

Coordination
languages
and their

Significance
e can build a complete
programming model
o”t of two separate
pieces-the computation
model and the cwnlination
model The computation
mcdel allows program-
mers to build a single
computational activity:
a single-threaded, step-
at-a-time computation.
The coordination

model is the glue that binds separate
activities into an ensemble. An
ordinary computation language (e.g.,
Fortran) embodies some computa-
tion model. A coordination language
embodies a coordination model; it
provides operations to LE& com-
putational activities and to support
communicaation among them.

Our approach to coordination has
been developed in the framework of
a system called Linda? Linda is
not a programming language. Kahn
and Miller write that “Linda is best
not thought of as a language-but
rather as an extension that can be
added to nearly any language to
enable process creation, communica-
tion, and synchronizatio~27].” We

? would rather say that Linda is a coor-
z din&on language. It is one of two
- components that together make up a
: complete programming language.
uI (The suggestion that traditional
; pmgxumning languages are iumzpl&
z is intentional.) Y
0 A comwtation model and a cc&&

: might also be separated into two
; distinct languages, in which case _
: programmers choose one of each: ‘

one computation language plus

one coordination language equals a
complete programming system.
Kahn and Miller contend the first
alternative is better. The heart of
their comments is the observation
that:

Both camps are striving for
uniformity, but of different
sorts. The CLP [Concurrent
Logic Programming] camp
strives for uniformity within a
language while the Linda
camp strives for uniformity
acrOss languages [27].

We believe that the second alterna-
tive is better. We also believe that
the distinction between the “inte-
gration” and the “separation” ap-
proach goes well beyond the (ad-
mittedly important) points raised
by Kahn and Miller. It involves a
whole range of pragmatic issues,
and some deep questions about the
nature and likely evolution of pro-
gramming environments besides.
We advance a series of claims in re-
sponse to Kahn and Miller’s argu-
ment for integration:

1. Asynchronous ensembles are the
dominating intellectual issue in the
emerging era of computer systems
research-the era of dime-store
processors and densely intercon-
nected computer jungles. Diversity
among an ensemble’s elements-
diversity with respect to language,
hardware platform, physical loca-
tion, eve” basic computing model-
will be “ornal in the new era.
2. The fundamental problems
posed by ensembles-the problems
of coordination among active
agents-are best understood as or-
thogonal to the problems of compu-
tation, as addressed by conven-
tional programming languages.
3. We can (and ought to) define
“general purpose coordination lan-
guages” on analogy with general
purpose computing languages.

Our article “Linda in Context” appeared in
the April ,989 issue of cumIn”nirahanr ,a. p.
4441. According 10 CDmmentS by Kenneth
Kahn and Mark Miller ,271, the article gcner-
ated a ““wry of electronic discussions.” This
article represent3 a full rrsponnc t0 Kahn and
Miller’s tho”ght-pm”olting critique.

These coordmation languages sup-
port a full range of ensembles,
from parallel applications through
distributed systems through time-
coordinated ensembles and a range
of others. The problems of ensem-
ble building in general, in other
words, constitute a well-formed and
important intellectual unity.

If these claims are barn out, they
make a compelling case for separa-
tion.

Next, we briefly discuss the first
(and least controversial) point. In
the following sections, we explain
our basic claims with respect to or-
thogonality and generality, discuss
Kahn and Miller’s case for integra-
tion, then present the argument for
separation.

Ensembles and their
Signlflcance
We will detine an oqnchronozlr en-
semble (ensemble, for short) as a col-
lection of asynchronous activities
that communicate. An activity is a
program, proass, thread or any
agent capable in principle of simu-
lating a Turing Machine. It could
be a person; it could be (recur-
sively) another whole ensemble.

Computations that are struc-
tured explicitly as sets of communi-
cating processes will (obviously) be
ensembles. So we have included
parallel applications (designed to
run fast on many processors), dis-
tributed systems (designed t” man-
age physically dispersed hardware)
and many operating systems (struc-
tured as ensembles in order to cope
with the asynchronous simultaneity
of devices). But the ensemble cate-
gory is far broader. The definition
does not restrict communication to
communication-through-space-a
collection of programs running
during disjoint intervals and com-
municating through time, generally
via a tile system, constitutes a highly
significant kind of ensemble. When
a computation and a person com-
municate, we have another impor-
tant type of ensemble. In short,
ensembles are fundamental and
ubiquitous in computing.

An ensemble is a natural breed-

tng ground for heterogeneity. A
program that needs contributions
from different machines, or differ-
ent computing models (i.e., syn-
chronous and asynchronous paral-
lelism), will naturally be an
ensemble. Give” their strong mod-
ularity, ensembles are a natural
medium for multilanguage applica-
tions as well.

Finally, ensembles are the best-
adapted inhabitants of the evolving
hardware environment: the densely
intertwined computer jungle that is

taking root everywhere. In this de-
veloping environment, computa-
tions will rarely stay cooped up in-
side a single computer. They will
interact with-draw services from
and supply services to-other com-
putations on other machines. Users
will regularly choose to focus whole
skeins of a”tonomous computers
on a single problem.

Ensembles of all sorts dominate
the near-term future of computing.
Figuring out how to build and un-
derstand them will become (if it is
not already) the central problem of
systems research.

Basic Claims
Building ensembles equals coordi-
nating separate computations.
There is nothing new about our
contention that ensembles and co-
ordination are important. Kahn
and Miller’s own work on open sys-
tems and their linguistic require-
ments [Z], along with other work
in the open systems area (e.g., on
Actors [Z]), has played a leading
role in bringing these issues to the
attention of systems researchers.
Our (more controversial) claims
are:

1. Orthagonality. It is possible and
desirable to treat coordination as
orthogonal to computation for pur-
poses of building programs.
2. Generality. It is possible and de-
sirable t” define coordination in such
a way that it applies to wery asyn-
chronous software ensemble, from
massively parallel, fine-grained
applications through coarser-
grained parallelism through dis-

c 0LDI.r

tributed, heterogeneous and time-
coordinated systems.

