Algoritmi e Strutture Dati Algoritmi Ricorsivi e Ricorrenze

Maria Rita Di Berardini, Emanuela Merelli¹

¹Dipartimento di Matematica e Informatica Università di Camerino

A.A. 2006/07

L'isola dei conigli

Leonardo da Pisa (noto anche come Fibonacci) si interessò di molte cose, tra cui il seguente problema di dinamica delle popolazioni:

Quanto velocemente si espanderebbe una popolazione di conigli sotto appropriate condizioni?

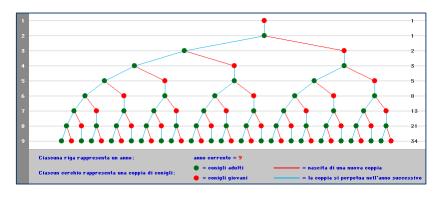
In particolare, partendo da una coppia di conigli in un'isola deserta, quante coppie si avrebbero nell'anno n?

Le regole di riproduzione

- Una coppia di conigli genera due coniglietti ogni anno
- I conigli cominciano a riprodursi soltanto al secondo anno dopo la loro nascita
- I conigli sono immortali

L'albero dei conigli

La riproduzione dei conigli può essere descritta in un albero come segue:



La regola di espansione

Nell'anno n, ci sono tutte le coppie dell'anno precedente, più una nuova coppia di conigli per ogni coppia presente due anni prima

Indicando con F_n il numero di coppie dell'anno n, abbiamo la seguente relazione di ricorrenza:

$$F(n) = \begin{cases} F(n-1) + F(n-2) & \text{se } n \ge 3 \\ 1 & \text{se } n = 1, 2 \end{cases}$$

Il problema

Come calcoliamo F(n)?

Un approccio numerico

Possiamo usare una funzione matematica che calcoli direttamente i numeri di Fibonacci

Si può dimostrare che:

$$F(n) = \frac{1}{\sqrt{5}} (\phi^n - \hat{\phi}^n)$$

dove

$$\phi = \frac{1+\sqrt{5}}{2} \approx 1.618$$

е

$$\hat{\phi}=rac{1-\sqrt{5}}{2}pprox -0.618$$

Algoritmo fibonacci1

algoritmo fibonacci1(intero n) \rightarrow intero

return
$$\frac{1}{\sqrt{5}} (\phi^{\it n} - \hat{\phi}^{\it n})$$

L'algoritmo fibonacci1 è corretto?

Problema: qual è l'accuratezza su ϕ e $\hat{\phi}$ per ottenere un risultato corretto?

Ad esempio con tre cifre decimali: $\phi \approx 1.618$ e $\hat{\phi} \approx -0.618$

n	fibonacci1	arrotondamento	F(n)
3	1.99992	2	2
16	986.698	987	987
18	2583.1	2583	2584

L'algoritmo fibonacci1 non è corretto; un possibile approccio alternativo consiste nell'utilizzare un algoritmo ricorsivo:

algoritmo fibonacci2(intero n)
$$\rightarrow$$
 intero if $(n \le 2)$ return 1 else return fibonacci2 $(n-1)$ + fibonacci2 $(n-2)$

Opera solo su numeri interi

Il costo di esecuzione di fibonacci2 è espresso dalla seguente funzione ricorsiva (equazione di ricorrenza o semplicemente ricorrenza)

$$T(n) = \begin{cases} T(n-1) + T(n-2) & \text{se } n \ge 3 \\ c & \text{se } n = 1, 2 \end{cases}$$

vi ricorda qualcosa ??

