
8 communications of the acm | january 2013 | vol. 56 | no. 1

letters to the editor

T
o the question Vinton G.
Cerf addressed in his Presi-
dent’s Letter “Where Is the
Science in Computer Sci-
ence?” (Oct. 2012), my first

answer would be that there isn’t any.
Max Goldstein, a mentor of mine at
New York University, once observed
that anything with “science” in its name
isn’t really a science, whether social,
political, or computer. A true science
like physics or chemistry studies some
aspect of physical reality. It is not con-
cerned with how to build things; that
is the province of engineering. Some
parts of computer science lie within
mathematics, but mathematics is not a
science and is rarely claimed to be one.

What we mislabel as computer sci-
ence would more aptly be named “com-
putology”—the study of computational
processes and the means by which they
can be realized. Its components can
broadly be grouped into three inter-
dependent areas: software engineer-
ing, hardware engineering, and the
mathematics of computation. Just as
the underlying discipline of chemical
engineering is chemistry, the underly-
ing discipline of software engineering
is mathematics.

But not so fast. To qualify as a subject
of science, a domain of inquiry needs
two qualities: regularity and physicali-
ty. Reproducible experiments are at the
heart of the scientific method. Without
regularity they are impossible; with-
out physicality they are meaningless.
Digital computers, which are really just
very large and complicated finite-state
machines, have both these qualities.
But digital computers are artifacts, not
part of the natural world. One could
argue either way whether that should
disqualify them as a subject of science.
Quantum computing and race condi-
tions complicate the picture but not in
a fundamental way.

None of this detracts from Cerf’s
essential point—that when we design
software we rarely understand the full
implications of our designs. As he said,
it is the responsibility of the comput-
ing community, of which ACM is a vital

part, to develop tools and explore prin-
ciples that further that understanding
and enhance our ability to predict the
behavior of the systems we build.

Paul W. Abrahams, Deerfield, MA

In his President’s Letter (Oct. 2012),
Vinton G. Cerf wrote: “We have a re-
sponsibility to pursue the science in
computer science […and to develop] a
far greater ability to make predictions
about the behavior of these complex,
connected, and interacting systems.”
This is indeed a worthwhile cause that
would likely increase the reliability and
trustworthiness of the whole field of
computing. But, having picked up the
gauntlet Cerf threw down, how do I
make that cause fit the aspects of com-
puter science I pursue every day?

Cerf discussed the problems soft-
ware developers confront predicting
the behavior of both software systems
and the system of people developing
them. As a professional developer, I
have firsthand experience. Publishing
a catalog of the issues I find might lead
analysts to identify general problems
and suggest mitigations would be sub-
ject to two limitations: probably not
interesting enough for journal editors
to want to publish and my employers
likely viewing its content as commer-
cially sensitive.

I could instead turn to the ACM
Digital Library and similar resources,
looking for ways to apply it to my pro-
fessional work. However, this also has
limitations; reading journal articles
is a specialized, time-consuming art,
and the guidance I would need to un-
derstand what and how results are rele-
vant is often not available. Many of the
“classic results” quoted by profession-
als turn out to be as verifiable as lepre-
chaun sightings.1

To the extent the creation of soft-
ware can be seen as “computer sci-
ence,” such creation is today two
distinct fields: creating software and
researching ways software can be cre-
ated. If we would accept the responsi-
bility Cerf has bestowed upon us, we
would have to create an interface disci-

pline—call it “computer science com-
munication”—between these fields.

Graham Lee, Leicester, U.K.

Reference
1.	B ossavit, L. The Leprechauns of Software Engineering.

Leanpub, Vancouver, B.C., 2012; https://leanpub.com/
leprechauns

Only Portfolios Mitigate Risk Well
Peter G. Neumann’s “Inside Risks”
Viewpoint “The Foresight Saga, Redux”
(Oct. 2012) addressed how to provide
security but fell short. Though security
requires long-term approaches and re-
search advances, traditional incentives
target quick rewards. I teach a graduate
course on IT strategy and policy largely
focused on this dilemma. When tech-
nology moved slowly, slow acquisition
and delayed delivery caused minor loss-
es. Now, however, along with improve-
ment due to technology innovation, de-
lays in exploiting advanced technology
incur exponentially increased oppor-
tunity costs. Most businesses cannot
wait for high-trust solutions or systems
that significantly surpass state-of-the-
art quality. Likewise, most government
systems are already too costly and too
late, in part because they try to address
an unreasonably large number of re-
quirements.

The risk-management problem ne-
cessitates a portfolio-management ap-
proach. In the context of IT systems for
business or government, it would be
more affordable and practical to cre-
ate multiple alternatives and fallback
options and not depend on a single
system where failure would be devastat-
ing. In addition, applications should be
separated from research and funded ap-
propriately. It would be great to have a
secure Internet, unbreakable systems,
and uniformly trained people, but such
goals are not practical today. The focus
should instead be on risk mitigation,
resilience, and adaptation, even though
the incentives for moving quickly are
often irresistible. “Ideal” systems are
indeed the enemy of practical portfolios
built to withstand a range of risks.