The concept of a coordination lan-
guage follows from these claims.
We introduced this term to desig-
nate the linguistic embodiment of a
coordination model. The issue is

not mere nomenclature. Our inten-
tion is to identify Linda and systems
in its class as complete languages in
their own righti, not mere extensions
to some existing base language.
Complete language means a com-
plete coordination language of

course, the embodiment of a com-
prehensive coordination model.

C is a complete computation lan-
guage, though it lacks intrinsic sup-
port for process creation and inter-
process communication. Linda is a
complete coordination language,
although it offers no support for

arbitrary computations. We might
call C an extension to Linda as rea-

sonably as Linda is called an exten-
sion to C. But neither description is
accurate, because Linda and C are,
in concept, unrelated and orthogo-
nal.

What is a coordination language
for? Is it not true that a computa-

tion language is useful by itself,
while a coordination language can
only be used in combination with a
computation language? And does
this not compromise our claim that
the two are conceptually orthogo-
nal?

No: a computation language by
itself is useless. A computation must
communicate with its environment or
it serves no purpose. And the envi-

ronment, insofar as it must ulti-
mately be a person or people, can
only he an active agent. A computa-
tion must perform operations
whose purpose is to get information
from or convey it to the environ-
ment, and these operations are a
coordination language-often of a
highly restricted, specialized or ad
hoc sort, but a coordination lan-

guage nonetheless. In the most
primitive case, a program might
spin while a user manually keys a

NdClDnAaC

bit string into a register. The coor-
dination language in this case con-

sists of operations like set the front-
panel switches, read the accumula-
tor, spin awaiting keyboard-buffer
full. Not much; but these opera-
tions do provide a mechanism
whereby two separate, asynchro-
nous activities-the program and

the person-can communicate.
Any computation language in-

cludes a sort of degenerate coor-
dination language in the form of
global variables and argument-
passing: the separate parts of a pro-
gram communicate with each other
by using these mechanisms, But

coordination is not merely informa-
tion-exchange; the essence of our
definition (and of the word’s intui-
tive English meaning) involves in-
formation exchange among active
agents. A coordination language
must allow one active agent to con-
vey information to another whose
state is evolving and unpredictable.
Assignment and parameter passing
are insufficient.

In a broader setting, an operat-
ing system defines a coordination
language for the benefit of the
computations it supports. Compu-
tations need operating systems be-
cause they need to be tethered to

other asynchronous activities and to
create new activities. The lifelines
that tie a computation to the out-
side world are (by definition) the
province of a coordination lan-
guage. Computations need to be
tethered to users outside the ma-

chine (the operating system pro-
vides I/O). They need to he teth-
ered to other activities, distant in
time as well as (or instead of) in
space-activities that preceded or
will follow them. The operating sys-
tem supports files. They need to be
tethered to other computations
across a network. They need to syn-
chronize their activities (thus, im-

plicitly, to communicate) with other
computations that share the same
machine. By providing a process
model, and allocating system re-
sources in such a way that activities
can exist, the operating system car-
ries out the basic “create activity”

LliSO n

E nsembles
of all sorts dom-
inate the near-
term future of
computing. Figw
ing out hour to
build and under-
stand them uuill
become the cen-
tral problem of
Systems research.

99

role of a coordination language.
Operating systems tend to pro-

vide these functions in messy, ad hoc
ways. Communication through
time via the tile system does not in
the least resemble (so far as the syn-
tax and semantics of operations of-
fered to the programmer are con-
cerned) communication with
another process via shared table
and semaphore, or communication
across a network via message. And
the coordination language defined
by the operating system is likely to
be strictly an interpreted language,
not a compiled language. We do not
generally feed programs into a
“computation compiler” and also,
separately, an “operating system”
compiler, which would generate
customized code for all external
interactions. We rely on standard
prepackaged libraries instead. But
despite all this nonuniformity and
ad hocness, the operating system
exists to create activities, and to
support their coordination with
other activities: hence its primary
function is to implement a coordi-
nation language. The major part of
any operating system might be
thrown out and replaced by an inte-
grated, general-purpose coordina-
tion language.

In fact, this view of operating
systems might induce some intellec-
tual coherence in an important
field that lacks all vestiges of it at
present.

In sum, we cannot do anything
useful with a coordination language
standing alone. However, we can-
not do anything useful with a mere
computation language either. All
useful computing depends on a
combination of the two.

Generalltv as a Consequence
of OrthogonaliW

Generality-our second claim-is
suggested by orthogonality. The
fact that we can separate computa-
tion and coordination does not
mean that, in principle, we might
not choose to cover the coordina-
tion spectrum with a million sepa-
rate languages instead of a single
integrated one. But the general-

100

purpose computing language is a
recognized, useful idea. It seems
reasonable to posit a general-
purpose coordination language as
well.

We have staked our claims, and
we turn now to defending them.

Why Separatlon?
Why Generallty?
Aside from Linda, few other sys-
tems accept the idea of a separate,
conceptually self-contained coordi-
nation language. But, in effect,
most current approaches reject sep-
aration.

If I accept separation, I might
nonetheless reject generality: I
might provide a cwrdination lan-
guage designed for parallel appli-
cations exclusively, or distributed
systems, or whatever.