Il costo di esecuzione di fibonacci2 è espresso dalla seguente funzione ricorsiva (equazione di ricorrenza o semplicemente ricorrenza)

$$T(n) = \begin{cases} T(n-1) + T(n-2) & \text{se } n \ge 3 \\ c & \text{se } n = 1, 2 \end{cases}$$

vi ricorda qualcosa ??

$$F(n) = \begin{cases} F(n-1) + F(n-2) & \text{se } n \ge 3 \\ 1 & \text{se } n = 1, 2 \end{cases}$$

Il costo di esecuzione di fibonacci2 è espresso dalla seguente funzione ricorsiva (equazione di ricorrenza o semplicemente ricorrenza)

$$T(n) = \begin{cases} T(n-1) + T(n-2) & \text{se } n \ge 3 \\ c & \text{se } n = 1, 2 \end{cases}$$

vi ricorda qualcosa ??

$$F(n) = \begin{cases} F(n-1) + F(n-2) & \text{se } n \ge 3 \\ 1 & \text{se } n = 1, 2 \end{cases}$$

Possiamo dimostrare che

$$T(n) = cF(n) = c\frac{1}{\sqrt{5}}(\phi^n - \hat{\phi}^n)$$

In realtà fibonacci2 è un algoritmo molto lento: $T(n) = O(2^n)$

Dimostrazione.

Dalla definizione di O, dobbiamo dimostrare che esistono delle costanti positive c_0 ed n_0 tali che $T(n) \le c_0 2^n$ per ogni $n \ge n_0$. La prova è per induzione su n

Induzione

Problema: dimostrare che una affermazione Aff(n) è vera per ogni $n \ge 0$

Theorem (induzione 1)

Se

- 4ff (0) è vera;
- **2** Aff (n-1) vera implica Aff (n) vera;

allora Aff(n) è vera per ogni $n \ge 0$

Theorem (induzione 2)

Se

- Aff (0) è vera;
- 2 Aff (n') vera per ogni n' < n implica Aff (n) vera;

allora Aff(n) è vera per ogni $n \ge 0$

Dimostrazione per induzione: un esempio

Proviamo a dimostrare per induzione su n che

$$Aff(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Caso Base(i = 1):

$$\sum_{i=1}^{1} i = 1 = \frac{1(2)}{2} = \frac{1(1+1)}{2} \quad \text{OK}$$

Passo induttivo: Assumiamo Aff(n-1) vera, cioè

$$\sum_{i=1}^{n-1} i = \frac{(n-1)n}{2}$$

e dimostriamo che, allora, anche Aff(n) è vera

Dimostrazione per induzione: un esempio

$$\sum_{i=1}^{n} i = \sum_{i=1}^{n-1} i + n = \frac{(n-1)n}{2} + n = \frac{(n-1)n + 2n}{2}$$
$$= \frac{n(n-1+2)}{2} = \frac{n(n+1)}{2} \quad \text{OK}$$

$T(n)=O(2^n).$

Dalla definizione di O, dobbiamo dimostrare che esistono delle costanti positive c_0 ed n_0 tali che $T(n) \le c_0 2^n$ per ogni $n \ge n_0$.

Casi base

- n = 1: $T(1) = c \le c_0 2$ basta scegliere $c_0 \ge c/2$
- n=2: $T(2)=c \le c_0 4$ vero se $c_0 \ge c/2$ (infatti $c_0 \ge c/2$ implica $4c_0 \ge 4c/2 = 2c \ge c$)

Passo induttivo: assumiamo $T(n') \le c2^{n'}$ per ogni $n' \le n$. Allora:

$$T(n) = T(n-1) + T(n-2)$$

$$\leq c_0 2^{n-1} + c_0 2^{n-2}$$

$$= c_0 2^{n-2} (2+1)$$

$$\leq c_0 2^{n-2} 4$$

$$= c_0 2^n$$

Ricerca in un'insieme non ordinato

ricercaSequenziale(array A, elem x)

for
$$i \leftarrow 1$$
 to lenght[A]
do if $A[i] = x$ return trovato
return non trovato

$$T_{\text{best}}(n) = 1$$

 $T_{\text{worst}}(n) = n$
 $T_{\text{avarange}}(n) = (n+1)/2$

x è in prima posizione x è in ultima posizione oppure non è in L sotto un assunzione di equi-distribuzione delle istanze

Ricerca in un'insieme ordinato

RicercaBinaria(array A, elem x)

```
n \leftarrow Lunghezza di A

if n=0 return non trovato

i \leftarrow \lceil n/2 \rceil

if A[i] = x return trovato

else if A[i] > x RicercaBinaria(A[1; i - 1], x)

else RicercaBinaria(A[i + 1; n], x)
```

Ricerca in un'insieme ordinato

RicercaBinaria(array A, elem x)

```
n \leftarrow Lunghezza di A

if n=0 return non trovato

i \leftarrow \lceil n/2 \rceil

if A[i] = x return trovato

else if A[i] > x RicercaBinaria(A[1; i - 1], x)

else RicercaBinaria(A[i + 1; n], x)
```

Come analizziamo questo algoritmo?

