown
lasts 30 seconds. Moreover, Fomo3D implemented an airdrop lottery to get par-
ticipants. Each purchase over 0.1 ETH, the buyer has a random chance to be
selected for a profit from the prize pool.

The first attack is focused on the airdrop mechanism.

It exploited the generating randomness vulnerability.
1 function airdrop ()
2 private
3 view
4 returns (bool)

7https://etherscan.io/address/0xa62142888aba8370742be823c1782d17a0389da1#code
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5 {
6 uint256 seed = uint256 ( keccak256 (abi. encodePacked (
7
8 ( block . timestamp ).add
9 ( block . difficulty ).add
10 (( uint256 ( keccak256 (abi. encodePacked (block . coinbase ))))

/ (now)).add
11 ( block . gaslimit ).add
12 (( uint256 ( keccak256 (abi. encodePacked (msg. sender )))) / (

now)).add
13 ( block . number )
14
15 )));
16 if (( seed - (( seed / 1000) * 1000)) < airDropTracker_ )
17 return (true);
18 else
19 return (false );
20 }

The airdrop () generates a random seed by performing a deterministic computa-
tion on the current block state and the address of msg. sender.

If the seed satisfies a specific condition (Line 16), the current key buyer obtains
the airdrop. But the block information is predictable, so the attacker can simply
pre-compute the address of new contracts and bruteforces for the successful seed.

The second attack involves tha winning procedure. The attack expolited the DoS
with block stuffing vulenrability and allows the attacker to win the prize of around
US$3M. The attack follows this procedure: when the timer of the game shows
three minutes, the attacker bought a key and then sent multiple transactions to his
accounts with enough gasPrice. Because of the choice of miners, these transactions
were first stored into blocks. The maximum amount of gas consumption for each
block is determined ans any transactions related to Fomo3D were not collected into
blocks. This situation congests the network until the end of the game and the
attacker becomes the last player.

• The ERC-20 signature replay attack exploits the insufficient signature infor-
mation vulnerability. Looking in detail, during the tranfers of ERC-20 tokens, the
user has to own enough Ether to cover the transaction fee, which can be difficult
when the user does not have any Ether. The proxy transfer method is introduced
in order to overcome this issue as a matter of fact it enabled userc to pay transac-
tion fee in tokens, as opposed to paying only in ether in generic ERC-20 contracts.
A user can authorize a proxy to carry out a transaction and reward the proxy. We
will explain this scenario through an example which has Alice as sender and Bob
as recipient[12]. As shown in Figure 3.7, Alice has to transfer 100 MTC tokens to
Bob. First of all, She sends a signed message off-chain to a proxy, then the proxy
makes the transaction to transfer 100 tokens to Bob and it receives 3 tokens from
Alice as service fee. The signature is verified using the function transferProxy ().

1 function transferProxy ( address _from , address _to , uint256
_value , uint256 _fee ,

2 uint8 _v , bytes32 _r , bytes32 _s) public returns (bool){
3
4 if( balances [_from] < _fee + _value || _fee > _fee + _value )

revert ();
5
6 uint256 nonce = nonces [_from ];
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Figure 3.7: ERC-20 signature replay atteck via transferProxy ().

7 bytes32 h = keccak256 (_from ,_to ,_value ,_fee ,nonce);
8 if(_from != ecrecover (h,_v ,_r ,_s)) revert ();
9
10 if( balances [_to] + _value < balances [_to]
11 || balances [msg. sender ] + _fee < balances [msg. sender ])

revert ();
12 balances [_to] += _value ;
13 emit Transfer (_from , _to , _value );
14
15 balances [msg. sender ] += _fee;
16 emit Transfer (_from , msg.sender , _fee);
17
18 balances [_from] -= _value + _fee;
19 nonces [_from] = nonce + 1;
20 return true;
21 }

At this point, Bob gets 100 Tokens from Alice and, following this, he replays
with a new transaction of 100 MTC tokens from Alice. Subsequently the Proxy
carries out the new transaction without Alice’s autorization. This function uses
Solidity function ecrecover ()8 in order to identify Alice’s address that issued the
signature. But Alice’s address, which is bound to her signature, is not proved in
the off-chain message so the signature can be accepted as valid with respect to any
token contract address (i.e. MTC or GGoken). This means that Bob can replay
the signed message to require other Tokens and obtain extra money to Alice, like
it is illustrated in the third and fourth step respectively.

• Rubixi contract is a Ponzi scheme which contains the erroneous constructor name
vulnerability. According to it, the constructor function has an incorrect name
that allows anyone th become the owner of the contract. This issue has been
primarily addressed in the Solidity compiler versions prior to 0.4.22. Indeed, the

8“ ecrecover ()is a function that recovers the address associated with the public key from elliptic
curve signature or return zero on error.” (Ethereum, 2018)
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contract’s constructor is a function declared with the same name as the contract
that is executed one-time upon the creation of the contract.

1 contract Rubixi {
2 // Declare variables for storage critical to contract
3 uint private balance = 0;
4 uint private collectedFees = 0;
5 uint private feePercent = 10;
6 uint private pyramidMultiplier = 300;
7 uint private payoutOrder = 0;
8 address private creator ;
9 // Sets creator
10 function DynamicPyramid () {
11 creator = msg. sender ;
12 }
13 modifier onlyowner {
14 if (msg. sender == creator ) _
15 }
16 struct Participant {
17 address etherAddress ;
18 uint payout ;
19 }
20 Participant [] private participants ;
21 // Fallback function
22 function () {
23 init ();
24 }
25 // init function run on fallback
26 function init () private {
27 // Ensures only tx with value of 1 ether or greater

are processed and added to pyramid
28 if (msg. value < 1 ether ) {
29 collectedFees += msg. value;
30 return ;
31 }
32 uint _fee = feePercent ;
33 // 50% fee rebate on any ether value of 50 or

greater
34 if (msg. value >= 50 ether ) _fee /= 2;
35 addPayout (_fee);
36 }
37 // Function called for valid tx to the contract
38 function addPayout (uint _fee) private {
39 // Adds new address to participant array
40 participants .push( Participant (msg.sender , (msg.

value * pyramidMultiplier ) / 100));
41 // These statements ensure a quicker payout system

to later pyramid entrants , so the pyramid has a
longer lifespan

42 if ( participants . length == 10) pyramidMultiplier =
200;

43 else if ( participants . length == 25)
pyramidMultiplier = 150;

44 // collect fees and update contract balance
45 balance += (msg. value * (100 - _fee)) / 100;
46 collectedFees += (msg. value * _fee) / 100;
47 // Pays earlier participiants if balance sufficient
48 while ( balance > participants [ payoutOrder ]. payout )

{
49 uint payoutToSend = participants [

payoutOrder ]. payout ; participants [
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payoutOrder ]. etherAddress .send(
payoutToSend );

50 balance -= participants [ payoutOrder ]. payout
;

51 payoutOrder += 1;
52 }
53 }
54 ....
55 }

If the name is incorrect, the constructor becomes a public function that can be
invoked by any EOA. Rubixi contract was originally named DynamicPyramid
and it was later renamed by the developer to Rubixi, but, as we can see in the
thirteenth line, the constructor was not updated. In this scenario, anyone can
calls the public function DynamicPyramid () to become the owner of the contract
and therefore steal its funds. The vulnerability has been eliminated, starting
Solidity version 0.4.22, the keyword constructor is been introduced in order to
distinguish the constructor function from other regular functions.

• Eclipse Attack[38] enables an attacker, who can divert the connection of some
nodes of the P2P network in order to isolate those nodes from the whole network.

This action can be done manipulating the targeted nodes’ routing tables which
exploits unlimited node creation and uncapped incoming connections vulnerabil-
ties.

Once the client has restarted the system, it has no connection and the attacker
starts incoming connection from previously created node IDs to the victim.

A node is eclipsed when its conection slots9 contained incoming connection from
the attacker that monopolizes the link of communication and reaches the upper
bound limit of the incoming TCP connections.

• EtherDelta is a famous extrachange for users to market ERC-20 tokens in a
trustless manner in return for a small percentage fee charged on each transac-
tion. It was affected by a code injection which caused the Cross Site Scripting
vulnerability in September 2017, producing the loss of thousands of dollars in
cryptocurrency.

The attacker created a new token contract that has several malicius JavaScript
code in the token’s name.

EtherDelta pulls out a newly created token’s name from the token contract’s
code and shows it on the website. Moreover, in order to perfom the token-trade
transaction, a user has to insert his private key and his account address to the
browser to sign the transaction.

As consequences of these actions, when the name of the new token was shown on
the user’s browser, the malicious JavaScript code started stealing his private key
that caused the loss of money protected by the privete key.

• Enigma is a decentralized investiment platform that was attacked during its ICO
on 21st August 2017 because of the exploitation of the weak password vulnerability.

925 by default
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The attacker obtained the Enigma founder’s password and he took control of
the company’s comunication channels, email lists and Google account hosting the
ICO’s presale.

Moreover, the attacker changed the offical ICO contract address with its own one
and sent messages to request buyers in fraud presales.

• CoinDash, a portfolio management platform, was compromised owing to an ex-
plotation of the broken access control vulnerability during the course of its ICO10

in July 2017. It caused a loss of US$7M worth of Ether within a few minutes.

The attack is composed by getting in the infected web application that hosts
CoinDash’s website and replacing the ICO contract address with one controlled
by the attacker.

• MyEtherWallet, the web’s popular client-side Ethereum wallet, has been com-
promised by a DNS attack on 24th April 2018. The attack exploits a joint BGP

Figure 3.8: MyEtherWallet team confirmation on Twitter.

and DNS hijacking to mislead users to a counterfeit version of the website and
compromised tha victims’ wallet and stole US$17M.

When users enter in their MyEtherWallet, their requests were directed to the fake
DNS servers that returned IP addresses ti direct users to a phishing website.

The users proceeded to login to this site expoising their passphrases and their
keys.

10ICO is basically blockchain crowdsale, the cryptocurrency version of crowdfunding.
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3.3 Security Analysis Methods

In Ethereum environment, smart contracts have a fundamental role in the execution
of transactions. They facilitate the application of the blockchain technology, there are
several security risks and vulnerability in the smart contracts.
Their immutability is the most critial challenge, indeed whether one of the en-

gaging parties modifies the digital agreement, the trust in the contract will valish.
Moreover, this kind of contracts can not be cancelled, even if in their codes are detected
sofware bugs or vulnerabilties.
Futhermore, it is also hard to test them during their run-times because they constantly

interact with other samrt contracts and they repearlty invoke external chain services.
So, it is clear that smart contracts must be in-depth tested before their release. As a
follow-up, a large number of tools have been developed and they use different approaches
and techniques that identify pitfalls in the Ethereum environment.
From the literature [31], the security analysis methods of smart contract are catego-

rized in three different type:

• Static Analysis

• Dynamic Analysis

• Formal Verification Methods.

Starting from this categorization, we focus on static and dynamic groups and we take
into consideration different methodologies for each of them.

3.3.1 Static Analysis

Static analysis is a technique of analyzing a computer program or compiled code in a
non run-time environment. It inspects the programming code without executing
the program. In general, it examines:

• all possible behaviours,

• vulnerable patterns,

• flaws what it is expected in run-time.

By contrast, one of the negative aspect of this method is that it can not detect vulnera-
bilities that occur during the execution time. Moreover, it may introduce false positive
results. The most common methodologies of this type of analysis are:

• Symbolic execution

• Control Flow Analysis

• Pattern Recognition

• Rule-base Analysis

• Compilation

• Decompilation

53



3.3.1.1 Symbolic Execution

Symbolic execution is a technique for systematic exploration of the behavior of a program
that uses symbolic inputs. The power of this kind of analysis as systematic bug finding
has been undersood only during the last decade. Symbolic execution translates the
values of program variables as symbolic expressions of the input symbolic values. Every
symbolic path has a formula that is a condition in order to progress. A path is infeasible
whether its path condition is unsatisfiable. Otherwise, the path is feasible.
It has been shown as symbolic execution gives better results than other methodologies

(e.g. dynamic program analysis) because it takes one path at time and this allows to
achieve better precisions. However, whether inputs take the same path through the
program, there is savings over testing each of them. In addition, it allows the discovery
and exploration of potential paths in a program but this positive aspect becomes a
drawback in scenario where the amount of detected paths are exponential. Indeed, one
of the main limitations of it is the path execution problem. In this situation, the number
of feasible paths grow exponentially with the subsequent increase in program size and
there is a possible generation of unbounded loop iterations.