Generality is almost uniuerxzll~
rejected. The parallel-applications
and the distributed-systems com-
munities are (by now) almost com-
pletely disjoint. And as a rule, nei-
ther community finds much
interest in the broader coordination
issues discussed earlier-time-
wise coordination, heterogeneity,
software-human communication.
There are pragmatic reasons why
this should be so; but there are
strong logical reasons (and some
pragmatic ones as well) why it
should not.

Opposing Sewatlon and
Generalltv
Kahn and Miller ably state the case
for integration:

Concurrent logic program-
ming (CLP) has traditionally
been addressing another
problem [as distinct from the
problems Linda addresses]:
namely how can one design a
single language which is ex-
pressive, simple, clean and ef-
ficient for general purpose
parallel computing?

There is just one way to com-
municate in CLP, not as in
Linda where there is a dialect
specific way of communicating
in the small and the tuple

space way of communicating
at the next level [47].

In other words, why worry about
two separate tooltn3xes (a computa-
tion and a coordination box) when
you can have one? A fair question.
(Of course, from our point of view,
communication is something that in-
volves separate activities; a sin@
process does not communicate with
itself. Routines within one process
pass information back and forth,
but without confronting the prob-
lems of coordination among asyn-
chronous activities. The “intra-
process communication” that Kahn
and Miller implicitly assume is com-
munication in the sense that tossing
a ball up and down is juggling.
Nonetheless, this is a matter of deli-
nition, and they are obviously enti-
tled to their own.)

We do not know of any equally
concise attack OD generality in our
sense. So we will supply one, an
argument that (we believe) many
researchers would accept.

True, in some ultimate logical
sense “communication is communi-
cation,” but the pragmatic needs of
(say) the distributed-system builder
are very different from the needs
of a parallel-applications developer.
Accordingly, it is natural that com-
pletely different models have been
developed to meet those needs.

For example, distributed systems
often rely on remote procedure
call. RPC is, in fact, a near-standard
in this domain. For the builder of
parallel applications, on the other
hand, RPC is an unmitigated disas-
ter. It is fundamentally wrong in
concept: parallel programmers
want to keep processes busy, want
them to generate data and then get
rid of it as quickly as possible. A
communication model based on
sending parameters to some rou-
tine, then awaiting a reply (while
twiddling your thumbs) is rarely
useful in parallel programming-
to the extent that it ix heavily used
in some code, those are strong
grounds for suspicion.

The rest of this article presents
arguments in favor of separation

and generality, or (in other words)
of the idea of a general-purpose
coordination language.

These arguments are:
l In favor of separation: portabdq

in a broad sense; and support for
heterogeneity.
l In favor of generality: economy,
flexibility and intellectual focw.

Separation: Portability and
Heterogeneity
Portability means reusability, or
recycle-ability in a broad sense. We
would like to recycle applications,
implementations, programming
tools and (maybe above all) pro-
grammer expertise to the fullest
extent possible. When moving from
one platform to a different one, m
from one parallelism model to a
different one, 07 from one comput-
ing language to a different one, we
would like to retain as much as pos-
sible. An integrated language sacri-
fices computing-language portabil-
ity completely, and in many cases
compromises the other varieties.

Given some C programmers,
Scheme programmers and Prolog
programmers, all of whom need to
develop parallel applications, we
could recommend three indepen-
dent, tailor-made parallel variants
of these languages-for example
Concurrent C [16], Multilisp [19]
and Parlog [26]. Alternatively, we
could note that the machinery re-
quired for explicit parallelism is
always the same, no matter what the
base language: to get parallelism,
we must be able to create and coor-
dinate simultaneous execution
threads. Given this observation, we
can outfit all three groups in essen-
tially the same way: we supply them
with C-Linda, Schema-Linda and
Prolog-Linda. In so doing we make
it easier for them to switch base lan-
guages, simplify the job of teaching
parallelism, and allow implementa-
tion and tool-building investment
to be focused on a single coordina-
tion model.

The underlying premise is per-
haps even more important: an XYZ
programmer who needs to develop

parallel applications will be sup-
plied not with a new language, but
with a dialect that is as much like
XYZ as possible.

Heterogeneity is a generalization
of portability. If our system works
on X 01 Y, then it may very well
work for X and Y. Certainly it is a
better candidate for linking X and
Y than some other model that is X-
or Y-specific. Because a coordina-
tion language is not committed to
any base computing language, it
can work in principle with all of
them, and tie programs in many
languages together. Likewise with
respect to mixed-machine or
mixed-model heterogeneity.

Parallelism. SpecMcally
Before we shift focus to coordina-
tion in general, we need to consider
how these arguments apply specifi-
cally to the domain that served as
Kahn and Miller’s main focus, and
has been ours as well: models, tools
and methods for parallel applica-
tions programming.

There are two radically different
ways to support parallelism.

Approach I:
(a) Define all new languages
for parallel programming
(CSP was one of the first and
remains one of the most influ-
ential); or

(b) generalize the semantic
model of some base language
to produce a new and com-
plete parallel language (as in
Multilisp [19], the concurrent
logic languages, concurrent
Smalltalk [IO] and many oth-
ers); or

(c) sidestep the whole issue, by
using sophisticated compiler
or runtime technology to
achieve parallel execution of
programs that lack explicit
parallelism. This approach
includes work on parallelism
compilers and on parallel exe-
cution of conventional func-
tional or logic languages.

What these approaches share is
the lack of any coordination model

A side from
Linda, few other

systems accept
the idea of a sep-

arate, conceptually
self-contained

coordination lan-
guage. But, in

effect, most cur-
rent approaches

reject separation.

1Ol

@SC. Instead, they supply a single,
unified programming model
(which may include the tools neces-
sary to achieve coordination as one
part of an integrated approach).
The other approach to parallelism
is:

Approach II:
Define an independent coor-
dination model; this model
can be added to any base lan-
guage with no change to the
base language semantics.