Tempo di esecuzione di RicercaBinaria

È descritto mediante la seguente **equazione di ricorrenza** :

$$T(n) = \left\{ egin{array}{ll} c + T(\lceil (n-1)/2
ceil) & ext{se } n > 1 \ 1 & ext{se } n = 1 \end{array}
ight.$$

Cosa è una relazione di ricorrenza

Una **relazione di ricorrenza** - o più semplicemente **ricorrenza** - è una equazione che descrive una funzione in termini del suo valore con input più piccoli

Esistono tre grandi metodi per risolvere le ricorrenze - ovvero per ottenere dei limiti asintotici " Θ " o "O"

- Il metodo di sostituzione
- Il metodo iterativo metodo della albero di ricorsione
- Il metodo dell'esperto che consente di calcolare i limiti per ricorrenze della forma T(n) = aT(n/b) + f(n) dove $a \ge 1$, b > 0 ed f(n) è una funzione data

Ricorrenze: un caso semplice

Metodo iterativo: consiste nello srotolare la ricorsione fino ad ottenere una sommatoria dipendente da n

Esempio:

$$T(n) = \begin{cases} 1 + T(n/2) & \text{se } n > 1 \\ 1 & \text{se } n = 1 \end{cases}$$

Proviamo ad applicare il metodo iterativo a T(n)

$$T(n) = 1 + T(n/2)$$

$$= 1 + 1 + T(n/4) = 2 + T(n/4)$$

$$= 2 + 1 + T(n/8) = 3 + T(n/8)$$

$$= 3 + 1 + T(n/16) = 4 + T(n/16)$$

$$= \cdots$$

Ricorrenze: un caso semplice

$$T(n) = 1 + T(n/2)$$

$$= 1 + 1 + T(n/4) = 2 + T(n/4) = 2 + T(n/2^2)$$

$$= 2 + 1 + T(n/8) = 3 + T(n/8) = 3 + T(n/2^3)$$

$$= 3 + 1 + T(n/16) = 4 + T(n/16) = 4 + T(n/2^4)$$

$$= \cdots$$

$$= k + T(n/2^k)$$

Continuiamo a srotolare la ricorsione fin quando $n/2^k = 1$; ora $n/2^k = 1$ implica $2^k = n$ e quindi $k = \log_2 n$ (k è il logaritmo in base 2 di n). Allora:

$$T(n) = \log_2 n + 1 = O(\log_2 n)$$

Il metodo iterativo può essere applicato a qualsiasi ricorrenza, ma a volte può essere di difficile soluzione

Esempio:

$$T(n) = \begin{cases} n + T(n/2) & \text{se } n > 1 \\ 1 & \text{se } n = 1 \end{cases}$$

Proviamo ad applicare il metodo iterativo a T(n)

$$T(n) = n + T(n/2)$$

$$= n + n/2 + T(n/4)$$

$$= n + n/2 + n/4 + T(n/8)$$

$$= n + n/2 + n/4 + n/8 + T(n/16)$$

$$= \cdots$$

$$T(n) = n + T(n/2)$$

$$= n + n/2 + T(n/4)$$

$$= n + n/2 + n/4 + T(n/8)$$

$$= n + n/2 + n/2^2 + n/2^3 + T(n/16)$$

$$= \cdots$$

$$= n + n/2 + n/2^2 + n/2^3 + \dots + n/2^{k-1} + T(n/2^k)$$

$$= \sum_{i=0}^{k-1} n/2^i + T(n/2^k)$$

Di nuovo ci fermiamo $k = \log_2 n$. Allora:

$$T(n) = \sum_{i=0}^{\log_2 n - 1} n/2^i + 1 = n \sum_{i=0}^{\log_2 n - 1} (1/2)^i + 1$$

$$T(n) = \sum_{i=0}^{\log_2 n - 1} n/2^i + 1 = n \sum_{i=0}^{\log_2 n - 1} (1/2)^i + 1$$