3.3.1.2 Control flow Analysis

According to the research provided by F.E.Allen[6] in this field, “Any static, global
analysis of the expression and data relationship in a progrma requires a knowledge of
the control flow of the program.” In order to produce optimized programs, control flow
analysis has been embedded in manu compilers. Control flow analysis codifies the flow
connection in the program and its outcome of is the Control Flow Graph (CFG) that
describes the control relations between certain source code elements of the application.
A CFG is a directed graph in which the nodes represent basic blocks and the edges
constitute control flow paths.
A directed graph , G can be denoted by G = (B,E) where:

• B is the set of blocks { b1,b2,....,bn }

• E is the set of directed edges {(bi,bj),(bk,bl),....} Each directed edge is composed
by an ordered pair (bi,bj) of nodes11 which specify that there is a directed edge
between node bi and bj .

A subgraph of a directed graph,G = (B,E), is a directed graph G’ = (B’,E’) in which
B’⊂ B. A path is a directed graph is a directed subgraph, P, of orderde nodes and
edges obtained by succesive application of the successor12 function.
As Figure 3.9 shows, one of the many supgraphs of G is G’ = (B’,E’) in which
B’= {(2,3),(2,4),(3,5),(4,5),(5,2) }.
G’ can be depicted by the subgraph shows by the Figure 3.10.
The basic blocks are connected with directed edges representing the jumps in the control
flow.
The nodes of a CFG are basic blocks represented statements of the code that are

sequentially executed after each other without any jumps. Branching can only exist
at the end of blocks, after the execution of their last statement. The first step in the

11Nodes can not be distincts.
12A node, q, is said to be a successor of a node, p, if there exists one or more paths P=(p,...,q) and

P= (bl,...,bn) for which bl = p and bn = q.
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Figure 3.9: Example of a Directed Graph.
Figure 3.10: Example of a sub-
graph.

control flow creation is to establish the starting points of basic blocks, known as leaders.
A leader can be:

• the first statement of a program,

• any statement that is target of a conditional or unconditional branch statement,

• any statement that immediately follows a method invocation statements.

In order to determine the blocks by enumerating their statements from one leader to
another, it is important to know the sequence of statements and the leaders of basic
blocks of a program. Once the compiler has constructed the Abstract Syntax Tree
(AST) which implicitly describes the sequence of statements, it is possible to control
graph flow with higher granularity and examine the evaluation order to the expressions.
In general, the control flow information of methods, procedures or the subroutines of a
program are separately represented. Owing to technical reasons, each of these has two
type of basic blocks:

• the entry block shows the entering of a procedure,

• the exit block represents the returning from a called procedure.

The call edges outline the potential control flows among procedures. A connected con-
trol flow graph of a procedure with the call information produces the interprocedural
control flow graph (ICFG) of a program. In a ICFG, call edges are represented as
arrow-headed dashed lines between the call site, the Entry block of the called procedure,
the Exit block and the return statement in the caller ICFG component.
A CFG is a useful methodology for code optimization techniques (e.g. unreachable

code elimination, loop optimization or dead code elimination). Although the basic
structure of a CFG is quite common, the methods constructing it for applications are
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rather language dependent. Identifying control dependencies in special structures of the
target language may result in special algorithms. Moreover, some program elements or
applications may require minor modifications in the structure of the CFG (e.g. nodes
like entry nodes).

3.3.2 Dynamic Analysis

Dynamic analysis is a method which checks a programming application while it is exe-
cuting or in the run-time. Its behaviour is like an attacker who searches vulnerabilities in
vulnerable code by feeding malicious code or anonymous input to the required function
in a program. The most common methodologies of this type of analysis are:

• Execution trace at run-time

• Transaction Graph Construction

• Symbolic Analysis

• Validation of true/false positives

3.4 Static Analysis Tool engine

A static analysis tool for Ehtereum smart contracts should respect several properties:

• correct level of abstraction: the framework should have a correct level of
abstraction in order to detect common patterns. Indeed, if the tool is focused too
much on the detection of specific issue, it is difficult to append new detectors and
improve the types of analyses;

• robustness: the framework should able to take into account real-world contracts
without incurring any problems;

• performance: the analysis should be fast for any type of contracts.

• accuracy: the framework should enable to find potential pitfalls and its outcomes
should have a low number of false positives.

A compiler is a software program that translates a high-level source language program
into a form which can be execute on a computer. The compilation is a complicated pro-
cess and early in the development of compilers, designers introduced IRs, intermediate
representation also known as intermediate languages. IRs enable the management of
the complexitiy of the compilation process. The use of an IR allows the compiler to be
broken up into several phases and components, thus taking advantage of modularity.
In general, an IR is any kind of data structure that represent all the information of

the program and its execution has to be accurately conducted. It is the common inter-
face among the compiler components. Each compiler defines its own form and details
of its IR because its usage is internal to it. The IR should be general because it en-
ables the rapresentation of program traslated from different languages. The semantic
content of programming languages is defined as high from the compiler developers.
By contrast, the semantic content of machine-executable code is considered low
because it has got the nececcary information from the original program to perform its
correct execution. The compilation process involves the gradual lowering of the program
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Figure 3.11: Smart Contract System.

rapresentation as it is evident from the Figure 3.11 from high-level human-readable con-
structs to low-level instructions. An IR has to be able to represent multiple languages,
so it needs to be closer to the machine level in orther to constitute the behaviour of all
the languages.
From the literature [14], it is clear that a well-designed IR should be translatable into

several forms and its execution has to be done on different platforms. For instance,
if the parget id a processo or CPU, the IR needs to be traslated into the assembly
language of the specifc processor that is a one-to-one mapping to the processor’s machine
instructions. IR has to be at a higher level than typical machine instructions and not
assume any peculiar machine characteristic.

3.4.0.1 Different IR forms

An IR reports the correct execution of the original program. Each instruction in an IR
reproduces an simple operation. The constructs composing the IR are fewer than any
typical programming language because it does not need to make programming use easier
form developers. Indeed, imposing canonical forms in IRs decreases the amount of code
patterns that the compiler manages in performing code generation and optimization.
IR’s instructions may map many-to-one to a machine instruction because one machine
instruction may perform multiple operations.
The form of an IR can be categorized as hierarchical or flat. The former enables

nested structures (i.e. program control flows like if-the-else or do-loops and arithmetic
expressions), is closer to the typical programming language, and cand be internally
represented in the form of trees without loos od accuracy. The latter is seen as the
instructions of an abstract or virtual machine. Looking in detail, the instructions are
executed sequentually and control flows are specified by branch or jump instructions.
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Each instruction takes an amount of operands and produces a result. Both these form
of IRs use the language of an abstract stack machine where each operand for arithmetic
computation is specified by an instruction that pushes the operand onto the stack. Each
arithmetic expression evaluation is done on the operands extracted from the top of the
stack, and the result is polled back onto the stack.
There are additional information that have different aim than representing code exe-

cution. The compiler compiles the namespace in the original program into a collection
of symbol names. Variables, functions, and type information are part of these sym-
bol tables, and they encode information that controls the legality of certain optimizing
transformations. They also gives information needed by several tools such (i.e. de-
buggers or program analyzers). The symbol tables is an additional structure to the
IRs.

3.4.0.2 IRs for program delivery

With the spread of networked computers, it has become essential ensure the use of
neutral processors and operating systems. The distribution and delivery process is easier
with programs that can run on any machine. This is made possible using virtual machine
execution model to decrease and fix the diversity of system hardware. Interpretive
execution contributes to some loss of performance compared with compiled execution,
and initially it made sense only for applications that are not computation-intensive.
The perfomances of machines rise significantly and the advantages of the write-once,

run-anywhere approach outweigh potential loss in many applications.
As a result of this,the popularity of universally deployed programming languages (i.e.
Java) grow sharply. As far as Java language is concerned, it defines the Java bytecode,
which is a form of IR, as its distribution medium. Moreover, Java bytecode can be run
on any platform where the JVM (Java virtual machine) software is installed. With the
rise of the mobile Internet, applications are downloaded toever smaller devices to be run
instantly. Since IRs have less storage than machine executables, they reduce network
transmission overhead and allow hardware-independent program distribution.

3.4.0.3 Just-in-time compilation

Due to the widespread acceptance of virtual machine execution model, it has gained
importance finding ways of speeding up the execution. One method is Just-In-Time
compilation, a dynamic approach, which improves the performance of interpreted pro-
grams by compiling them during execution into native code to increase the speed of
the execution on the machine. Since compilation at runtime incurs overhead that slows
down the program execution, it would be convenient to take the JIT route only if there
is a high likelihood that the reduction in execution time more than offsets the additional
compilation time. In addition, the dynamic compiler cannot spend too much time op-
timizing the code, as optimization incurs much greater overhead than translation to
native code. Most JIT compilers compile only the code paths that are most frequently
taken during execution.
Dynamic compilation has several posirtive aspects compared to static compilation.

Firstly, dynamic compilation can optimize the generated code in a more effective way
using realtime profiling data. Secondly, whether the program behavior changes during
execution, the dynamic compiler can recompile to adjust the code to the new profile.
Finally, with the prevalent use of shared libraries, dynamic compilation has become the
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only safe means of performing whole program analysis and optimization, in which the
aim of compilation spans both user and library code. From these aspects, it is evident
that JIT compilation has become an indispensable part of the execution engine of many
machine.

3.4.0.4 Standadizing IRs

There is a specific link between the compiler and its IR. Generally, IRs are translatable
and it is possible to translate the IR of compiler A to that of compiler B, so compiler B
can benefit from the work in compiler A. In the past two decades, the diffusion of open
source software ever-incresed, and also compilers have been open sourced and exposed
their IR definition to the world. Because IRs can solve the object-code compatibility
issue among different processors by simplifying program delivery while enabling maxi-
mum compiled-code performance on each processor, standardizing on an IR would serve
the computing industry well.
A generic IR resolves two different issues reported to the computing industry:

• Software compatibility. In general two pieces of software are incompatible if they
are in different native code of different Instruction Set Architectures.

Having the same ISAs is not a sufficient condition to make two softwares com-
patible as a matter of fact they may have been built using different Application
Binary Interfaces or under different operating systems with different object file for-
mats. It is evident that there are many different incompatible software ecosystems
and the definition of a standard software distribution would be the best solution
for the computing industry.The distribution medium can be based on the IR of
an abstract machine and it will be rendered executable on a particular platform
through AOT or JIT compilation. Computing devices supporting this standard
will be able to run all software distributed in this form. This standardized soft-
ware ecosystem will create a level playing field for manufacturers of different types
of processors, thus encouraging innovation in hardware.

• Compiler interoperability.The algorithm that a compiler uses may fit for one pro-
gram but not for another. As consequence of this idea, developing a compiler
requires a huge effort and making further enhancements is inevitable. In this sce-
nario, IR translation is a way of allowing compilers to work together. A standard
IR allows to combine the strengths of the different compilers that use it which will
no longer need to incorporate the full compilation functionalities. Using a stan-
dard IR has several positive aspects. First of all, it would lower the input barrier
for compiler writers, because their projects could be conceived at smaller scales,
enabling each compiler writer to focus on his specialties. Moreover, the usage of a
standard IR would also make it easier to compare compilers because they would
produce the same IR as output and its consequences could revolutionize compiler
industry.

There are two visions for an IR standard. The former is focused on the computing
industry, by contrast, the latter on the compiler industry. The first is centered on the
virtual machine aspect, and the second on providing good support to several aspects of
compilation. It is evident that an IR standard should take into account both goals.
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3.4.0.5 IR design attributes

IR has several design attributes that belong to both visions taken into account or to
one of the them. Five attributes are shared by both visions:

• Completeness. The IR must is a clean representation of all programming lan-
guage constructs, concepts, and abstractions for detailed execution on computing
devices.

• Semantic gap. The semantic gap between the source languages and the IR must
be large enough that it is not possible to recover the original source program, in
order to protect intellectual property rights. This implies the level of the IR must
be low.

• Hardware neutrality. The IR must not have built-in assumptions of any special
hardware characteristic. Any execution model apparent in the IR should be a
reflection of the programming language and not the hardware platform. This
peculiarity ensures it can be compiled to the widest range of machines, and implies
that the level of the IR cannot be too low.

• Manually programmable. Programming in IRs is close to assembly programming.
This enables programmers to hand-optimize the code.

• Extensibility. Programming languages are constantly evolving, there will be de-
mands to support new programming paradigms. The IR definition should provide
room for extensions without breaking compatibility with earlier versions.

From the compiler’s perspective, there are three attributes that are important for the
IR to be used as a program representation during compilation:

• Simplicity. The IR should have few constructs that enable the rapresentation
of all computations translated from programming languages. Compilers often
perform the canonicalization process that translates input program into canonical
forms before performing several optimizations. Having the fewest possible ways
of representing a computation is good for the compiler, because there are fewer
code variations for the compiler to cover.

• Program information. The most complete program information exists in the source
form in which the program was originally written, some of which is derived from
programming language rules. Translation out of the programming language will
contribute to information loss. A good IR should preserve any information in the
source program that is helpful to compiler optimization.