Linda falls into the Approach II
category. Dongarra and Sorenson’s
Schedule [111 is another example.
(Schedule, in turn, is related to
Babb’s work on coarse-grain
dataflow [4].) Strand is an example
that approaches the problem from
a logic-programming viewpoint
(151. Linda is the only advocate of
generality in this group: the others
focus on parallelism specifically (al-
though concurrent logic program-
ming has a consistent secondary
interest in distributed systems as
well). This is not a criticism-
merely a matter of differing foci.

Kahn and Miller’s comments
amount (fundamentally) to a criti-
cism of Approach 11 from the
standpoint of Approach I.

Under the first approach, paral-
lelism is regarded as a generaliza-
tion of some base language’s com-
puting model (if it is regarded at
all). In the second-particularly
Linda’s version of the second-
parallelism is a specialization of a
more general phenomenon, the
problem of coordination in all its
guises.

There is no clear right and
wrong between these two; bath
approaches have been used success-
fully. How do we evaluate them?

First, consider Approach Ia and
b. Kahn and Miller argue that these
approaches offer one toolbox in-
stead of two. We do not denigrate
this argument from conceptual
economy. Such an argument is ex-
ceptionally important. It should be
overridden only in return for intel-
lectual leverage of a decisive kind.

We believe that portability, reus-
ability and heterogeneity constitute
this kind of overriding advantage.
We also believe that, by sacrificing
conceptual economy in the small,
we will regain it in the large, when
we unify the coordination tools re-
quired for parallel programming
with a broad range of others. These
arguments leave our respect for the
basic principle of Kahn and Miller’s
argument undiminished. Obvi-
ously, each programmer will decide
the issue individually.

Next, consider Approach Ic (im-
plicit parallelism) versus Approach
II. The starting point for much of
this work, particularly on implicitly-
parallel functional languages, was
the contention that explicit parallel-
ism would prove too difficult for
programmers to manage. “The
potential performance of this kind
of architecture is enormous,”
Turner wrote in 1984, referring to
parallel machines, “but how can
they be programmed? An idea that
can be dismissed more or less
straight away is that we should take
some conventional sequential lan-
guage and add facilities for explic-
itly creating and co-ordinating pro-
cesses. This may work where the
number of processes is small, but
when we are talking about thou-
sands and thousands of indepen-
dent processes, this cannot possibly
be under the conscious control of
the programmer” [28 p. 101. Al-
though the field is still immature,
the evidence to date suggests
strongly that this contention is false,
or at any rate misleading. Signiii-
cant numbers of parallel machines
have been installed and see routine
use by programmers who use ex-
plicitly parallel methods. Currently
these architectures are more likely
to involve tens or hundreds than
thousands of processors, but why
existing techniques should sud-
denly fail at the transition from (let
us say) a “r-Cube to a lo-Cube is
unclear.

The fallacy in Turner’s statement
has proven to be the underlying
assumption that somehow each
process in an ensemble will be cre-

ated separately and treated as an
individual. In the context of large-
scale Linda programs, which usu-
ally involve many identical worker
processes, or processes each of
which computes one piece of a
large, aggregate data structure
(turning into the result upon com-
pletion), Turner’s statement makes
no more sense than the claim that
“DO loops may work for small
numbers of iterations, but when we
are talking about thousands and
thousands of iterations, this cannot
possibly be under the conscious
control of the programmer ”
Of course it can’t, but so what? To
specify explicitly does not mean to
specify individually.

In evaluating Approach I as a
whole, there is a final pragmatic
factor to keep in mind as well.
Those who work actively at the in-
terface between computer science
and real computation are aware of
the fact that most “real” parallel
applications begin life not as blank
sheets of paper, but as serial pro-
grams that run too slowly. If we
were asked for help in parallelizing
a large serial code, and we opened
the discussion from our side by say-
ing “first thing, throw out every line
of this program and rewrite it in
(say) Miranda,” the response would
likely be unprintable. Not because
real-world programmers are too
stupid to understand the beauties
of these brave new languages. It is
merely that they have better things
to do with their time than rewrite
code that already works, unless the
advantages of doing so are over-
whelming. They rarely are.

Of course many parallel applica-
tions are built from scratch, and
their numbers will increase. But
forcing new languages on parallel
programmers clearly complicates
the transition to parallelism.

Cenerallty: Economy.
Flexlblllty and Intellectual
FOCUS
We turn now to basic claim number
two: in principle, you can use the
same coordination language that
you rely on for parallel applications

c OLOAI

programming when you develop
distributed systems. You can use
the same model in building (or at
any rate conceptualizing-design-
ing the programmer interface to) a

tile system. You can use the same
model, again, in building heteroge-

neous applications. And you can
use the same model for implement-
ing basic human-machine commu-
nication. This approach does not
accord with current practice, to say
the least. Before we consider why
you might want to do this, we need
to consider whether (in basic design
terms) the whole thing is even pos-

sible.
We are arguing on behalf of a

class of systems, not Linda specifi-
ally. But it is convenient to use
Linda as an example. All these
forms of communication are sub-
sumed, in logical terms, by the
Linda model. They are not all sup-
ported adequately by current
implimentations; but that’s another
question. The first question is: can
you design a general-purpose coor-

dim&on language?
The Linda model has been de-

scribed often, and we will not re.
peat the description here. How
ever, in brief outline, Linda
provides an associative object mem-
ory, conceived as a kind of stretchy
envelope. Processes in Linda in-
habit this envelope, called a tuple
space. When they have information
to communicate, they generate
tuple-structured data objects and
release them into the envelope.
When they need information, they