Fact

$$\sum_{i=0}^{m} \alpha^{i} = \frac{1 - \alpha^{m+1}}{1 - \alpha}$$

$$T(n) = n \sum_{i=0}^{\log_2 n - 1} (1/2)^i + 1 = n \frac{1 - (1/2)^{\log_2 n}}{1 - (1/2)} + 1$$

Metodo iterativo Alberi di ricorsione Metodo della sostituzione Metodo dell'esperto

$$T(n) = n \frac{1-(1/2)^{\log_2 n}}{1-(1/2)} + 1$$

$$T(n) = n \frac{1 - (1/2)^{\log_2 n}}{1 - (1/2)} + 1$$
$$= n \frac{1 - (1/2)^{\log_2 n}}{1/2} + 1$$

$$T(n) = n \frac{1 - (1/2)^{\log_2 n}}{1 - (1/2)} + 1$$

$$= n \frac{1 - (1/2)^{\log_2 n}}{1/2} + 1$$

$$= 2n \left(1 - \left(\frac{1}{2}\right)^{\log_2 n}\right) + 1$$

$$T(n) = n \frac{1 - (1/2)^{\log_2 n}}{1 - (1/2)} + 1$$

$$= n \frac{1 - (1/2)^{\log_2 n}}{1/2} + 1$$

$$= 2n \left(1 - \left(\frac{1}{2}\right)^{\log_2 n}\right) + 1$$

$$= 2n \left(1 - \left(\frac{1}{2}\right)^{\log_2 n}\right) + 1$$

$$T(n) = n \frac{1 - (1/2)^{\log_2 n}}{1 - (1/2)} + 1$$

$$= n \frac{1 - (1/2)^{\log_2 n}}{1/2} + 1$$

$$= 2n \left(1 - \left(\frac{1}{2}\right)^{\log_2 n}\right) + 1$$

$$= 2n \left(1 - \left(\frac{1}{2}\right)^{\log_2 n}\right) + 1$$

$$= 2n \left(1 - \left(\frac{1}{2}\right)^{\log_2 n}\right) + 1$$

$$= 2n \left(1 - \left(\frac{1}{n}\right) + 1\right)$$

$$T(n) = n \frac{1 - (1/2)^{\log_2 n}}{1 - (1/2)} + 1$$

$$= n \frac{1 - (1/2)^{\log_2 n}}{1/2} + 1$$

$$= 2n \left(1 - \left(\frac{1}{2}\right)^{\log_2 n}\right) + 1$$

$$= 2n \left(1 - \left(\frac{1}{2}\right)^{\log_2 n}\right) + 1$$

$$= 2n \left(1 - \left(\frac{1}{n}\right) + 1$$

$$= 2n \left(\frac{1}{n}\right) + 1$$

$$T(n) = n \frac{1 - (1/2)^{\log_2 n}}{1 - (1/2)} + 1$$

$$= n \frac{1 - (1/2)^{\log_2 n}}{1/2} + 1$$

$$= 2n \left(1 - \left(\frac{1}{2}\right)^{\log_2 n}\right) + 1$$

$$= 2n \left(1 - \left(\frac{1}{2}\right)^{\log_2 n}\right) + 1$$

$$= 2n \left(1 - \left(\frac{1}{2}\right)^{\log_2 n}\right) + 1$$

$$= 2n \left((n - 1)/n\right) + 1$$

$$= 2 \left((n - 1)/n\right) + 1$$

$$= 2 \left((n - 1)/n\right) + 1 = 2n - 1 = O(n)$$

Alberi di ricorsione

Vengono usati in alternativa al metodo iterativo

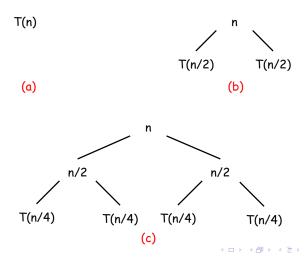
Un albero di ricorsione è un albero in cui ogni nodo rappresenta il costo di un sottoproblema da qualche parte nell'insieme delle chiamate ricorsive