• Analysis information. Program transformations and optimizations rely on addi-
tional information generated by the compiler’s analysis of the program (i.e. data
dependency, use-def, and alias analysis information). Encoding this kind of in-
formation in the IR enables it to be used by other compiler components, but it
can be invalidated by program transformations. Indeed this information needs to
be maintained throughout the compilation, which puts additional burdens on the
transformation phases.

From this detailed analysis, it is clear that a standard IR that enables target-independent
program binary distribution and that is internally used by all compilers may be ideal-
istic, but it is a good solution that holds promise for the whole computing industry.
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3.4.1 Tools

Testing is the most widely employed method to find vulnerabilities in real-word software
programs. Several frameworks have been made to enable to analyze Ethereum smart
contracts and detect potential pitfalls. They are based either on static or dynamic
analysis.
We take into consideration static framework because the fit with the need of the

research. In the following section, we introduce the most significant frameworks
analyzed during the first step of the research. We aim to detect limited class of vul-
nerabilities, so, we take into account static analysis tools that enable the detection of
specific gategories of pitfalls.

• Oyente13 is a framework that uses symbolic execution methods. It takes as input
bytecode of a smart contract taken from public repositories.

It pinpoints the specific line of the smart contract source code which contains any
security vulnerability.

Figure 3.12: Oyente Architecture.

The Figure 3.12 explains its modular design composed by 4 structures:

1. CFGBuilder that sets up the shape of the control flow graph where each
node is the execution of a basic block and the edge represents the jumps
between the blocks14.

2. Explorer enables the interpretation of loops that get a state to run and,
then, sybolically executes a single instruction in the context of that state.
In general, conditional jumps take boolean expressions and may alter the
flow of the program counter so the framework introduces a solver module.
Z315 determines if the branch condition is either true or false in that path;
if so, the program counter is updated to the target address otherwise both
branches are possible and more edges are added to the CFG. The solver
eliminates infeasible resulting traces.
The outcome of this stage is a set of symbolic traces associated with a path
constraint.

13https://github.com/melonproject/oyente
14Some edges cannot be determined statically at this analysis step, so they are constructed on the

fly during symbolic execution in the following steps.
15Z3 is an efficient Satisfiability Modulo Theories Solver available from Microsoft Research.

solver[16] in order to detect false positive. An SMT solver verifies the satisfiability of formulas in
these theories. It enables applications such as extended static checking, predicate abstraction, test case
generation, and bounded model checking.
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3. CoreAnalysis has logic of the identified vulnerabilities.
The module has sub-components that detect each group of vulnerabilities.

4. Validator is a still in progress filter and it aims to extract flase positives
from the results.

The tool sets a timeout for the symbolic execution of 30 mins per contract and
the timeout for each Z3 request is sets to 1 second.

• Vandal16 is a security analysis framework[10] for Ethereum smart contracts. It
converts low-level EVM bytecode to semantic logic relations. It performs a secu-
rity analysis in a declarative way.

Vandal facilitates a logic-driven static program analysis. As we can see from the
Figure 3.13, Vandal follows a specific process. Firstly the Extractor converts the

Figure 3.13: Vandal Pipeline.

program to a relational format, an Extensional Database (EDB) and it translates
low-level bytecode to logic relations for the logic-driven security analysis. The
Extractor consists of:

– a scraper that retrieves EVM bytecode from the blockchain:

– a disassembler that translates bytecode into opcodes (from bytecode to
mnemonics);

– a decompiler that converts low-level bytecode to register language.
This stage is composed by two different phases: in the former, a block is
symbolically analyzed whereas, in the latter it is incrementally built a CFG.

– an extractor which transfers the register tranfer language to a logic semantic
relations.

Secondly, a Datalog engine computes the result of the program analysis from the
EDB and the set of rules. It is a set of logic specifications for security analysis
issues. It synthesizes highly preformant C++ code from logic specifications. This
result is known as Intensional Database (IDB) and contains intermediate and final
results of the analysis.

16https://github.com/usyd-blockchain/vandal
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• Securify17 is a scalable security verifier for Ethereum smart contracts.
It is developed by the SRI Systems Lab (ETH Zurich). It takes as input the byte-

Figure 3.14: Securify Architecture.

code level. Once it has parsed and decompiled the EVM bytecode, it translates
the code to semantic facts using static analysis. Following this step, it compares
the facts with a list of patterns in order to detect common vulnerabilities.

• SmartCheck18 is a static analysis tool[36] for Ethereum smart contracts imple-
mented in Java. It takes in input Solidity source code and improves lexical and
syntactical analysis. It uses ANTLR19 generator and a custom Solidity grammar
in order to produce an XML parse tree as intermediate rapresentation. It detects
vulnerabilities using XPath queries on the IR. It mechanism follows several stages.
First of all the whole source code of the contract is completely translated to the
IR, then its elements can be searched with XPath matching. Line numbers are
saved as XML attributes and this structure allows to discover pitfalls in the source
code. In addition, IR attribute can be improved with further information once
the new analysis methods are implemented.

SmartCheck supports other smart contract languages including an ANTLR gram-
mar and a pattern database while the IR-level algorithm is the same. The tool
detect all the known code issues that are categorized as vulnerabilties of

– high severity (i.e. re-entrancy or unchecked external call problems),
– medium severity (i.e. costly loop, unsafe type inference, or balance equality

scenario),
– low severity (i.e. implicit visibility level, compiler version not fixed pitfalls).

Smartcheck is tested on a set of 4,600 verified contracts from Ehterscan. It ana-
lyzes the dataset in 7644 seconds and the outcomes are optimal: 99.9% of contracts
have issues and 3.2% of them have critical vulnerabilties.

• Osiris20 combines symbolic execution and taint analysis, in order to accurately
find integer bugs in Ethereum smart contract. From the Figure 3.15, it is evident

17https://securify.chainsecurity.com/
18https://github.com/smartdec/smartcheck
19ANother Tool for Language Recognition[30] is a public-domain parser generator that combines

the flexibility of hand-coded parsing with the convenience of a parser generator. It can generate parsers
for many context-sensitive language. It enable the reading, processing, or translating of structured text
or binary files.

20https://github.com/christoftorres/Osiris
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Figure 3.15: Osiris Architecture.

that Osiris engine is composed by three different components.

1. Symbolic analysis process starts by constructing a CFG from the bytecode.
Osiris produces a visual representation of the CFG depicting the individual
path conditions and highlighting the basic blocks that include integer bugs.
Once the graph is costruited, the symbolic engine starts by executing the
entry node of the CFG.
It is an interpreter loop that gets a basic block as input and symbolically
executes every single instruction within that basic block.
The loop continues until all the basic blocks of the CFG have been executed
or a timeout is reached. In the case of a branch, the symbolic execution engine
queries Z3 in order to determine easible pathes. If both paths are feasible,
then the symbolic execution engine explores both paths in a Depth First
Search (DFS) manner. Loops are terminated once they exceed a globally
defined loop limit.

2. Taint analysis component is responsible for introducing, propagating and
checking of taint across stack, memory and storage.
It checks if the executed instruction is part of the list of defined sources.

3. Integer error detection checks whether an integer bug is possible within
the executed instruction.

• Gasper[13] is a static tool and it examines gas costly pattern from the existing
smart contract, taking as input the bytecode.

It runs symbolic execution on bytecode to find all the reachable code blocks in
a specific contract.

It uses the disassembled outcomes of the pre-processing step and constructs the
control flow graph (CFG).

After this stage, it starts the symbolic execution from the root node of the control
flow graph and analyses the whole structure. The tool uses Z3 and classifies the
patterns into two different categories:

– useless code related pattern that introduces additional cost because of the
increased size of bytecode during the deployment and the removable bytecode
in runtime;
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– loop related pattern which involves the use of expensive operations in loop
structures.

The Gasper process expects to add the gas-costly patterns to contracts source
code, and then checks whether the patterns are converted into gas-efficient ones
in the generated bytecode.

• MadMax21 is a static program analysis framework[20] that detects gas-focused
vulnerabilities in smart contracts.

The tool analyzes the whole blockchain in ten hours. It is composed by several

Figure 3.16: MadMax analysis pipeline.

stages as the Figure 3.16 illustrates. First of all, a control-flow-analysis-based de-
compiler which converts from low-level EVM bytecode to a structured intermedi-
ate language. MadMax uses the Vandal decompiler which accepts EVM bytecode
as input and produces a standard structured intermediate CFG rapresentation.

Moreover, a logic-based analysis specification produces a high-level program model.

The procedure consists of three analysis layers that progressively infer higher-level
concepts about the analyzed smart contract.

– STEP 1: From the 3-address-code representation, structura such as loops,
inductio variables and data flow are recognized;

– STEP 2: An examination of memory and dynamic data structura is per-
formed. During this step, there is the modelling of the EVM dynamic data
description;

– STEP 3: Concepts concerning the analysis of gas-focused vulnerabilities
(i.e. loop with unbounded mass storage) are inferred.

The decompiler produces 3-address relations in a normalized form that is given
as input to the Datalog-based database.
The tool uses Soufllé[24] as Datalog engine that compiles its Datalog input pro-
gram into a C++ application.

The whole approach utilizes two different techniques: the former is teh abstract-
interpretation-based to pursue the decompilation and the latter is the declar-
ative program for the higher-level analysis.

• GASOL[5] is a custom Ethereum Virtual Machine that facilitates symbolic ex-
ecution of contract bytecode. It is an optimization detector which infers the
maximal number of iterations for loops and generates accurate gas bound which
are valid for any possible execution of the function. The tool has a specific flow:
once extracted the CFGs, it decompiles the graphs into a high-level representa-
tion in order to have upper bounds that are produced by analyzers and solvers.
Its analyser component is GASTAP that is cost model to compute the overall

21https://github.com/nevillegrech/MadMax
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Figure 3.17: GASOL components.

gas consumption of the function. GASOL is used as a gas analyzer in order to
estimate the gas consumption according to a gas model or it serves as complexity
analyzer and estimates the number of bytecode instructions executed.
The tool aims to reduce of the gas consumption associated to the usage of storage.
It replaces the multiple access to the same storage data within a fragment of code
by one accesses to such memory position and a final update to the storage if it is
necessary.

• Slither22 is a static analysis tool[18] which extracts information from Ethereum
smart contracts. It converts Solidity smart contracts into the SlithIR intermediate
representation that uses Static Single Assignment (SSA) form and a produces less
complex instruction sets.
Slither aims to define automated detection of vulnerabilities, provides a code opti-
mization procedure, and enables code review mechanisms.

3.4.2 The efficient of smart contract analysis tools

According to the research provided by Ghaleb A. and Pattabiraman K.[19], over the
last tem years, a number of static analysis tools have been developed for finding security
bugs in smart contracts.
However,it is not still carried out a systematic method to evaluate those tools regarding

their efficacy in finding security bugs.
The study illustrates that tools can have false-positive and false-negative outcomes

and how is important to analyse them in order to improve static analysis methodolo-
gies. Moreover, several studies[35] of software defects have noticed that many of the
vulnerabilities can be detected by static analysis tools in theory, but are not pratically
detected due to constraints of the tools.
The Canadian research proposes SolidiFI 23, an automated and systematic approach

which avaluate smart contracts’ static analysis tools. Their aim undetected bugs and
it studies false-positives of the tools. They take into account six freely available static
analysis which operate on smart contracts written in Solidity, Oyente, Securify, Mythril,
SmartCheck, Manticore, and Slither.
The experiment involve the use of a dataset of fifty verified smart contracts, chosen

from the public repository Etherscan. Smart contracts are chosen taking into consider-
22https://github.com/crytic/slither
23https://github.com/DependableSystemsLab/SolidiFI
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ation three specific criteria:

• the code size: there are selected contracts with different size in order to have a
realistic scenario of the contracts founded in Etherscan;

• the compatibility with Solidity version 0.5.12: it is evident that only 321
out of 500 verified smart contracts in the public repository supported Solidity 0.5x
and higher;

• the range of functionality: there are selected games contracts or wallet ones.