may read a data object or cmuume
one, as the context requires. Ob-
jects are described for purposes of
reading or consumption by an asso-
ciative naming scheme that oper-
ates like “select” in a relational
database. Processes turn into tuple-
structured data objects, indistin-
guishable from all the rest, when
they are done computing. The sys-
tem as described is supported
commercially on a broad range of
platforms. Current research imple-
mentations (epitomized by Jagan-
nathan’s Schema Linda [ZO]) sup-
port multiple iirst~lass tuple

spaces: whole tuple spaces can ap-
pear as tuple fields; whole tuple
spaces may be manipulated as unit

objects.
The preceding is brief and

sketchy, but it is sufficient to moti-
vate our claim that Linda can sup-
port all forms of communication
listed earlier. Inter-process com-
munication, of the sort that parallel
applications and distributed sys-
tems both require, is realized in
terms of distributed data struc-
tures. Information-producing pro-

cesses build data structures out of
tup1es; information-consuming

processes read or ccmsume those
structures. (In the simplest case,
such a structure is merely a single
tuple.) The technique is discussed
at length in [8, 91.

RPC is trivial to simulate: the “in-
voke procedure” operation is im-
plemented by a “generate parame-
ters” object followed by a “consume
result” operation. The remotely
invoked procedure becomes a pro-

cess which repeatedly accepts a pa-
rameter object, invokes the called-

for procedure locally and then gen-
erates a result object. (The
converse, by the way, is not true.
Linda operations cannot be trans-
lated directly into RPCs-which
procedure would they invoke? Not
some hypothetical object store pro-
cedure, because runtime efficiency
is mandatory for parallel applica-
tions, and we cannot allow central-

ized bottlenecks. Nor can we allow
Linda’s asynchronous, nonblocking
“generate object” operation to
block until a remote prcxedure
generates a logically pointless reply.
Nor can we readily support Linda’s
view of processes as incipient data
objects in this framework.)

Linda’s boundaries as a +rallel
appbcations tool continue to ex-
pand. For example, one recent
Linda application in financial anal-
ysis successfully uses the owner-
computes model of data parallel-
ism. Jagannathan and Philbin’s

STING system supports tine-
grained Linda programs, currently
on shared-memory multiprocessors
but with a port to distributed-

E i s 0 n

memory environments planned. It
promises to expand significantly
the range of program struct”res
that can be expressed cleanly and
implemented efficiently using the
Linda coordination model [Zl]. Sci-
entific Computing Associates now
supports For&m-Linda as well as
C-Linda. The “Piranha” system,

which executes Linda programs on
conventional local networks in such
a way that idle workstations may

join an ongoing computation, and
participating workstations may
withdraw quickly when their own-
ers need them, runs on 60 worksta-
tions in the Yale Computer Science
Department and has been used to
execute a variety of production
applications. At several recem
workshops (notably Re&wch direc-
tions in high-level pm&l langvqes,
which focussed on Unity, Gamma
and Linda [24], and Linda-L& Sys-
terns and Thtir Implemcntatiom [%I),
Linda-related projects addressed to
a broad range of other program-
ming styles was presented.

Linda is inherently a (distrib-
uted) file-system and database
model as well, because tuples are
persistent objects. A tuple space is a
son of tile: objects can be added to
and read from the file; tuples are

immutable, but they are modified
in effect by removing an old one
and reinstating an updated version.
Associative addressing makes it
possible to organize the tuples in a
“file” as an indexed stream of bytes
(one byte per tuple); such tiles can
also hold a heterogeneous stream
of arbitrary records, or an unor-
dered collection of objects. They
can hold processes (incipient tup-
les) as well as data objects. Thus we
might, for example, store a librar-

ian daemon inside a mail tile, and
so on. On the use of Linda in data-

base setting, see Anderson and
Shasha’s work on “Persistent
Linda,” which supports transac-
tions and some other extensions
that are useful in this domain 131.

Linda is logically suited to lan-
guage-heterogeneous applications:
the Linda coordination model
makes no reference to any particu-

103

lar host computing language. Obvi-
ously, this statement begs the hard
question of type compatibility-
each language puts data objects cre-
ated according to its own type sys-
tem in the tuples it generates. But If
we define some common (stripped-
down) type system, the Linda oper-
ations make it possible for processes
in many languages to collaborate on
production and consumption of a
single shared data structure, make
it possible for a prcxess in one lan-
guage to consume the residue (the
tuple left behind upon completion
of the computation) of a process
expressed in another language, and
so on. Linda supports basic man-
machine communication insofar as
a user, using a Linda command in-
terpreter, can dump objects into
tuple space, read or retrieve them
directly.

The fact that all this holds in ccm-
cept does not mean, of course, that
it holds in practice. For example:
the RPC community has invested
considerable effort in deftning the
meaning of its ccmstruct in the
presence of various failures, and in
developing implementations that
are robust in the face of network
faults. The fragmentary coordina-
tion language defined by the typical
file system is supported by an im-
plementation optimized to the
needs of I/O interfaces, to security
and authentication requirements,
and so on. These issues are not con-
fronted by current Linda imple-
mentations which target parallel
applications where runtime perfor-
mance (not reliability, security and
so on) is the driving consideration.

Still, it is vital not to loose sight of
the underlying question. In this
section we ask not what has been im-
@mented but what might be and ought
to be imphetied. The fact that cur-
rent RPC implementations are well-
suited to the pragmatics of distrib-
uted systems is, for now, formida-
ble and important. But obviously,
the same sort of research effort that
led to a reliability semantics for
RPC could (and will, we expect)
lead to the same sort of thing in the
Linda context, or in the framework

of smne other general-purpose co-
ordination language. A number of
interesting projects have already
addressed important aspects of the
reliable Linda problem /for exam-
ple, [5] and [23]). (Given our own
steadily-increasing focus on local
networks as parallel machines [l],
we will also be confronting many of
these issues.) Likewise for issues of
file systems, databases and so on.