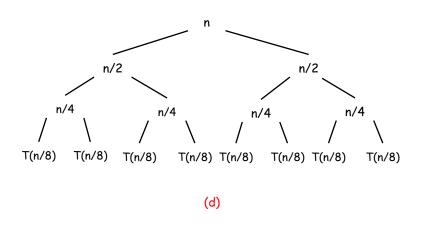
Consideriamo la ricorrenza

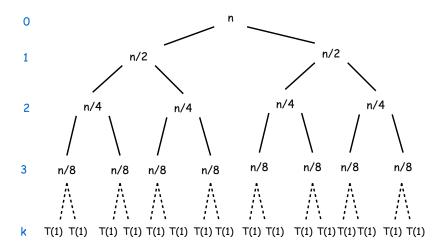
$$T(n) = \begin{cases} n + 2T(n/2) & \text{se } n > 1 \\ 1 & \text{se } n = 1 \end{cases}$$

e costruiamo la derivazione dell'albero delle ricorrenze per T(n)

Alberi di ricorsione: un esempio







Sia i un dato livello dell'albero di ricorsione (i = 0, ..., #livelli) (al momento, non meglio specificato)

- Quanti nodi ci sono al livello i? esattamente 2^i nodi (al livello 0 abbiamo $1=2^0$ nodi, ed ogni livello ha un numero di nodi doppio rispetto al livello precedente)
- Quale è il costo di un nodo al livello i? ogni nodo al livello i costa $n/2^i$ nodi (l'unico nodo al livello 0 ha un costo pari ad $n = n/1 = n/2^0$, ed ogni volta che scendiamo di livello il costo dei nodi si dimezza)
- ullet il costo complessivo dei nodi al livello i è

$$\#nodi(i) \times costo_nodo(i) = 2^i \times n/2^i = n$$

Quale è il costo complessivo della chiamata T(n)?

$$T(n) = \sum_{j=0}^{\#livelli} costo_livello(j) = \sum_{j=0}^{\#livelli} n = n \ (\#livelli + 1)$$

Ci rimane da determinare questo #livelli

L'ultimo livello corrisponde ad una serie di chiamate di $\mathcal{T}(1)$ (ci fermiamo quando la dimensione del problema è 1)

 $1 = n/2^k$ con k pari all'altezza dell'albero di ricorsione e quindi al #livelli: $n/2^k = 1$ implica $2^k = n$ e quindi #livelli = $k = \log_2 n$

Ricapitolando:

$$T(n) = n (\log_2 n + 1) = \Theta(n \log_2 n)$$

Metodo della sostituzione

Metodo della sostituzione: "indovinare" una possibile soluzione ed usare l'induzione matematica per dimostrare che la soluzione è corretta

Consideriamo di nuovo la ricorrenza

$$T(n) = \begin{cases} n + T(n/2) & \text{se } n > 1 \\ 1 & \text{se } n = 1 \end{cases}$$

e dimostriamo, applicando il metodo della sostituzione, che

$$T(n) = O(n)$$

Metodo della sostituzione

Dobbiamo dimostrare che che esistono delle costanti positive c ed n_0 tali che $0 \le T(n) \le cn$ per ogni $n \ge n_0$

Caso base n = 1: $T(1) = 1 \le c1 = c$ per ogni costante $c \ge 1$ (positiva)

Passo induttivo: assumiamo $T(n') \le cn'$ per ogni n' < n. Allora

$$T(n) = n + T(n/2)$$

 $\leq n + cn/2$
 $= n(1 + c/2)$ se scegliamo $c \geq 2^1$
 $\leq cn$

¹Infatti se $c \ge 2$, allora $1 \le c/2$ e $1 + c/2 \le c/2 + c/2 = c$

Metodo della sostituzione: un altro esempio

Consideriamo la seguente ricorrenza

$$T(n) = \begin{cases} n + 2T(n/2) & \text{se } n > 1\\ 1 & \text{se } n = 1 \end{cases}$$