From this huge dataset, the researchers have selected 50 contracts in order to cut the
time and the effert needed to analyze them. They inject bugs of seven different bug
types belonging to the detection scope of the chosen tools. The process of injection bug
takes as input the Abstract Syntax Tree (AST) of the smart contract. As the Figure
3.18 illustrate, SolidiFI follows three stages. First of all, there is the identification of the

Figure 3.18: SolidiFI Workflow.

potential locations for the introduction of bugs. Looking in detail, the AST is passed
to a Bug Location Identifier which, for a specific vulnerability, identifies all possible
injection locations in the target contract. Following this, one bug type at a time is
injected into all decided locations in order to generate buggy contracts. In order to
get relevant results, the introduced bugs are as different as possible and various set of
code snippets with several data inputs and function calls are prepared to get this aim.
Subsequently, the number of the inserted bugs that were not detected by each tools were
stored. In order to verify the bug, it is possible to use the chosen tools and analyze their
results. The bug is considered correctly detected by the tool if and only if it catches
both the line of code of the insert bug and the bug type. As we con see from the Figure
3.19 24, in many cases, the tool identifies the line of code whereas it misidentifies its
category.
So, it is evident from the analysis that a significant number of false negatives

occurs for all the evaluated tools. In addition, the outcomes highlight an important
number of undetected bugs in the tools. By contrast, false positives are verified when
a tool report detects bug which there is not. Discovering this kind of issue is really
challenging because it is not possible to assume that the dataset of contracts has no
bugs. The experiment carries out an analysis of false positives. Firstly, bugs which are

24Numbers within brackets are bugs with incorrect line of code or unreported.
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Figure 3.19: False negative for each tool.

not reported by the vast majority of tools are manually analyzed. There are a number of
benefits and drawbacks in relation to this approach. The main negative aspect of it is the
possible underestimation of the number of the false positives. Secondly, an significant
number of bugs is manually insoected in order to decide their false positivity. Following
this, 20 bugs belonging to each bug category are randomly selected and inspected.

Figure 3.20: False positive by each tool.

The results presented in Figure3.20, illustrate that the tools with low numbers of flase
negatives have high false positives. From the table, the column belonging to Slither is
highlighted. Its results show that it is the only tool that successfully detected all the
reentrancy bugs and it reported an important amount of false positives. This trend
casts doubt on whether the high detection rate was “simply a result of overzealuosly
reporting bugs by the tool.” In conclusion, SolidiFI identifies meaningful gaps in static
analysis tools for smart contracts. The reseach proves that static analysis tools should
be optimised in order to able to detect bugs and maintain low false positive rates.
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Optimization Detectors

This chapter is the core of the thesis where we take into account the specific security
analysis method improved in the chosen tool and we select a restrict list of vulnerabilities
related to optimization gas-patterns Here, we present a real case of smart contract
testing study as an example of the testing step of the research. The analysis of real
contracts and the scanning of those outcomes aim to point out the need of the diffusion
of common guidelines which should be followed during the development of contracts.
In Section 4.1, we focus our attention on a static analysis framework, Slither. Once

we got all the information about its scopes, we test it and we analyzed those outcomes.
In Section 4.2, we introduce the concept of gas patterns and their possible opti-

mizations.
In Section 4.3, we explain the stages related to the testing phase of the framework.

This process has incurred into several steps to select the Solidity smart contract analyzed
in the Section 4.4. We try out all Slither developments and then we introduce an ad-hoc
detector to detect unused storage variables in the line code of the targeted contract.

4.1 Slither

Figure 4.1: Smart Contract System.

Slither is a static analysis framework that gives information about Ethereum smart
contract. The tool is used for four different scopes:

• automated detection of vulnerabilities: the framework catches out 44 type of
vulnerabilities as Table 4.1 and Table 4.2 shown. Each vulnerability is categorised
in term of imapct and confidence

• automated code optimizations detection:the framework points out code op-
timizations;
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• code analyzing: the framework allows to print contracts in order to analyze the
codebase;

• assited code review: through its API, user can interact with the framework.

Figure 4.2: Smart Contract System.

The Figure 4.2 illustrates all the stages that composed Slither architecture. It analyses
contracts using static analysis in a modular procedure. The framework takes as input
the Solidity Abstract Syntax Tree (AST) which is generated by the Solidity compiler
from the contract source code.
First of all, Slither gets import information like the contract’s inheritance graph, the

Control Flow Graph and the list of expressions. For each contract, function or node of
the control flow graph,it is possible to recover read or written variables and filter by
local or state variables.
Following this, it transforms the code of the contract to SlithIR that is an internal

representation language. SlithIR uses Static Single Assessment (SSA) to semplify the
computation of several code analyses. The last step concerns of the computation of a
set of pre-defined analyses that give information to the other modules.
Slither translates Solidity into the SlithIR intermediate representation in order to

obtain a more precise analysis via a simple API.
The framework includes printers that enable users to understans the structure of the

contract. Using the added -- print option to a general run it is possible to:

• export several kind of graph-based rapresentation such as inheritance graph,
control flow graph and call graph of each contract;

• download a human-readable summary of the contracts that outlines the num-
ber of issues found and information concerning the quality of the code;

• a list of the autorization accesses and the variables that can be changed by
the contract’s owner.

Slither provides a specific module that checks for ERC’s conformance of the ana-
lyzed contract which provides guidelines for the proper management of the Ethereum
blockchain.
Using the command slither-check-erc it is possible to explore if:

70



Detector What it Detects Impact Confidence
name-reused Contract’s name reused High High
rtlo Right-To-Left Override con-

trol character is used
High High

shadowing-state State variable shadowing High High
suicidal Function allowing anyone to

destrict the contract
High High

uninitialized-state Uninitialized state variables High High
uninitialized-storage Uninitialized storage variables High High
arbitrary-send Functions that send ether to

arbitrary destinations
High Medium

controlled-delegatecall Controlled delegatecall desti-
nation

High Medium

reentrancy-eth Reentrancy vulnerabilties
(theft of ethers)

High Medium

erc20-interface Incorrect ERC20 interfaces Medium High
erc721-interface Incorrect ERC721 interfaces Medium High
incorrect-equality Dangerous strict equalities Medium High
locked-ether Contracts that lock ether Medium High
shadowing-abstract State variables shadowing

from abstract contracts
Medium High

tautology Tautology or contradiction Medium High
boolean-cst Misuse of boolean constant Medium Medium
constant-function-asm Constant functions using as-

sembly code
Medium Medium

constant-function-state Constant functions changing
the state

Medium Medium

divide-before-multiply Imprecise arithmetic opera-
tions order

Medium Medium

reentrancy-no-eth Reentrancy vulnerabilities (no
theft of ethers)

Medium Medium

tx-origin Dangerous usage of
tx.origin

Medium Medium

unchecked-lowlevel Unchecked low-level calls Medium Medium
unchecked-send Unchecked send Medium Medium
uninitialized-local Uninitialized local variables Medium Medium
unused-return Unused return values Medium Medium
shadowing-builtin Built-in symbol shadowing Low High
shadowing-local Local variables shadowing Low High
void-cst Constructor called not imple-

mented
Low High

calls-loop Multiple calls in a loop Low Medium
reentrancy-benign Benign reentrancy vulnerabil-

ties
Low Medium

reentrancy-events Reentrancy vulnerabilities
leading to out-of-order Events

Low Medium

timestamp Dangerous usage of
block.timestamp

Low Medium

Table 4.1: List of all implemented detectors
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Detector What it Detects Impact Confidence
assembly Assembly usage Inf. High
boolean-equal Comparison to boolean con-

stant
Inf. High

deprecated-standards Deprecated Solidity Standards Inf. High
erc20-indexed Un-indexed ERC20 event pa-

rameters
Inf. High

low-level-calls Low level calls Inf. High
naming-convention Conformace to Solidity nam-

ing conventions
Inf. High

pragma If different pragma directives
are used

Inf. High

solc-version tIncorrect Solidity version Inf. High
unused-state Unused state variables Inf. High
reentrancy-unlimited-gas Reentrancy vulnerabilties

through send and transfer
Inf. Medium

too-many-digits Conformance to numeric no-
tation best practices

Inf. Medium

constable-states State variables that could be
declared constant

Opt. High

external-function Public function that could be
declared as external

Opt. High

Table 4.2: List of all Informational and Optimizational detectors

• all the functions are present;

• all the events are present;

• retuns function are correctly write;

• functions’ visibility are correctly implemented;

• events’ parameters are accurately indexed;

• the functions emits the events;

• derived contracts meet the standard.

Slither ERC’s conformance module supports:ERC-20, ERC-223, ERC-777, ERC-721, ERC-165,
ERC-1820.
Ethereum is based on the use of tokens which can be bought, sold, or traded.

Ethereum tokens are smart contracts that make use of the Ethereum blockchain. ERC-
20 [37] is the most significant Ethereum tokens and has become a technical standard.
It is used on Ethereum blockchain for token implementation and provides several rule
that Ethereum-based tokens must respect. The ERC20+ contract is a concise declaration
which is in line with the ERC20 standard.
Looking in detail, ERC-20 standard draws up a set of six different functions.

1 contract ERC20 {
2 function totalSupply () constant returns (uint theTotalSupply );
3 function balanceOf ( address _owner ) constant returns (uint balance );

72



Figure 4.3: Screen of the ERC-20’s conformance on StandardToken contract in unica.sol file.

Figure 4.4: ERC Logo.

4 function transfer ( address _to , uint _value ) returns (bool success );
5 function transferFrom ( address _from , address _to , uint _value )
6 returns (bool success );
7 function approve ( address _spender , uint _value ) returns (bool

success );
8 function allowance ( address _owner , address _spender ) constant
9 returns (uint remaining );

10 event Approval ( address indexed tokenOwner , address indexed spender ,
11 uint tokens );
12 event Transfer ( address indexed from , address indexed to ,
13 uint tokens );
14 }

According to the summary provided by the authors, the standard “gives basic function-
ality to transfer tokens, allows tokens to be approved so they can be spent by another
on-chain third party.”
It defines the following functions:

• totalSupply: this function enables an instance of the contract to calculate and
return the amount of the token that exists;

• balanceOf: this function takes as parameter the address which should be public;

• transfer: this function enables the owner of the contract to send a certain amount
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of token to another address as a cryptocurrency tranasaction

• transferFrom: this function allows a smart contract to automatize the transfer
process and send a given quantity of the token on behalf of the owner.

• approve: the owner calling this function authorizes (or approves) the address to
withdraw instances of token from the owner’s address;

• allowance: the owner calling this function return the amount that the _spender
is still allowed to withdraw from the owner;

• it has several optional fields in order to improve usabilitiy1 like:

– token name:
function name () public view returns ( string )

This function returns the name of the token.
– token symbol :

function symbol () public view returns ( string )

This function returns the symbol of the token.
– number of decimals:

function decimals () public view returns ( uint8 )

This function returns the number of decimals the token uses.

In addition, there are two specific defined events:

• Approval

event Approval ( address indexed tokenOwner , address indexed
spender ,

uint tokens );

• Transfer

event Transfer ( address indexed from , address indexed to , uint
tokens );

that can be invoked or emitted when a user is granted rights to withdraw tokens from an
account, and then the tokens are actually transferred. In conclusion, ERC-20 standard
significantly reduces the effort needed to create and issue a digital token. The number
of the ERC-20 token contracts has experienced an exponential growth since 2015. In
2018, there were around 40,000 ERC-20 contracts on the Ethereum network and now
they are more than 160,000.

4.1.1 SlithIR

SlithIR is the hybrid intermediate representation used by Slither that represents So-
lidity code. SlithIR converts each node of the control graph flow that holds a Solidity
expression to a set of instructions.
This convertion makes easier the analyses and keeps critical semantic information

from the Solidity source code.
1They should not be in interface and other contracts.
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• StateVariable

• LocalVariable

• Constant

• Solidity Variable

• TupleVariable

• SlithIR variables:

– TemporaryVariable
– ReferenceVariable: Solidity enables the manipulation of mapping and ar-

rays which accessed through deferencing. So, SlithIR uses this variable in
order to store the result of deferencing. The index operator allows deferencing
of a variable:

∗ REF ← Variable [Index]
The member operator allows to access to a structure:

∗ REF ← Variable · Member

LV and RV represent a variable which is assigned (left-value) and a variable which is read
(right-value). In addition, a variable can be a Solidity one or a temporary one created
bt SlithIR.
Moreover, Slither provides an in-depth information about calls and has nine call

instructions2:

• LV = L_CALL Destination Function [ARG..], low-level Solidity call

• LV = H_CALL Destination Function [ARG..], high-level Solidity call

• LV = LIB_CALL Destination Function [ARG..], library Solidity call

• LV = S_CALL Function [ARG..], call to a inbuilt-Solidity function

• LV = I_CALL Function [ARG..],call to an internal function

• LV = DYN_CALL Event [ARG..],call to an internal dynamic function

• LV = E_CALL Event [ARG..],event call

• LV = Send Destination, Solidity send

• Transfer Destination, Solidity transfer

Furthermore, Slither includes additional instrictions such as PUSH for array manipu-
lation, CONVERT for type conversion, and other operators to manipulate tuples.

Slither uses the SSA representation in order to compute data dependencies of all
variables. The dependencies are first analyzed in the context of each function. Follow-
ing this, a fixpoint is computed across all the functions of the contract that determines
whether there is a dependency in a multi-transaction context. The framework classi-
fies some variables as tainted and this means that they depend on a user-controlled
variable, and can be manipulated by the user. Finally, the data dependency takes into
consideration the protected function heuristic.