In short, a general-purpose coor-
dination language is possible in
concept. But is it a good idea?

GeN2lltv: ECOnOmy
and Flexlblllty
Conceptual economy is a principle
of great importance: Kahn and
Miller made this argument (as have
many others in recent millennia),
and we accepted it. We would
rather have a single coordination
tooltmx than many separate ones.

The practical gain from concep-
tual economy is fle&lity. Simple,
economical languages tend to be
supple and powerful, complex ones
tend to be rigidly inflexible-a
stubborn fact that emerges scream-
ing from programming language
history, only to be repeatedly ig-
nored. (Our recent textbook on
programming language design [181
discusses this issue at length.) By
proposing a single, general-
purpose coordination language we
are filling in the blanks that sepa-
rate massive parallelism from task-
level parallelism or distributed sys-
tems-leaving ourselves with a
clean and continuous spectrum
stretching from one end of the co-
ordination world to the other. Two
posslblhtles-interpolation and
extrapolation-follow. We get
strong support and a conceptual
basis for applications that do not tit
precisely into any one category.
Also, we can smoothly extend our
knowledge of coordination outward
beyond the software world alto-
gether, into the domain of ensem-
bles in general-including, for ex-
ample, human ones.

Consider two active research proj-

ects in our group, one dealing with
realtime data fusion (the trellis [12,
14]), the other with expert data-
bases (the FGP machine [13, 171).

The trellis is a software architec-
ture that uses parallelism for clar-
ity, insofar as parallelism allows us
to impose a uniform framework on
a wide-ranging collection of sepa-
rate programs, and speed, insofar
as parallelism allows us to guaran-
tee sufftcient execution resources to
meet realtime deadlines. But the
project does not stop with the trellis
program itself. Factor et al. [I41
describe the front-end visualizer
running on a graphics workstation.
In the complete system we envision,
Linda supports parallelism in the
trellis which runs on a parallel ma-
chine. It supports uniprocessor
concurrency within the graphics
workstation (processes that manage
subsidiary windows require data
from the main display-manager
process). It also supports distrib-
uted system communication be-
tween the workstation and the trel-
lis. The first two parts of this
picture, parallelism and uniproces-
sor concurrency, are complete, and
the third is current research.

Question: Why should we accept
three toolboxes, one for parallel
applications (say, message passing),
one for uniprocessor concurrency
(for example, shared memory with
locks), and one for tram-network
communication (say, RPC), when
logically Linda works well in all
three cases? And what do we call
this program, anyway? A parallel
application? A distributed system?
Clearly it’s an ememble pure and
simple.

The FGP project poses a similar
question. Its database manipulation
component is computationally ex-
pensive for large databases, and is
now being parallelized. But the full
system goes beyond a single in-
stance of the program: the goal is to
support the expert examination of
a local database running on a local
workstation or PC, and a simultane-
ous examination of a much larger
(public) database to be executed on
a parallel machine. In a medical

c oI‘a*r

domain, for example, rhe clinnan
runs a local search against his own
patient database while simultane-
ously searching a hospital’s much
larger case repository. Some of the
requisite communication has to do
with parallelism and some with dis-
tributed systems, but logically it is
all the same. Why should we use
two separate communication sys-
tems when we only need one?

These projects refuse to be
neatly categorized; they squirm
wherever you put them. They
clearly require coordination tools
that are powerful enough to work
in many settings. And there is noth-
ing unique about our research ef-
fort in this regard. Mixed-mode
ensembles will be normal and wide-
spread in the future.

EXtrapOlation
Once we have identified coordina-
tion as a topic that we can discuss in
general, we can consider applying
our knowledge of software ensem-
bles to the construction of other
kinds of ensembles-human ones,
for example. (The questions we
face in this new area are similar to
the ones Thomas Malone poses in
his provocative work on coordina-
tion theory [P5].)

For example: communication in
Linda is based on distributed data
stmctures, oi- shared structures such
as streams and arrays that are built
out of tuples. Processes communi-
cate via these shared structures. But
in principle, people might also
communicate this way. We might
imagine a tuple space surrounded
by people who release, read and
retrieve tuples directly. Alterna-
tively, each person might be repre-
sented by a software agent-a pro-
cess inside of tuple space-that is
active on his behalf.

We can now build information-
sharing software in which each
tuple is an information object.
Many diverse, sometimes complex
questions and requirements have
simple solutions in terms of distrib-
uted data structures.

Another example exists in multi-
ple tuple space Linda systems. Mul-

tiple tuple spaces are useful in
structuring software, but they are
also a natural mechanism for build-
ing a hierarchical “conceptual land-
scape” to describe a project or orga-
nization. When users want to know
something about Linda itself, for
example, we might refer them to a
nest of tuple spaces that captures
the system’s conceptual structure.
Within the global Linda space are
tuple spaces holding documenta-
tion, code, reports, or perhaps run-
ning programs. Each of these con-
tains appropriate subspaces in turn.
We arrive at a structure that resem-
bles a hierarchical file system, ex-
cept that the objects being orga-
nized are full-fledged tuple spaces.
They may contain processes (dae-
moos or visiting agents) as well as
data objects.

A final example: in [S] we use the
term “Turingware” to refer to an
ensemble incorporating people and
processes, in such a way that no ele-
ment knows or cares whether the
others with which it deals are pro-
cesses or people. One current proj-
ect involves a Turingware version
of the trellis architecture discussed
earlier.

In short: when we introduce
general-purpose coordination
models, the resultant broadening of
intellectual scope is wide-ranging
and considerable.