Dimostriamo che

$$T(n) = O(n \log_2 n)$$

ossia che che esistono delle costanti positive c ed n_0 tali che $0 \le T(n) \le c n \log_2 n$ per ogni $n \ge n_0$

Caso base n = 1: $T(1) = 1 \le c0 = 0$ è chiaramente falsa

$$n = 2$$
: $T(2) = 2 + 2T(1) = 4 \le 2c$ basta scegliere $c \ge 2$

Metodo della sostituzione: un altro esempio

Passo induttivo: assumiamo $T(n') \le cn' \log_2 n'$ per ogni n' < n. Allora

$$T(n) = n + 2T(n/2)$$

$$\leq n + 2c(n/2)\log_2(n/2)$$

$$= n + cn\log_2(n/2)$$

$$= n + cn(\log_2 n - \log_2 2)$$

$$= n + cn(\log_2 n - 1)$$

$$= n + cn\log_2 n - cn$$

$$= cn\log_2 n + n(1 - c)$$

$$\leq cn\log_2 n \qquad \text{per ogni } c \geq 2$$

Quindi, se scegliamo $c \geq 2$ ed $n_0 = 2$, allora $T(n) \leq c n \log_2 n$ per ogni $n \geq n_0$

Teorema dell'esperto – Teorema Master

Permette di analizzare algoritmi basati sulla tecnica del divide et impera:

- dividi il problema (di dimensione n) in a sotto-problemi di dimensione n/b
- risolvi i sotto-problemi ricorsivamente
- ricombina le soluzioni

Sia f(n) il tempo per dividere e ricombinare istanze di dimensione n. La relazione di ricorrenza è data da:

$$T(n) = \begin{cases} aT(n/b) + f(n) & \text{se } n > 1\\ 1 & \text{se } n = 1 \end{cases}$$

Teorema dell'esperto – Teorema Master

La soluzione della ricorrenza

$$T(n) = \begin{cases} aT(n/b) + f(n) & \text{se } n > 1\\ 1 & \text{se } n = 1 \end{cases}$$

dipende da f(n). Più precisamente:

- Se $f(n) = O(n^{\log_b a \varepsilon})$ per qualche costante $\varepsilon > 0$, allora $T(n) = \Theta(n^{\log_b a})$
- ② Se $f(n) = \Theta(n^{\log_b a})$, allora $T(n) = \Theta(n^{\log_b a} \log_2 n)$
- ③ Se $f(n) = \Omega(n^{\log_b a + \varepsilon})$ per qualche costante $\varepsilon > 0$ e se, per qualche costante c < 1, $af(n/b) \le cf(n)$, allora $T(n) = \Theta(f(n))$

Applicazioni del teorema dell'esperto

$$T(n) = n + 2T(n/2)$$

 $a = b = 2$, $\log_b a = 1$
 $f(n) = \Theta(n) = \Theta(n^{\log_b a})$
(caso 2 del teorema master)

$$T(n) = \Theta(n^{\log_b a} \log_2 n) = \Theta(n \log_2 n)$$

Applicazioni del teorema dell'esperto

$$T(n) = c + 9T(n/3)$$

$$a=9,\ b=3,\ \log_b a=\log_3 9=2$$
 $f(n)=c=O(n)=O(n^{\log_b a-\varepsilon})=O(n^{2-\varepsilon})\ {\rm con}\ \varepsilon=1$ (caso 1 del teorema master)

$$T(n) = \Theta(n^{\log_b a}) = \Theta(n^2)$$

Applicazioni del teorema dell'esperto

$$T(n) = n + 3T(n/9)$$

$$a=3,\ b=9,\ \log_b a=\log_9 3=1/2\ (3=\sqrt{9}=9^{1/2})$$
 $f(n)=n=\Omega(n)=\Omega(n^{\log_9 3+\varepsilon})\ {\rm con}\ \varepsilon=1/2$ inoltre, $af(n/b)=3f(n/9)=3(n/9)=1/3n\le cf(n),\ {\rm per}\ c=1/3$ (caso 3 del teorema master)

$$T(n) = \Theta(f(n)) = \Theta(n)$$