2Some calls can have additional arguments, for instance, H_CALL,L_CALL, Send and Transfer can
have value associated to the call, representing the quantity of Ether for the transaction.
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4.1.2 SSA

Static Single Assignment [33], SSA , is a suitable intermediate rapresentation that
enables to optimize and simplify the input program. The main quality of SSA form is
thath there is only on assignment to each variable in the whole program text so it is
easy to reason about variable, indeed if two variables have the same name, they also
hold the same value.
To obtain a SSA form, in every assignment, the variable on the left-hand side has

a unique name3 and all its renamed are changed according to this. More complicated
programs have branches and join nodes. As Figure 4.5 illustrates, several values of a

Figure 4.5: Values v1 and v2 mergetd into a unique v3.

variable may reach the node via different branches, so these values have to be merged
into one that reaches different uses of the variable which is one single assignment. For
this purpose, assignments are generated with so-called φ-funcions on the rigth-hand
side. Their operands are related to the number of branches that point the join node.
In general, the meaning of a φ-funcion is: if control reaches the join node via the i-
th branch, the value of the function is its i-th operand. Figure 4.6 show the control

°

Figure 4.6: Control flow graph of an IF and a WHILE statement with instruction in SSA form.

graph flow for IF and WHILE statements with instructions in SSA form. The node
of the graphs are basic blocks except possibly at the end of the sequence (for instance

3Subscripts are used in order to make unique variable names.
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instruction sequences with a single entry adn no branch instruction).
The single-assignment property simplifies reasoning about variables. Because every

assignment creates a new value name it cannot kill expressions previously computed
from other values. In addition, single-assignment property is also helpful in instruction
scheduling as it leaves only the essential data dependences in the code and avoids output
dependencies.
From the literature there were sereval researches that aimed to generate SSA form

and each of them use a peculiar approach. Looking in detail, Cytron et al. [15] have
presented an efficient algorithm for generating SSA form from the instructions of a
control flow graph and its dominator tree. The algorithm computes the dominance
frontiers in the graph, that are the nodes where φ-functions have to be placed. It is the
most efficient algorithm for a general flow graph but the instructions of the graph has
to pass through stages.
By contrast, Rosen et al.[32] have improved a single-pass algorithm for generating SSA

form. This algorithm requires a topologically sorted control flow graph and generates
many unnecessary φ-assignments.
Another method was described by Johnson and Pingali[23] and it derived a SSA form

computing the dependence flow graph of a program. Morever, they identified single-
entry/single-exit regions to place merge nodes which are similar to φ-assignments.

4.2 Gas-costly patterns

Smart contracts run on the machines of miners who collect Ethers by contributing their
resources. The creators and the users of smart contracts will be charged quantity of gas
for obtaining the miners’ power resources. The charge of a transaction is the moltipli-
cation of the gas of the certain transaction and the Ether per unit which represents the
price of gas.
Furthermore, also the deployment of a contract requires the consumption of gas re-

lated to the size of contracts in bytecodes. As result of the searchers done related to
the scope, it is fundamental to make analysis concerning the achievement of optimized
contracts.
From the literature[13], we have founded out that “under-optimized smart contracts

cost more gas than necessary, and therefore the creators or users will be overcharged.” In
order to overcome these issue, the solution is to observe gas-efficient programming
patterns. It is difficult to reach this aim because of the lack of common guideline used
by the whole Ethereum community.
Moreover, this research field is complexed as a matter of fact the identification of

gas-costly bytecode and the replacement of gas-efficient one required the knowledge
of several notions such as the EVM’s instruction, the amount of gas needed for each
operations or the quantity of data read/written.
This stage of the research was composed by two main stages. The former has con-

cerned the identification, the explaination and the optimization of several gas-costly
patterns related to specific aspect of Ethereum environment. The latter aimed to ana-
lyze space saving pattern category in order to optimize this aspect of smart contracts
behaviour.
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4.2.1 External Transactions

This class includes patterns associated with the creation of contracts and the sending
transactiona from external address.

• Proxy: smart contracts are immutable. If a contract must be changed due to a
detected bug or a needed extension, you a new contract must be deployed, and
also update all contracts making direct calls to the old one. This approach is very
expensive and a possible solution is the use of a proxy delegate patterns. It is a
ste of smart contracts that interact one another in order to facilitate upgrading
of smart contracts. The Proxy stores the addresses of referred contracts, in their
state variables. The cost are decreased because only the references to the new
smart contract must be updated.

• Data Contract: if a smart contract holds a significant amount of data must
be updated and its data must be copied to the newly deployed contract and this
action will consume a lot of gas. A possible solution to overcome this excessive
cost is to keep data in a separate smart contract that is accessed by one or more
smart contract, using the data and holding the processing logic. If the logic must
be updated, the data remain in the Data Contract.

• Event Log: events could maintain important information about the system,
which must be later used by the external system interacting with the blockchain.
Storing this information in the blockchain can be very expensive, if the number
of events is huge. If past events data are needed by the external system, but not
by smart contracts, the external system should directly have access to the Event
Log in the blockchain4.

4.2.1.1 Storage

This category involves patterns related to the usage of Storing for saving permanent
data.

• Limit Storage: storage is by far the most expensive type of memory, so its usage
should be minimized. The data stored in the blockchain should be limited, for
instance data should be saved in memory for non-permanent data. Furthermore,
storage limit should be resticted: when executing functions, the intermediate
results should be saved in memory or stack and update the storage only at the
end of all computations.

• Packing Variables: in Ethereum, the minimum unit of memory is a slot of 256
bits. Even if the slot is not completed, it should be paid. So the possible solution
is to pack variables. When declaring storage variables, the packable ones, with
the same data type, should be declared consecutively. In this way, the packing is
done automatically by the Solidity compiler5.

• Packing Booleans: in Solidity, boolean variables should be stored uint256
variables. In order to achieve this purpose, it is necessary to create functions
that pack and unpacke the booleans into and from a single variable. The cost of
running these functions is cheaper than the cost of extra Storage.

4The Event Log is not accessible by smart contracts, and that if the event happened far in time,
the time to retrieve it may be long.

5This mechanism does not work for Memory location data because those variable cannot be packed.
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4.2.2 Useless Code Related Patterns

This class analyzes the introduction of additional cost owing to the increased size of
bytecode during the deployment and the removable bytecode in runtime.

• Dead Code: the removal of predicates that false under all circumstances. Solidity
does not remove them during the generating bytecode phase, so, they represent a
wasted cost.

• Opaque Predicate: the result of an opaque predicate is true or fasle without
execution so, it should be removed for saving gas.

4.2.3 Loop Related Patterns

This type shows patterns that involve the use of expensive operations in the loop.

• Expensive Operation: they may execute multiple times in one invocation. A
optimized solution could be the shift of the expensive operations out of the loop.

• Constant result: the result of a loop may be a constant that can be inferred in
compilation.

• Loop fusion: the combination of several loops into one enables the reduction
of the size of bytecode. This solution reduces the amount of operations, such as
conditional jumps and comparison, etc., at the entry points of loops.

• Repeated computations: in some cases, there may be expressions that produce
the same outcome in each iteration of a loop. The gas can be saved by computing
the result once and then reusing the value instead of recomputing it in subsequent
iterations, especially, for the expressions involving expensive operands.

• Comparison with unilateral outcome: a comparison is executed in each iter-
ation of a loop but the final result of the comparison is the same even if it cannot
be determined in compilation.

4.2.4 Saving Space

This group takes into account patterns concerning the optimization of both Memory
and Storage space.

• Uint* vs Uint256: the EVM run on 256 bits at a time, every uint* integers 6 will
first be converted to uint256 and this mechanism costs extra gas. So, it is more
efficient to use unsigned integers smaller or equal than 128 bits when packing more
variables in one. In all the other situations, it is better to use uint256 variables.

• Mapping vs Array: mapping data is cheaper than use array because the are
packable and iterable. In orer to save gas, it is recommended to use the mapping
data type to manage lists of data7 This approach is useful both for Storage and
Memory.

6uint* is a unsigned integers smaller than 256 bits.
7It is convenient to use array if it is needed to iterate and pack data.
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• Fixed Size: in Solidity, fixed size variables are cheaper than variable size. Ac-
cording to this, it is good practice to initialize all variables when they are created.

• Default Value: it is good practice to initialize all variables when they are cre-
ated.8

• Minimize on-chain data: less data is put in Storage variables in order to reduce
the amount of gas. Only critical data should be saved on-chain becasue the gas
cost of Storage are very high, and nuch higher that the cost of Memory.

4.2.5 Operations

This kind of patterns are related to the gas used for the operations performed within
smart contract functions.

• Limit External Calls: it should be limited the call to an external smart contract
because of its cost and its insecurity. In Solidity, it is better to call a single,
multi-purpose function with several parameters and obtain the results, rather
than making different calls for each data.

• Internal Function Calls: it is preferable to pursue internal function calls where
the patameters are passed as references. Indeed, calling public fnction is more
expensive than calling internal functions because in the former case all the pa-
rameters are stored in the Memory.

• Fewer functions: the implementation of functions Ethereum smart contacts
requests gas so, having several small function is not an efficient strategy. By
contrast, big functions complicate the testing phase and potentially compromise
the security of the contract. The solution needs to have a balance between amount
of function and their complexity.

• Use Libraries: the use of external libraries reduces smart contracts size and cost.
As a matter of fact, the bytecode of external libraries does not belong to smart
contract so it allows the saving gas. However, calling them is costly and it, also,
has security issue so it is necessary to use then in a balanced way, for instance in
order to carry out complex tasks.

• Short Circuit: if logical operators are used, the expressions have to be ordered
to reduce the probability of evaluating the second expression9

• Short Constant Strings: storing strings require the use of gas, so, it is advisable
to keep constant strings short10.

• Avoid redundant operations: to reduce the eccessive use of gas, it may be
possible to avoid redundant operation. For example, the redundant double checks
or, if SafeMath library is used, the further verification of underflow and overflow
issues.

8In addition, in Solidity all variables are set to zeroes by default so it is not necessary initialize a
variable with its default value if it is zero.

9In the logical disjunction (OR, ||), if the first expression resolves to true, the second one will not
be executed; or that in the logical disjunction (AND), if the first expression is evaluated as false, the
next one will not be evaluated.

10They should fit 32 bytes.For instance, it is possible to clarify an error using a string; these messages
are included in the bytecode, so they must be kept short to avoid wasting memory.
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• Single Line Swap: each assignment and definition variable expends gas, Solidity
enables to swap the values of two variables in a single instruction.

• Write Values: every operation costs gas and a possible solution to save gas is
writing values instead of computing them. If the value of data is already known
at compile time , the most efficient solution is writing these values. The usage of
Solidity functions to derive the value of the data during their initialization is an
expensive mechianism.

4.2.6 Additional

This category takes into consideration Freeing storage pattern that cannot be included
in other classes.

• Freeing storage pattern includes storage variables that are no longer used. In
order to optimize the size of the blockchain, gas refund may be get when the
Storage was released. So, it is convenient to delete the variables on the Storage,
using the keyword delete.
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4.3 Testing process

Figure 4.7: First step of Slither test.

To perform our tests, as Figure 4.7 shows, we chose fifty verified smart contracts
available on Etherscan. They have different:

• size: the range takes into account small contracts with tens of lines to large
contracts with hundreds of lines of code

• compiler versions:

– eleven contracts use the 0.4.* solc version
– twenty-eight contracts use the 0.5.* solc version
– eleven contracts use the 0.6.* solc version

• range of functionality

. The second step of the process involved the usage of the solc-select11 script that
speeds up the switch between Solidity compiler versions.
During the test process, the first stage aimed to test the main scope of the framework,

the detection of vulnerabilites. Each detector is characterized by two parameter: the
former defines its severity and the latter its confidence. We find out that the amount
of detectors can be filtered into a into a narrower list.
The resulting list is composed by eleven detectors that are strictly related with the

gas optimization purpose.

• uninitialized-stage, [High, High]
1 contract Uninitialized {
2 address destination ;
3
4 function transfer () payable public {
5 destination . transfer (msg.value );
6 }
7 }

11https://github.com/crytic/solc-select
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Once the transfer function the Ether are sent to the address 0X0 and they are
lost. The advice is to initialize all the variable, in particular if a variable is meant
to be initialized to zero, it should explicilty be set to zero.

• uninitialized-storage, [High, High]

An uninitialized storage variable will act as a reference to the first state variable,
and can override a critical variable.

1 contract Uninitialized {
2 address owner = msg. sender ;
3
4 struct St{
5 uint a;
6 }
7
8 function func () {
9 St st;
10 st.a = 0x0;
11 }
12 }

The call of the fun function produces the override of the owner to 0. It is fundal-
mental that all the storage variables are initialized.