Intellectual Focus
The idea of a general-purpose co-
ordination model directs attention
to the fact that there is such a topic
as ensemble building in general,
and that it is a fundamental issue
for computer science.

Programming languages have
traditionally treated I/O, the file
system and the relationship be-
tween a user’s program and the
surrounding environment as out-
side the bounds of a computing
model, an area for recourse to
extra-linguistic library routines or
ad hoc extensions. (Of early lan-
guages, Cob4 and APL were each
partial exceptions in different ways,
but neither was influential in this
respect.) Thus Algol 60, for exam-

Ei.90”

A general-
purpose
coordination
language
is possible in

concept. But is
it a good idea?

105

pie, has no provision for l/O; it as-
sumes that I/O will be handled by
hand-coded external routines.

Consider a Gedankenexperimnt
based on a” anti-Algal: this lan-
guage makes no provision for com-
puting values; it assumes that val-
“es will be computed by external
library routines. It is precisely a
coordination language, capable of
expressing interactions between
running programs and users, the
generation, storage and retrieval of
persistent objects in a file system,
and the coordination of multiple
activities into a single ensemble.

If 1960 had see” the definition
of anti-Algol instead of Algal, we
might have developed a set of
value-computing tools as unsystem-
atic and ad hoc as our present coor-
dination tools. Of course, this sce-
nario was impossible, not only on
obvious pragmatic grounds but
because of the existence in recur-
sive function theory of a simple and
comprehensive model of computa-
tion. But the experiment should
give us at least a moment’s pause,
because the current direction of
computing makes it appear that
anti-Algol and not Algol might ulti-
mately prove the more important
language.

I” a” age where prepackaged
software is cheap and for sale
everywhere (no doubt there will be
software vending machines before
long), the programmer’s main task
will shift decisively in the direction
of gluing cmnponmtr togethn-
building ensembles. (Modern It’s
have shifted the digital designer’s
role in the same way, towards the
gluing-together and away from the
synthesis of components.)

Furthermore, a general coordi-
nation model is the basic mental
constrxt that we require in order
to distinguish programming from
mathematics. Every computation
language is a fancy Turing Ma-
chine. But programmers do not
deal in the mere evaluation of ex-
pressions, precisely because asyn-
chronous ensembles are the funda-
mental fact of programming. Even
when we deal with a conventional,

106

deterministic, single-threaded ap-
plication, the user plus the com-
puter constitutes a two-part asyn-
chronous ensemble. An ensemble is
the natural outgrowth of the inevi-
table asynchronism in any human-
computer system. Why not three or
n activities instead of two?

It would be nice to have a theo-
retical foundation for general ccmr-
dination. We would like to see the
following characteristics in such a
model. First, a simple definition of
computational space and time
where a point in space is identified
with a single locus of control (or a
single Turing Machine), and a
point in time is defined as the cur-
rent states of many loci or TMs.
Second, a model that becomes a
TM when projected onto the time
axis at some spatial point, and be-
comes a “current coordination
state” when projected onto the
space axis at some temporal point.
From our standpoint, a “current
coordination state” is (the current,
frozen state of) a tuple space: a TM
and a tuple space are orthogonal
elements in computational time-
space.

Conclusions
A broad research effort aimed at
the development of general-
purpose coordination languages is
long overdue. The tangible result
would be a tool of great power and
significance. The intangible one
would be a better understanding of
the rcmt problems of computer sci-
ence. There appears to be a” “n-
spoken consensus in much of the
research community that every
twist and turn in the hardware de-
velopment path, particularly where
parallel machines or networks are
concerned, calls for a new language
or programming model, a new de-
sign, new implementation and new
coding methods. In the long run,
this approach is intellectually crip-
pling. What are the fuv&rn.enlal
guestions here?

Although we have used the Kahn
and Miller comments as a foil for
this exposition of our basic prem-
ises, our work is, in fact, closely al-

lied to theirs. The issues they raise
in their “Open Systems” paper [PZ]
are important, and the dynamic,
evolving and open-ended systems
they envision will become increas-
ingly central to systems research.
Our thinking about Linda and its
evolution has been strongly influ-
enced by their work.

Linda obviously shares much
with other coordination-language
projects, particularly with Don-
garra and Sorenson’s Schedule (at
any rate with respect to basic “n-
derpinnings). We also see strong
similarities between our approach
and the work of Bisiani, Forin and
Ambriola on heterogeneity and
coordination [6, 71. In general we
see computation and programming
languages as areas in which further
progress will be slow, incremental
and, in many cases, of marginal
importance to working program-
mers. Coordination languages are a
field of potentially great signifi-
cance. A growing “umber of
groups will play major roles in this
work.
ACkOOWledgeIUWS
The authors thank Paolo Cian-
carini, Mark Day, Suresh Jagan-
“atha”, Steven Lucco, Thomas
Malone and Ross Overbeek for illu-
minating comments about the ideas
in this article. q
References
I. Arango, M.. Berndt, D., Carriero,

N., Gelernter, D. and Gilmore, D.
Adventures with network Linda.
s”perco*pllt. Rev. IO, 3 (Oct. 1990)
42-46.

3. Anderson, 6. and Shasha, D. Persis-
tent Linda: Linda + Transactions +
Query Processing. I” Research Direc-
lions in H&h-Lewl Par&l Lan-
pp. D. LeMetayer, ed. (Mont
Saint-Michel: IRISA-INRIA. June
1991): Springer Verlag (forthcom-
ing).

4. B.&h, R.G. Parallel processing with
large grain data flow techniques.
I.?.% C0nlpu.J. 17 (1984) 55-61.

3. Bakke”, D.E. and Richard D.
Schlichting. Tolerating Failures in
the Bag-of-Tasks Programming
Paradigm. In Proc. of the 2Ist Inf.