Rick Hayes-Roth, Monterey, CA

Computer Science Is Not a Science
DOI:10.1145/2398356.2398359		

january 2013 | vol. 56 | no. 1 | communications of the acm 9

letters to the editor

Clock-Free Computing
As an undergrad at MIT in 1972, I took
a course in asynchronous design from
Prof. Jonathan Allen. Having some
background at the time in digital cir-
cuitry, it was exciting to see this lat-
est work as presented by Allen, and it
was easy to imagine that in a few years
most computers and other digital
systems would operate this way. The
reasoning was much like what Ivan
Sutherland advocated in his Viewpoint
“The Tyranny of the Clock” (Oct. 2012).
Following graduation I started out in
the working world designing digital
hardware. Industry opens a student’s
eyes to the real world, and it was clear
rather quickly that the synchronous
world would not in fact budge for a
long time. Though my work today in-
volves mostly software, I still see the
appeal of asynchronous logic and
hope the vision of asynchronous com-
puting finally takes hold. We could use
more calls-to-arms like Sutherland’s:
“The clock-free design paradigm must
eventually prevail.” I look forward to
that day, just as I look forward to an-
other paradigm that should eventually
prevail—parallel processing.

Larry Stabile, Cambridge, MA

Relational Model Obsolete
I write to support and expand on Erik
Meijer’s article “All Your Database Are
Belong to Us” (Sept. 2012). Relational
databases have been very useful in prac-
tice but are increasingly an obstacle to
progress due to several limitations:

Inexpressiveness. Relational algebra
cannot conveniently express negation
or disjunction, much less the general-
ization/specialization connective re-
quired for ontologies;

Inconsistency non-robustness. Incon-
sistency robustness is information-
system performance in the face of
continually pervasive inconsistencies,
a shift from the once-dominant para-
digms of inconsistency denial and in-
consistency elimination attempting to
sweep inconsistencies under the rug.
In practice, it is impossible to meet the
requirement of the Relational Model
that all information be consistent, but
the Relational Model does not process
inconsistent information correctly. At-
tempting to use transactions to remove
contradictions from, say, relational

medical information is tantamount to
a distributed-denial-of-service attack
due to the locking required to prevent
new inconsistencies even as contradic-
tions are being removed in the pres-
ence of interdependencies;

Information loss and lack of prov-
enance. Once information is known, it
should be known thereafter. All infor-
mation stored or derived should have
provenance; and

Inadequate performance and modu-
larity. SQL lacks performance because
it has parallelism but no concurrency
abstraction. Needed are languages
based on the Actor Model (http://www.
robust11.org) to achieve performance,
operational expressiveness, and in-
consistency robustness. To promote
modularity, a programming language
type should be an interface that does
not name its implementations contra
to SQL, which requires taking depen-
dencies on internals.

There is no practical way to repair
the Relational Model to remove these
limitations. Information processing
and storage in computers should ap-
ply inconsistency-robust theories1
processed using the Actor Model2 in
order to use argumentation about
known contradictions using inconsis-
tency-robust reasoning that does not
make mistakes due to the assumption
of consistency.

This way, expressivity, modular-
ity, robustness, reliability, and per-
formance beyond that of the obsolete
Relational Model can be achieved
because computing has changed dra-
matically both in scale and form in the
four decades since its development.
As a first step, a vibrant community,
with its own international scientific
society, the International Society for
Inconsistency Robustness (http://
www.isir.ws), conducted a refereed
international symposium at Stan-
ford University in 2011 (http://www.
robust11.org); a call for participation
is open for the next symposium in the
summer of 2014 (http://www.ir14.org).

Carl Hewitt, Palo Alto, CA

References
1.	 Hewitt, C. Health information systems technologies.

Stanford University CS Colloquium EE380, June 6,
2012; http://HIST.carlhewitt.info

2.	 Hewitt, C., Meijer, E., and Szyperski, C. The Actor
Model. Microsoft Channel 9 Videos; http://channel9.
msdn.com/Shows/Going+Deep/Hewitt-Meijer-and-
Szyperski-The-Actor-Model-everything-you-wanted-
to-know-but-were-afraid-to-ask

Design Software for the Unknown
In his article “Software Needs Seatbelts
and Airbags” (Sept. 2012), Emery D.
Berger identified typical flaws in cod-
ing, as well as techniques that might
help prevent them, addressing a major
conundrum taking much of a typical
programmer’s time: Much more time
goes for tracking bugs than for writing
useful programs.

Berger’s analogy of software tech-
niques and automobile accessories
was illuminating, though computer
technology has generally outpaced the
automobile by orders of magnitude.
Some have said automobiles could go
one million miles on a single gallon
of fuel, reaching its destination in one
second, if automobile engineers were
only as bright as computer scientists.
Others have said we would be driving
$25 cars that get 1,000 miles to a gallon
if they were only designed by computer
scientists instead of by automobile en-
gineers. But the analogy should not be
stretched too far. An advocate of soft-
ware reliability might say seatbelts and
bumpers are not intended to protect
drivers from design errors but from
their own errors, or bad driving; in soft-
ware the analogous problem is designer
error. If defects are discovered, cars are
recalled and defective parts replaced.
Some software products that update
themselves multiple times a day crash
anyway because analogous seatbelts
and airbags in software are a luxury.

The defects Berger covered are
more analogous to bad plumbing and
crossed wires. Moreover, software de-
velopers may not even know all the
components and functions in the soft-
ware they deliver. Though perfect in
terms of memory handling and buffer-
overflow management, software can
become a work of art during develop-
ment, with no way to completely an-
ticipate how it will perform under un-
known circumstances.

I would like to see researchers of
software code take a look at something
I call “mind of software,” aiming for
ways to make software more safe and
predictable for common use.

Basudeb Gupta, Kolkata, India

Communications welcomes your opinion. To submit a
Letter to the Editor, please limit yourself to 500 words or
less, and send to letters@cacm.acm.org.

© 2013 ACM 0001-0782/13/01