• locked-ether, [Medium, High]

In contract with a function, but without a withdrawal capacity such as the fol-
lowing one:

1 pragma solidity 0.4.24;
2 contract Locked {
3 function receive () payable public {
4 }
5 }

Every Ether sent to Locked contract wiil be lost. So the solution will be the
change of the payable attribute or the insertion of the withdraw function.

• tautology, [Medium, High]

It is good practice to delete all the expressions that are tautologies or contradic-
tions.

1 contract A {
2 function f(uint x) public {
3 // ...
4 if (x >= 0) { // bad -- always true
5 // ...
6 }
7 // ...
8 }
9
10 function g(uint8 y) public returns (bool) {
11 // ...
12 return (y < 512); // bad!
13 // ...
14 }
15 }

For instance, x is a uint256, so x >= 0 will always be true and y is a uint8, so
y < 512 will always be true.
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• unchecked-lowlevel, [Medium, Medium]
1 contract MyConc {
2 function my_func ( address payable dst) public payable {
3 dst.call. value(msg.value )("");
4 }
5 }

If the return value of the low-level call is not checked, in case of failure, the Ether
will be locked in the contract12. The recommendation is to ensure that is checked
or logged.

• uninitialized-local, [Medium, Medium]
1 contract Uninitialized is Owner{
2 function withdraw () payable public onlyOwner {
3 address to;
4 to. transfer (this. balance )
5 }
6 }

Once the transfer function the Ether are sent to the address 0X0 and they are
lost. The advice is to initialize all the variable, in particular if a variable is meant
to be initialized to zero, it should explicilty be set to zero.

• boolean-equal, [Informational, High]
1 contract A {
2 function f(bool x) public {
3 // ...
4 if (x == true) { // bad!
5 // ...
6 }
7 // ...
8 }
9 }

Boolean constants can be used directly and do not need to be compare to true

or false.

• deprecated-standards, [Informational, High]
1 contract ContractWithDeprecatedReferences {
2 // Deprecated : Change block. blockhash () -> blockhash ()
3 bytes32 globalBlockHash = block. blockhash (0);
4
5 // Deprecated : Change constant -> view
6 function functionWithDeprecatedThrow () public constant {
7 // Deprecated : Change msg.gas -> gasleft ()
8 if(msg.gas == msg.value ) {
9 // Deprecated : Change throw -> revert ()
10 throw ;
11 }
12 }
13
14 // Deprecated : Change constant -> view
15 function functionWithDeprecatedReferences () public constant {
16 // Deprecated : Change sha3 () -> keccak256 ()
17 bytes32 sha3Result = sha3("test deprecated sha3 usage");

12If the low level is used to prevent blocking operations, consider logging failed calls.
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18
19 // Deprecated : Change callcode () -> delegatecall ()
20 address (this). callcode ();
21
22 // Deprecated : Change suicide () -> selfdestruct ()
23 suicide ( address (0));
24 }
25 }

The usage of deprecated standards should be eliminated.

• low-level-calls, [Medium, High]
The use of low-level calls is error-prone and they do not check for code existence
or call success. So they should be avoided.

• constable-states, [Optimization, High]
Constant state variables should be declared constant to save gas. In this scenar-
ion, the advice is to insert the attribute to state variables that never changes

• external-function, [Optimization, High]
public functions that are never called by the contract should be declared external

to save gas.

From the detection step, we selected from the whole dataset ten Solidity smart con-
tracts that reached relevent outcomes. The results of the testing phase allowed to have
an idea of all the possible changes could have made in terms of efficiency. According to
this, we decided to give our contribution in term of gas optimization detection.
In the following step of the research, we improved our own optimization detector that

notices issue concerning the unused storage variables. Slither engine identified the
reads and the writes of variables. For each contract, function, or node of the control flow
graph, it was easy to find the variables read or written. They belong to two different
categories of variables, local and state. Our detector makes two filtrations.

Contract
Analysis Solc version used detectors unused_storage

General_2 0.5.12 5 X
ethBank 0.5.12 3
Etherz 0.5.14 3
Forwarder 0.4.14 3
InitializableAdminUp. 0.5.0 6 X
Nest_Token OfferMain 0.6.0 4 X
Pyramid 0.6.6 3
SakeSwapRouter 0.6.12 3 X
unca 0.4.24 4 X
Staker 0.6.12 5 X

Table 4.3: Selected Solidity contracts.

First of all, it selected the local variables which could be stored in memory or storage
location and in the second step of the process it chose the storage variables. From
the outcome of the previous step of the process, it printed the used variables which
collection represent a waste of gas. The results underlined the necessity to improve
Solidity smart contracts implementation.
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4.4 Case study

In this section, we present Staker contract as case of study. Firstly, we test the vul-
nerabilities detection functionalities on the Solidity contract. Secondly, we illustrate
the automated code optimization detection and the code analysis feature provided by
the framework. Finally, we show outcome given by the printer option provided by the
tool. From the skinned set of Solidity contracts, we selected a few contracts. We picked
them according to their results achieved during the testing process. From the previous
skinned set of Solidity contracts, we choose Staker contract. Indeed it presents the
best combination ofsolcversion, relevant detectors and our new detector.
This contract is used to perform operations such as the rewarding process, the calcu-

lation of its resulting values, the creation of new token, the change of budgets.
To visualize all the functions implemented in the contract, we pursue slither Staker

–print contract-summary that allows us to achieve out aim and the outcome is simple
and understandable as the Figure 4.8 shows. The whole contracts is composed by more

Figure 4.8: Contract Summary of Staker contract.

than 300 hundred of code lines. Moreover, the complexity of it is confermed by the
structure of the call-graph printed13.
In order to visualized Slither most appropriate outcomes, we select specific line of

code. It use the external SafeMath library and this relieves the use of gas indeed the
library bytecode does not belong to the contract. Moreover, the library is correctly
used, as a matter of fact, there are not reduntant operations like double checks and
unnecessary verification of over/underflow issues.

13Due to the size of the graph is not printed.
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1 _________ ________ ____________________ ____
2 \_ ___ \ \_____ \\ ______ \ ______ \ ___ _/_ |
3 / \ \/ / | \| _/| | _/ \ \/ /| |
4 \ \____/ | \ | \| | \ \ / | |
5 \ ______ /\ _______ /____|_ /| ______ / \_/ |___|
6 \/ \/ \/ \/
7
8 pragma solidity 0.6.12;
9 contract Poolable {

10
11 address payable internal constant _POOLADDRESS = 0

x78c883EB7A1C2b11129D8113A5e40d815e1Cb33d ;
12
13 function primary () private view returns ( address ) {
14 return Pool( _POOLADDRESS ).owner ();
15 }
16
17 modifier onlyPrimary () {
18 require (msg. sender == primary (), " Caller is not primary ");
19 _;
20 }
21 ...
22 // setTokenAddress function can be called once in order to set token

address
23 function setTokenAddress ( address input) public onlyPrimary {
24 require (! _tokenAddressGiven , " Function was already called ");
25 _tokenAddressGiven = true;
26 orbAddress = input;
27 }
28 // updateRewardValue function set reward value and cannot be called

if makeUnchangeable was called
29
30 function updateRewardValue (uint input) public onlyPrimary {
31 require (! unchangeable (), " makeUnchangeable () function was

already called ");
32 _rewardValue = input;
33 }
34 ...
35
36 }
37
38 contract Staker is Poolable {
39
40 using SafeMath for uint256 ;
41 uint constant internal DECIMAL = 10**18;
42 uint constant public INF = 33136721748;
43 uint private _rewardValue = 10**21;
44 mapping ( address => uint256 ) private referralEarned ;
45
46 address public orbAddress ;
47
48 address constant public UNIROUTER = 0

x7a250d5630B4cF539739dF2C5dAcb4c659F2488D ;
49 address constant public FACTORY = 0

x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f ;
50 address public WETHAddress = Uniswap ( UNIROUTER ).WETH

();
51
52 function withdrawRewardTokens (uint amount ) public {
53 require ( timePooled [msg. sender ] + 3 days <= now , "It has not been

3 days since you staked yet");
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54
55 rewards [msg. sender ] = rewards [msg. sender ]. add(

viewRecentRewardTokenAmount (msg. sender ));
56 internalTime [msg. sender ] = now;
57
58 uint removeAmount = ethtimeCalc ( amount );
59 rewards [msg. sender ] = rewards [msg. sender ]. sub( removeAmount );
60
61 IERC20 ( orbAddress ).mint(msg.sender , amount );
62 }
63
64 function viewRecentRewardTokenAmount ( address who) internal view

returns (uint){
65 return ( viewLPTokenAmount (who).mul( now.sub( internalTime [who ]) )

);
66 }
67 ...
68 }

Figure 4.9: Human Readable Summary of Staker contract.

Figure 4.9 illustrates the result of the Slither vulnerabilities detection. The screen is
an examle of the human-summary print option. From this first test of Staker contract
we become aware of several important thing:

• there are not high problems in the code. In general, a detector is classifed as high
issue if both categories have the HIGH tag.

• there are different vulnerabilities belongning to all the other types

• the contract is in line with the ERC-20 conformance

• the file contains more that one contracts

In the following step, we look in detail all the found detectors. To visualize the gas
consumed by Staker contract we use solc as Figure 4.10 shows.
In order to get this result we run the basic command slither Staker.sol.
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Figure 4.10: Gas consumed before optimization.

The outcomes confirm the raporesentation prevous summary and they found out:

• divide-before-multiply .
1 contract Staker is Poolable {
2 ...
3 function ethEarnCalc (uint eth , uint time) public view returns

(uint){
4 ...
5 uint totalLP = IERC20 ( poolAddress ). totalSupply ();
6 uint LP = (( eth /2)* totalLP )/ totalEth ;
7 return earnCalc (LP * time);
8 }
9 ...

Solidity integer division might truncate. Accordingly, performing multiplication
before divison might reduce precision. A suggestion orders multiplication before
division.

• block-timestamp

1 contract Staker is Poolable {
2 ...
3 function stake () public payable {
4 require ( creationTime + 6 hours <= now , "It has not been 6

hours since contract creation yet");
5 ...
6 }

The usage of time mechanism should be avoided

• incorrect-versions-of-solidity
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According to the framework approach, using an old version prevents access to
new Solidity security checks. The advice suggests not to use complex pragma
statement. For instance, solc-0.6.11 is considered better than solc-0.6.12

• low-level-calls
1 contract Staker is Poolable {
2 ...
3 function sendValue ( address payable recipient , uint256 amount )

internal {
4 (bool success , ) = recipient .call{ value: amount }("");
5 require (success , " Address : unable to send value , recipient

may have reverted ");
6 }
7 ...
8 }

The return value of the low-level call is not checked, so if the call fails, the Ether
will be locked in the contract. If the low level is used to prevent blocking opera-
tions, consider logging failed calls. The raccomandation ensure the check of the
return value.

• public-function-that-could-be-declared-external According to this detec-
tor:

– makeUnchangeable ()

– setTokenAddress ( address )

– updateRewardValue ( uint256 )

– withdrawRewardTokens ( uint256 )

– viewRewardTokenAmount ( address )

– viewPooledEthAmount ( address )

– viewPooledTokenAmount ( address )

– ethEarnCalc (uint256 , uint256 )

are public functions that could change their attribute in order to obtain a more
efficient structure

1 contract Staker is Poolable {
2 ...
3 function updateRewardValue (uint input) public onlyPrimary {
4 require (! unchangeable (), " makeUnchangeable () function was

already called ");
5 _rewardValue = input;
6 }
7 ...
8 }

The optimize solution replaces the public attribute with the external one.

• unused -local

1 contract Staker is Poolable {
2 ...
3 mapping ( address => uint256 ) private LPTokenBalance ;
4 mapping ( address => uint256 ) private rewards ;
5 mapping ( address => uint256 ) private referralEarned ;
6 ...
7 }
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referralEarned inizialized in Line 6 is never used in the whole contract, so it can
be eliminated in order to improve Staker efficiency.

• unsued - storage

1 contract Staker is Poolable {
2 ...
3 address [] storage _reward = reward [ docHash ];
4 ...
5 }

_reward inizialized in Line 3 is never used in the whole contract, so it can be
eliminated in order to improve Staker efficiency.

Once performed all the optimization, using solc we obtain an optimization of the gas.
Indeed, the gas consumed is equal to 3.201.600, with a final saving of 110.600 gas and
Figure 4.11 illustrate the gas analysis after the optimization phase.

Figure 4.11: Gas consumed after optimization.

Furthermore, Slither has a plug-in module that checks the ERC-20 conformance. Once
the slither-check-erc Staker.sol Staker command is given as input, the outcome
what Figure 4.12 illustrates.

Figure 4.12: ERC-20’s conformance on Staker contract.

The declaration of ERC-20 Interface is inserted in the file belonging to Staker but
it is not implemented.
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Figure 4.13: Staker Inheritance Graph.