Symp. Fault-T&ran1 Computing,
Montreal, Canada (June 1991),
248-255.

, i. Biriani. R. and Forin, A. Multilan-
guage parallel programming on
heterogeneous machines. IEEE
Tmrrr. Con+ 37,s (Aug. 1988) 930-
945.

7. Bisiani, R., Lecouat, F. and
Ambriola, V. A tool to coordinate
tools. IEEE So&we (Nov. 1988)
17-25.

8. Carriero, N. and Gelernter, D.
Linda in context, Commun. ACM 32,
4 (Apr. 1989) 444-458.

9. Carriero, N. and Gelernter, D. How
10 Wile Parallel Program: A First
Coune. MIT Press (1990).

IO. Dally, W.J. Object-oriented concur-
rent programming in CST, in Proc.
Third Conf. on Hypercube Con-
current Computers and Applica-
tions, (1988) p, 33.

II. Dongarra, J.J., Sorenson, D.C. and
Brewer, P. Tools and Methodology
for Programming Parallel Proces-
sors, in Aspem of Computation on
Asynchronow Prorersors, M. Wright,
Ed. (North Holland, 1988) pp. 125-
138.

IS. Factor, M. The Process Trellis Soft-
ware Architecture for Parallel,
Ral-Time Monitors. Yale Univ.
Dept. Comp. Sci., PhD. Dissertation
(Oct. 1990)

IS. Fertig, S. and Gelernter, D. A Soft-
ware Architecture for Acquiring
Knowledge from Cases. I” Pmt. of
the Inlem5lionol Joint Conference on
Atiificial Inlclltgemr, Sidney, Austra-
lia, Aug. 1991.

14. Factor, M., Gelernter, D., Kolb, C.,
Miller, P. and Sittig, D. Real-Time
Data Fusion in the ICU. IEEE Com-
puler, Nov. 1991, 45-55.

15. Foster, I. and Taylor, S. Strand: New
Conceppts in Parallel Programming.
Prentice-Hall (Englewood Cliffs.
NJ, 1989).

16. Gehani, N. and Roone, W.D. The
Conmwenr C Programming Language.
Silicon Press, 1989.

17. Gelernter, D. Multiple tuple spaces
in Linda, in PARE ‘89. E. Odjik,
M. Rem and J.-C. Syre, Eds.
Springer-Verlag: 1989, 20-27.

IS. Gelernter, D. and Jagannathan, S.
Progmmming Lingutitia MIS Press,
1996.

19. Halstead, R. Multilisp: A language
for co”c”rre”t symbolic computa-
do”. ACM Trims. Pmg. Lang. and
Sys., Oct. 1985.

SO. Jagannathan, S. Optimizing Analy-

sis for First-Class Tuple Spaces. In
Languages and compilers for Parallel
Campuring II. D. Gelernter, T.
Gross, A. Nicola” and D. Padua,
Eds. MIT PressiPitman Publishing,
1991 (forthcoming).

2,. Jagannathan, S. and Philbin, J. Pre-
liminaq STING benchmarks. NEC
Institute Princeton Internal Memo.
randurn, Dec. 1991.

22. Kahn, KM. and Miller, MS. Lan-
guage Design and Open Systems, in
7% Ecology of Conrputation. B.
Huberman”, Ed., (North Holland,
1988) 291-314.

23. Kambhatla, S. and Walpole, J. Re-
covery with limited replay: Fault-
tolerant processes in Linda. Oregon
Grad. Inst. Dept. CSE TR CSiE 90.
019 (Sept. 1990).

25 Malone, T.W. What is coordination
theory? MIT Center for Info. Sys-
tems Res. Working Paper 182 (Feb.
1988).

26. Ringwood, GA. Parlog and the
dining logicians, Cornnun. ACM 31,
1 (Jan. 1988) 10-25.

27. Technical correspondence. Linda in
context. Commun. ACM 32, IO (Oct.
1989) 1244-1258.

28. Turner, D.A. Recursion Equations
as a Programming Language. in
Functiml Progmmming and ib Appli-
rations. J, Darlington, P. Henderson
and D.A. Turner, Eds. Cambridge
University Press (1982) pp. 1-28.

29. Wilson, G. ed., Liti-Like Syskm
and Their ImplcmenUim (Edin-
burgh Parallel Computation Cen-
tre,J”“e 1991,.

CR Categories and Subject Descrip
tom: D. 1.3 [Programming Techniques]:
Concurrent Programming; D.3.2 [Pro.
gramming Ianyagea]: Language Clas-
silicadons-parallel Inngages: D.3.3:
Language Constr”ctr

GmeraI Terms: Coordination, En-
sembles, Parallelism, Languages

Additiomd Key Words and Phnes:
Coordination languages, Linda

Abut the Authors:
NICHOLAS CARRIER0 is an associ-
ate research scientist in the Department
of Computer Science at Yale University
and a research scientist at Sxientific
Computing Associates, New Haven,
Coo”. His research interests include

parallelism, compiler techniques and
programming languages.

DAVID GELERNTER is an associate
professor of computer science at Yale
University. His research interests in-
clude parallelism, programming lan-
guages and artiftcial intelligence.

Authors’ Present Addran: Department
of Computer Science, Yale University,
New Have”, CT 06520, carriero@cs.
yalced”, gelernter@cs.yale. ed”.

Linda ir a registered mademark of Scientific
Computing Associates. New Haven, Con”.

Permission to copy without fee all or part of
this material is granted Provided that the
copies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is-given that copying
is by Permission of the Association for
Computing Machinery To copy otherwise, or
to republish, requires a fee and/or specific
permission.

	p102-Gelernter-b.PDF
	Untitled
	09-.PDF
	Untitled

	09-.PDF
	Untitled