The Figure 4.13 is the output of the –print inheritance-graph command. It shows
the inheritance interaction between contracts. It correctly describe the relation between
the only smart contracts that are in Staker code.
The multiple scopes of Slither framework enhance the level of vulnerabilities detection.

The associated modules such as the code analyzing and the printer capability enables
to visualize the possible changes that could be done on the targeted contract in term of
efficiency improvements. In addition, during the testing phase, our own implemented
detectors obtain challenging outcomes. It combination with the other detectors enable
to reach the purpose of the research. Our research points out that a proper solution to
secure and optimized smart contracts remains a challenge.
The following step will take into account the detection of most relevant issues linked

to optimization interest area and its realated production of a more-efficient solution
outcome format provided for users14.

14The slither-format which optimizes code according to the founded vulnerabilities should be
deployed as a stable version. All the most common detector should be detected and the downloadable
version of the analyzed contract should be provided.

92



Conclusion and further direction

The thesis has taken into account static analysis methodologies and this has enabled to
improve the knowledge of this huge research area concerning formal methods related to
smart contract engine. The usage of Slither framework has allowed to visualize those
theoretical mechanism and its extremely detailed documentation has helped to get in
insight into the topic and understand specific steps of the framework engine.
As far as the vulnerability detection is concerned, it is clear that a totally correct

resolution or optimization could not be ever reached. Indeed, every research even the
most accurate, could produce false outcomes such as false negative or even worst false
positive results.
According to this, as Vitalik Buterin told during an interview “there will be further

bugs, and we will learn further lessons; there will not be a single magic technology that
solves everything.” So, developing strategies will be inevitable in order to detect and
mitigate the ever-detecting security flaws and their consequential loss of efficiency.
Furthermore, Ethereum environment and Solidity smart contracts need a stricter

regulation and the listing of specific and precise guidelines in order to guarantee to
Ethereum technology an ever-growing improvement. Our research points out that a
proper solution to secure and optimized smart contracts remains a challenge.
There are several directions that we could take to improve this research.
A possible improvement should take into consideration Slither structure. To im-

prove the efficiency of targeted smart contracts, the whole list of detectors should be
screened out in order to verify the most relevant pitfalls. It is evident that the list of
vulnerability warners was extremely detailed. Even if this has appeared from a first per-
spective a positive aspect of Slither framework, the results have pointed out that several
vulnerabilities are undetected. So, the suggestion is to improve the same approach used
for reentrancy vulnerabilities. As a matter of fact, there are four detectors and each
of them discovers a specific reentrancy typology. The focus on specific vulnerabilities
may increase their correct determination and further development could take into
account several warners in order to deeply analyze those aspects.
In addition, the classification of the system could be modified and the op-

timization tag could be deleted from the confidence property and added into its own
category. All the resulting detectors that implied a possible advance in terms of line
code, should be inserted and analysed by the optimization plug-in and should produce
the improved downloadable solution.
Furthermore, Slither framework implementation could be optimized. execution check-

ing could be built on top of SlithIR, the intermediate representation module.This may
allow easy access to formal verification for bug detectors and it may be focused on gas
cost analysis. It should give better results like less false positives compared to Slither
already present control flow graph analysis.
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Another enhancement may consist of the addition of a dynamic analysis module
to the Slither engine. The new build tool could improve a hybrid approach which allows
the achievement of better results than the ones obtained by the existing methodologies.
This additional part could enhance the hybrid fuzzing technique that is the combination
of fuzzing (a specific dynamic analysis method) and symbolic execution. It could execute
a shallow program path (that is a benefit of fuzzing tests) and explore more complex
paths ( that is a positive aspect of symbolic execution). The former would produce the
resulting executing traces that would be input to the analyzer whereas we would choose
several types of trace analysis. Once it would be running, another upgrade should take
into account the testing phases.
The dataset of Solidity smart contracts could be checked on the upgraded Slither

and a pool of tools and a careful study of the outcomes could have been pursued.
Testing is the most widely employed method to find vulnerabilities in real-world software
programs and the combination of different approaches could also be useful in order to
highlight false positive and false negative results.
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Appendix A

In this Appendix, we include the five Tables, from 5.1 to 5.5, related to vulnerabilities
detection tests done on the set of smart contracts.
Listing on the y-axis there are all the 44 detectors implemented by Slither framework,

whereas on the x-axis are itemized all the contracts which are randomly chosen from
Etherscan.
Furthermore, Table 5.6 and Table 5.7, provide information about the testing of our

additional detectors1.

1The column Solc version used lists the versions used during the test pahse.
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shadowing-state
uninitialized-state X
arbitrary-send X
controlled-delegatecall
reentrancy-eth
incorrect-equality
locked-ether X
shadowing-abstract X
tautology X X
constant-function-asm
constant-function-state
divide-before-multiply
reentrancy-no-eth
unchecked-lowlevel
unchecked-send
uninitialized-local X X
unused-return
shadowing-local X X
calls-loop
reentrancy-benign
reentrancy-events X
timestamp X X X
assembly X X X
boolean-equal X
deprecated-standards
low-level-calls X X
naming-convention X X X X X X X
pragma X
solc-version X X X X X X
unused-state
reentrancy-unlimited-gas X
too-many-digits X X X X
constable-states X X X
external-function X X X X X X X X X

Table 5.1: List of ten contracts tested with Slither.
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shadowing-state X
uninitialized-state
arbitrary-send X
controlled-delegatecall
reentrancy-eth
incorrect-equality
locked-ether X X X
shadowing-abstract X
tautology X X
constant-function-asm X
constant-function-state
divide-before-multiply
reentrancy-no-eth X
unchecked-lowlevel
unchecked-send
uninitialized-local X X X
unused-return
shadowing-local X
calls-loop
reentrancy-benign
reentrancy-events X
timestamp X X
assembly X X
boolean-equal
deprecated-standards
low-level-calls X X
naming-convention X X X X X X X X X
pragma X
solc-version X X X X X X X X
unused-state
reentrancy-unlimited-gas X
too-many-digits X X X X
constable-states X X X X X X X
external-function X X X X X X X X X X

Table 5.2: List of ten contracts tested with Slither.
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shadowing-state
uninitialized-state X
arbitrary-send X X X X
controlled-delegatecall X
reentrancy-eth X
incorrect-equality X X
locked-ether X X
shadowing-abstract X
tautology X X
constant-function-asm X
constant-function-state
divide-before-multiply X X
reentrancy-no-eth X X
unchecked-lowlevel X
unchecked-send
uninitialized-local X X X X
unused-return
shadowing-local X X
calls-loop X
reentrancy-benign X X X X
reentrancy-events X X X X X X X
timestamp X X X
assembly X X X X X X X
boolean-equal X X
deprecated-standards X
low-level-calls X X
naming-convention X X X X X X X
pragma X
solc-version X X X X X X X X X
unused-state X
reentrancy-unlimited-gas X X X
too-many-digits X X X X
constable-states X X X
external-function X X X X X X X X X X

Table 5.3: List of ten contracts tested with Slither.
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shadowing-state
uninitialized-state
arbitrary-send X X X X
controlled-delegatecall
reentrancy-eth X X X X
incorrect-equality X
locked-ether X X
shadowing-abstract X
tautology X X
constant-function-asm
constant-function-state
divide-before-multiply X
reentrancy-no-eth
unchecked-lowlevel
unchecked-send
uninitialized-local X X
unused-return X X X X
shadowing-local X X X X
calls-loop X X X
reentrancy-benign X X X X
reentrancy-events X X X X
timestamp X X
assembly X X X X X
boolean-equal X X X X
deprecated-standards X
low-level-calls X X X X X X X
naming-convention X X X X X X X X X
pragma X
solc-version X X X X X X X
unused-state
reentrancy-unlimited-gas X X X X
too-many-digits X X X X
constable-states X X X X
external-function X X X X X X X X

Table 5.4: List of ten contracts tested with Slither.
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shadowing-state
uninitialized-state
arbitrary-send X X X X
controlled-delegatecall X
reentrancy-eth
incorrect-equality X
locked-ether X
shadowing-abstract X
tautology X X
constant-function-asm
constant-function-state
divide-before-multiply X
reentrancy-no-eth
unchecked-lowlevel
unchecked-send
uninitialized-local X X
unused-return X X
shadowing-local X X X
calls-loop X X
reentrancy-benign X
reentrancy-events X X X X
timestamp X X X X X
assembly X
boolean-equal X
deprecated-standards X
low-level-calls X X X
naming-convention X X X X X X X X
pragma X X X
solc-version X X X X X X X X X
unused-state
reentrancy-unlimited-gas X X X X
too-many-digits X X X X X
constable-states X X X X X
external-function X X X X X X X X X

Table 5.5: List of ten contracts tested with Slither.
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Contract
Detector Solc version used unused_local unused_storage

EIP20Interface 0.5.0 X
CareerOnToken 0.5.1 X
AxieClockAuction 0.4.24
PHO 0.5.11 X
DigitalNotary 0.5.11 X
EventMetadata 0.5.11 X
TAMC 0.5.11 X
General_2 0.5.12
AdminUpgradeabilityProxy 0.5.12 X
DocumentSigner 0.5.12 X
ForTheBlockchain 0.5.12
Grand 0.5.12 X
BitCash 0.5.12 X
SaveWon 0.5.12
MD 0.5.12 X
ExclusivePlatform 0.5.12
Yesbuzz 0.5.12 X
ethBank 0.5.12
RampInstantPool 0.5.12 X
CloneableWallet 0.4.24 X
Dice2Win 0.4.24 X
DSProxy 0.4.24 X
DSProxyFactory 0.4.24 X
ERC721Sale 0.5.11 X
Etherz 0.5.14 X

Table 5.6: Optimization test
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Contract
Detector Solc version used unused_local unused_storage

ETHRegisterController 0.5.14 X
Forwarder 0.4.14 X
GasToken2 0.4.14 X X
InitializableAdminUp. 0.5.0 X
Nest_Abonus 0.6.0
Nest_OfferMain 0.6.0
Nest_Token OfferMain 0.6.0 X X
OpenAlexalO 0.5.14 X
Proxy_5.0 0.5.3 X
Proxy_5.3 0.5.3 X X
Pyramid 0.6.6 X
SakeSwapRouter 0.6.12 X
SmartMatrixForsage 0.5.0
unca 0.4.24 X X
UniswapV2Router02 0.6.6
UserWallet 0.4.24 X X
WETH9 0.4.24
LocalEthereumEscrows 0.4.24 X
CS2OnChainShop 0.6.12 X
Staker 0.6.12 X X
PineCore 0.6.8
ERC1155Sale 0.5.11 X
eTrustmoney 0.4.24
BulkRenewal 0.5.12 X
ETHRegisterController 0.5.12 X

Table 5.7: Optimization test

102



Bibliography

[1] Ethereum improvement proposals. https://eips.ethereum.org/.

[2] Plato. https://philpapers.org/browse/plato.

[3] Thomas hobbes: Moral and political philosophy. https://iep.utm.edu/
hobmoral/.

[4] Solidity documentation - release 0.7.4, (2020).

[5] E. Albert, J. Correas, P. Gordillo, G. Román Díez, and A. Rubio,
Gasol: Gas analysis and optimization for ethereum smart contracts, (2019).

[6] F. E. Allen, Control flow analysis, Sigplan Notices, 5 (1970), pp. 1–19.

[7] N. Atzei, M. Bartoletti, and T. Cimoli, A survey of attacks on ethereum
smart contracts (sok), (2017), pp. 164–186.

[8] M. Bartoletti, S. Carta, T. Cimoli, and R. Saia, Dissecting ponzi schemes
on ethereum: Identification, analysis, and impact, Future Generation Computer
Systems, (2019).

[9] M. Bartoletti and L. Pompianu, An empirical analysis of smart contracts:
Platforms, applications, and design patterns, Lecture Notes in Computer Science,
(2017).

[10] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli,
R. Holz, and B. Scholz, Vandal: A scalable security analysis framework for
smart contracts, (2018).

[11] V. Buterin, Ethereum: A next-generation smart contract and decentralized appli-
cation platform, (2013).

[12] H. Chen, M. Pendleton, L. Njilla, and S. Xu, A survey on ethereum systems
security: Vulnerabilities, attacks and defenses, (2019).

[13] T. Chen, X. Li, X. Luo, and X. Zhang, Under-optimized smart contracts
devour your money, (2017), pp. 442–446.

[14] F. Chow, Intermediate representation: The increasing significance of intermediate
representations in compilers, Queue, 11 (2013), p. 30–37.

[15] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
Efficiently computing static single assignment form and the control dependence
graph, ACM Trans. Program. Lang. Syst., 13 (1991).

103

https://eips.ethereum.org/
https://philpapers.org/browse/plato
https://iep.utm.edu/hobmoral/
https://iep.utm.edu/hobmoral/


[16] L. de Moura and N. Bjørner, Z3: an efficient smt solver, Tools and Algorithms
for the Construction and Analysis of Systems, 4963 (2008), pp. 337–340.

[17] C. Dwork and M. Naor, Pricing via processing or combatting junk mail, (1992),
p. 139–147.

[18] J. Feist, G. Grieco, and A. Groce, Slither: A static analysis framework for
smart contracts, (2019), pp. 8–15.

[19] A. Ghaleb and K. Pattabiraman, How effective are smart contract analysis
tools? evaluating smart contract static analysis tools using bug injection, (2020),
pp. 415–427.

[20] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smarag-
dakis, Madmax: surviving out-of-gas conditions in ethereum smart contracts, Pro-
ceedings of the ACM on Programming Languages, 2 (2018), pp. 1–27.

[21] S. Huckle, R. Bhattacharya, M. White, and N. Beloff, Internet of things,
blockchain and shared economy applications, Procedia Computer Science, 98 (2016),
pp. 461–466.

[22] M. Jakobsson and A. Juels, Proofs of work and bread pudding protocols, (1999).

[23] R. Johnson and K. Pingali, Dependence-based program analysis, 28 (1993),
p. 78–89.

[24] H. Jordan, B. Scholz, and P. Subotic, Soufflé: On synthesis of program
analyzers, (2016).

[25] H. Kim and M. Laskowski, Towards an ontology-driven blockchain design for
supply chain provenance, (2016).

[26] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, A survey on the security of
blockchain systems, (2018).

[27] B. Marino and A. Juels, Setting standards for altering and undoing smart
contracts, (2016).

[28] R. C. Merkle, A certified digital signatur, (1979).

[29] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, Cryptography Mail-
ing list at https://metzdowd.com, (2009).

[30] T. Parr and R. Quong, Antlr: A predicated- parser generator, (1995).

[31] P. Praitheeshan, L. Pan, J. Yu, J. Liu, and R. Doss, Security analysis
methods on ethereum smart contract vulnerabilities: A survey, (2019).

[32] B. Rosen, M. Wegman, and K. Zadeck, Global value numbers and redun-
dant computations, 15th Annual ACM Symposium on Principles of Programming
Languages, (1988), pp. 12–27.

[33] B. K. Rosen, M. N. Wegman, and F. K. Zadeck, Global value numbers and
redundant computations, (1988), p. 12–27.

[34] J. Stack, Making sense of blockchain smart contracts, (2016).

104



[35] F. Thung, Lucia, D. Lo, L. Jiang, F. Rahman, and P. T. Devanbu, To
what extent could we detect field defects? an empirical study of false negatives in
static bug finding tools, (2012), pp. 50–59.

[36] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, Smartcheck: static analysis of ethereum
smart contracts, (2018), pp. 9–16.

[37] F. Vogelsteller and V. Buterin, Eeip-20: Erc-20 token standard, (2015).

[38] K. Wüst and A. Gervais, Ethereum eclipse attacks, (2016).

105



Ringraziamenti

“Quando pronuncio la parola Futuro, la prima sillaba già va nel passato.”

(da Le tre parole più strane, W. Szymborska)

Questo tempo che incessantemente procede e non rallenta mai, non si lascia addolcire
dagli eventi che accadono, dalla terra che trema e neanche dalla diffusione di un virus...
Per un attimo, voglio rallentare e veder concludere questo capitolo che mi ha visto

crescere.
Camerino è diventata per me casa e, pensare che non percorrerò più queste strade

mi mette malinconia ma so che quello che ho vissuto qui fa parte di me...le lezioni al
Granelli, il temutissimo primo orale, i laboratori di Reti, gli amori nati strada facendo,
gli storici giovedì universitari in centro, le amicizie cresciute con noi, la vita selvaggia al
container, i meritati riposini sul divano del Lodovici, le scorte di frizzantino, gli occhi
confusi dei ragazzi del tutorato e il gelato alla nocciola post-esame al Diana.
Tutte le persone, i cui percorsi si sono intrecciati col mio, mi hanno fatto diventare

quella che sono e non posso che essere grata a ciascuno di voi.
Ringrazio la professoressa Re per aver scommesso su un’idea di progetto che rispec-

chiava il mio stato interiore di inizio anno...indecisa su tutto, impaurita di avvicinarmi
alla fine e dover capire cose voler fare daGrande.
Le sono grata per avermi consegnato un foglio bianco, aver visto dall’alto il percorso

che piano piano sono riuscita a definire e non aver mai represso il mio essere curiosa
e classica. Mi ha reso indipendente nelle continue scelte che dovevo fare e ciò mi ha
permesso di sviluppare il mio essere flessibile.
Non è stato un semplice percorso di tesi ma credo che questo Lei lo avesse già capito

durante il nostro primo colloquio, quando mi ha detto estrema tranquillità che la con-
traddistingue, di vedere come andava senza farci troppi pensieri.
La ringrazio perché anche se ho temuto di avvicinarmi alla fine di questo percorso per

la mia indecisione e la costante ricerca di perfezione...oggi so cosa voglio fare daGrande!
Sono grata al prof Marcantoni, mio mentore, punto di riferimento in questo bellissimo

percorso, perché mi ha trasmesso l’amore per quello che studio.
La ringrazio per aver fronteggiato la mia costante paura di cadere, il mio perfezionismo

maniacale e di aver permesso di mettermi in gioco durante le lezioni di tutorato.
È stata un’esperienza che mi ha formato e porterò sempre con me... ma non sarebbe

stata la stessa senza i pomeriggi a fare simulazioni di Wireshark e cercare tag improb-
abili per rendere gli esercizi impossibili agli occhi persi dei ragazzi... Facendo questa
esperienza sono indietro di qualche anno, quando tra i banchi delle sue lezioni c’ero
io, che avevo completato giusto qualche riga e colonna del suo diabolico cruciverba e
appena uscita dalla lezione sugli esercizi di indirizzamento, mi sono vista fuori corso,
trentenne che stavo preparando ancora il suo esame...però ho compreso che tutta quella



confusione, che per un attimo ha offuscato la mia testa, è stata solo lo sprone per but-
tarmi in un mondo nuovo...e dopo l’esperienza del tutorato, ho capito che poi tutta
quella confusione sui piani di indirizzamento non ce l’avevo!
La ringrazio perché le sue lezioni hanno unito gli studenti del nostro anno accademico,

la passione che ha sempre trasmesso, non solo durante le lezioni, non ci ha fatto allon-
tanare neanche durante l’emergenza del terremoto... Le sono grata per avermi accolto
nell’aula Cisco che è stata per me rifugio durante sessioni, durante i lunghi pomeriggi
grigi camerti e aver fatto diventare quella stanza, una seconda casa.
Ringrazio il professor Loreti che mi ha fatto sognare, per qualche istante, paesaggi

nordici dove iniziare il mio prossimo percorso accademico.
Grazie al professor Tiezzi per aver sempre dato la possibilità di migliorare le mie

capacità.
Sono grata al professor Morichetta per i preziosi consigli e l’estrema disponibilità.
Ringrazio chi ha sempre creduto in me.
A chi col tempo è riuscito ad esprimere fuori i propri sentimenti...a te che mi hai

insegnato a non aver paura dell’ignoto e di cadere, perché se avrò bisogno ci sarai
sempre tu che aiuterai a rialzarmi.
A chi mi ha trasmesso il suo inglese fluente...a te che sei in costante telepatia con

l’Etere, che hai cominciato a leggere inserti sulla sicurezza informatica solamente per
me, per mantenere quel legame intellettivo che ci ha sempre unite.
A chi è sei sempre il mio punto di riferimento, a chi mi ha portato per la prima volta

nel Cameruccio, a chi trova sempre tempo per me...a te che hai imparato a gestire la
mia eterna incertezza e paura...Grazie perché riesci a farmi vedere il mondo da un’altra
prospettiva ed alleggerire la mia ansia costante.
A chi mi ha sempre accolto con gioia assordante di ritorno da Camelot e mi ha

trasmesso amore nei suoi abbracci potenti e soffocanti. A te che con lo sguardo vispo
color del cielo mi hai tenuto d’occhio durante le notti insonni trascorse a studiare.
Grazie al nostroMarco, alle foto di famiglia che avevano previsto tutto...grazie per

essere sempre stato disponibile, per i passaggi in macchina a Camerino e per avermi
aspettato paziente durante le mie performance sul sup!
Ringrazio la sede ufficiale Viale Lepanto n.56...grazie per aver reso speciale ed indi-

menticabile il primo passo del mio prossimo capitolo di vita!
Vorrei poter dire sia stato tutto merito della stanza vista mare ma direi una bu-

gia...sappiamo benissimo che il profumo ha fatto la differenza!...quindi ringrazio Lanvin
che, con la sua fragranza inconfondibile, mi ha accompagnato ad ogni tipo di esame in
questi anni.
A voi che siete stati sempre con me, mi avete visto cadere mille volte ma continuate

a spronarmi e ad essere orgogliosi di me...vi ringrazio perché i vostri insegnamenti mi
hanno reso una persona umile e disponibile alla conoscenza.
A chi mi sta dentro al cuore da quando ero piccola e mi vedrà da lontano oggi, alle

nostre telefonate post-esame piene d’orgoglio bagnate di emozioni.
Grazie a mio nonno partigiano che mi ha insegnato a guardare sempre lontano.
Ringrazio ilSangueMio e zia Anna, sede montegranarese Unicam, per aver aperto con

tanto amore casa vostra per le ultime tappe del mio percorso magistrale.
Grazie a Michela per esserci ritrovate e in così poco tempo essere diventate complici

in mille avventure...per essere sempre stata capace di leggermi dentro anche quando io
stessa avevo paura di farlo.



Ti sono grata perché ci siamo date il giusto tempo e ci siamo imparate ad accettare e
tutto questo mi ha fatto capire il vero significato dell’amicizia. Ti ringrazio perché mi
hai fatto scoprire una nuova sfumatura di amore che è entrata nel mio cuore e più se ne
andrà!
Sono grata a Giulio e il sentimento indefinito che ci unisce...ti ringrazio perché hai

acceso in me la speranza quando guidavo nel buio. Grazie per la tua pazienza e il tuo
strano modo di farmi sentire protetta.
Ringrazio Elena, mia dolce coinquy, per aver resto una scatola di lamiere il nostro

rifugio, custode di segreti, paure e speranze. Grazie per la tua solarità che ha spazzato
via le nuvole della mia anima.
Sono grata alla professoressa Petrini che ha posto le basi, pratiche ed umane, per la

Margherita che sono.
Ringrazio Sabi, la mia professoressa per eccellenza, per avermi dato gli strumenti che

mi hanno fatto arrivare qui...ti sono grata per i tanti traguardi che abbiamo raggiunto
insieme!
Grazie alla dottoressa Sara che mi aiuta ad individuare le vulnerabilità della mia

anima e con pazienza mi sta insegnando come ricucire i segni che queste hanno lasciato.
Ringrazio chi mi è stato accanto in questo percorso, chi non si è limitato a procedere

avanti o dietro ma ha camminato insieme a me.
Grazie ai miei congiunti, gli pseudo-congiunti e chi, pur appartenendo ad un altro

nucleo familiare, ha un pezzettino del mio cuore...
Ringrazio chi ha reso questi anni pieni di emozioni...chi ha spudoratamente chiam-

ato l’assistenza Cisco per avere consigli sul prossimo acquisto di una serie di switches
industriali, chi ha fatto strage di cuori in biblioteca, chi ha ascoltato più di una volta
l’avvincente discorso di presentazione del professor Mosconi, immancabilmente in prima
fila!
Sono grata a Lorenzo che, con i suoi occhiali da aviatore, è sempre stato pronto a

darmi un abbraccio di conforto ed ad immortalare i miei riposini tattici sul divano del
Lodovici.
A tutte le persone che hanno reso questo periodo indimenticabile...
Un “abbraccio col cuore”
Margherita


	Abstract
	Introduction
	Motivation
	Aim of the research
	Structure of the thesis

	Background
	Blockchain
	Blockchain 1.0
	Blockchain 2.0
	Blockchain 3.0
	Blockchain 4.0

	Smart contracts
	History
	Origin
	Explanation

	Ethereum
	Solidity
	EVM


	Vulnerabilities
	Relevant Surveys
	Ethereum Scenario
	Different Types of Forks
	Ethereum Roadmap
	Main Attacks

	Security Analysis Methods
	Static Analysis
	Dynamic Analysis

	Static Analysis Tool engine
	Tools
	The efficient of smart contract analysis tools


	Optimization Detectors
	Slither
	SlithIR
	SSA

	Gas-costly patterns
	External Transactions
	Useless Code Related Patterns
	Loop Related Patterns
	Saving Space
	Operations
	Additional

	Testing process
	Case study

	Conclusion and further direction
	Appendix A
	Bibliography

