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1. Summary 
 
The aim of this deliverable is to describe in a formal topological framework the features of 
general datasets and extend the domain of applicability of existing methods in order to pro-
vide the data-driven founding for future work on joint statistical and topological modelling ef-
forts.   
In order to associate a topological space to a general collection of points, usually one relies 
on the existence of an underlying (real or inferred) metric space. This allows us to build an 
interpretation of data-points as vertices of a combinatorial graph whose edges are deter-
mined by proximity. This type of description, however, completely ignores higher order 
(many-body) effects that might be playing a role.  
 
This problem can be overcome by considering such graph as the scaffold for a higher-
dimensional object obtained by completing the graph to a simplicial complex. Then computa-
tional topological techniques can be adopted in order to extract the topological features of 
the original dataset.  
Such construction relies however on the existence of a meaningful metric, which in general 
is not given by the data structure.  
 
Thus, main contribution toward deliverable D1.1 consisted in:  

1. developing a language to address this type of problems, by extending persistence 
homology to the case of non-metrical spaces and building appropriate computational 
software (ISI, UNICAM);  

2. exploiting these new tools to analyze various complex case-study systems, namely 
the persistent structure of real-world complex networks and the perturbation to the 
brains’ functional structure caused by selected drugs; 

3. checking that our approach is mathematically well-grounded by recasting it in catego-
rial terms. In addition to the activities above, topologically motivated analysis were 
used also to approach problems belonging to phase transitions in classical Hamilto-
nian systems and biologically-inspired Markov chains (ISI, AMU).    

 
Current results provide a strong foundation for both the next deliverables and further applica-
tions of the tools we developed to new systems. In particular, the results of WP2 on the in-
formation geometry of dynamical systems on networks constitute a natural stepping stone 
for the comparison between homological and dynamical properties of such systems required 
to fulfill the goals of deliverable D1.2.  
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2. Partner contribution / collaboration 
 
ISI: A general dataset can be seen as a point cloud in an appropriate space endowed with 
some relation between the points. Therefore, in general we can describe a dataset as a 
weighted network where points constitute the nodes and the relation defines the strength of 
the links among such nodes. Unfortunately, in real datasets the relations are hardly metrical, 
for example in the case of very heterogeneous datasets (census data, mobile phone calls, 
etc).  
Naturally, it is possible to enforce a metrical structure on such relational networks. However, 
this generally destroys important information contained within the dataset, because it forces 
the distances between nodes to obey additional properties. This is clearly shown by the 
analysis real-world weighted networks  [1]: we used a selection of standard network metrics 
and found that the resulting homological features, although robust to metric changes as ex-
pected, were scarcely informative.  
This problem can be overcome by using the actual relational structure and its weighting pat-
terns. We devised a filtration mechanism, akin to a stratigraphy of the dataset, which allows 
us to preserve and extract the complete homological structure without further assumptions.  
This is done by considering the set of all filtered networks, ordered by the descending 
thresholding weight parameter, in the spirit of persistent homology [2]. Studying the changes 
of the topological structure along such filtration provides a natural measure of robustness for 
the topological features emerging across different scales. This method allows us to probe 
multiple layers of organized structure and is also robust to decimation procedures [3]. In par-
ticular, in a selection of real-world complex networks, we highlighted two classes, distin-
guished by their homological features, which were then found to be caused by differences in 
the higher order interactions. Moreover, this was linked to differences in the spectral proper-
ties of the networks, which have been long known to affect the evolution of dynamical pro-
cesses on networks, with particular reference to the algebraic connectivity and the synchro-
nizability thresholds. 
 
Among the applications, two – relevant for social and infrastructural networks – are the study 
of the weighted rich club’s geometry beyond the aggregate measure, and the generalisation 
of network embedding models to include homological information. This is ongoing work that 
will continue also within the context of deliverable D1.2 because of its focus on the relation-
ship between geometrical and topological properties in complex systems (through bounded 
Gromov spaces).  
 
The mathematical consistency and generality of the method introduced was discussed in [5]: 
in brief, from within category theory, the introduced weighted graph homology can be shown 
to be the most general framework for persistent homology. In addition, the work described 
above resulted in a publicly available Python module, Holes, which streamlines the steps 
necessary for the complete analysis (pre-processing, persistent homology computation and 
analysis of the results).  
 
Finally, ISI partnered with the Institute of Psychiatry  (King’s College London) to apply persis-
tent homology techniques to the discrimination of drug effects on brain functional networks 
obtained from fMRI data. In particular, ISI performed the experimental design, crafted and 
performed the analysis on the datasets provided by King’s College. Homological features 
were instrumental in this work, since the differences found between placebo-injected and 
drug-injected patients were at the level of mesoscopic structures, i.e. functional circuits, and 
were thus invisible to the standard global or local metrics customarily used in network sci-
ence.   
 
ISI-UNICAM: The computational complexity involved in preprocessing of large datasets and 
in calculating the related persistent homology warrants appropriate computational tools. 
However, despite the promising results of topological data analysis, only separate software 
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libraries designed for specific purposes exist. In order to allow wide-spread adoption of topo-
logical techniques, an efficient and open-source toolbox is necessary for the scientific com-
munity at large. The two groups are currently collaborating on the first stages of this project. 
In particular the first step requires increasing the processing capabilities of Holes while 
maintaining its accessibility. This is being done by developing a high-performance Java li-
brary, jHoles, which maintains the interoperability with the Python module. A prototype has 
been finished and is undergoing stress tests. Preliminary tests showed a very large perfor-
mance increase (>200%) in terms of speed and memory management.  
 
ISI-AMU: One very interesting problem in Hamiltonian dynamics is that of the microscopic 
origin of phase transitions. This question can be approached by characterizing the changes 
of the system’s configuration manifold in terms of its topological properties. In particular, two 
theorems guarantee that – for a large class of potential functions – phase transitions can be 
related to sudden topological changes of the manifold. However, due to the large number of 
degrees of freedom and the computational complexity, it was impossible to directly verify 
this.  
Persistent homology allows instead direct access to the topology and its shifts of such large-
dimensional manifolds, allowing direct confirmation of the theory. Preliminary results of this 
work have been presented at European Conference on Complex Systems 2013 within the 
“Topological Methods for Complex Systems” satellite and a publication is in preparation.   
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3. Outlook (no cost is claimed for this work) 
 
In the outlook, ISI’s contribution (weighted graph persistent homology) provides a basis for 
Task 1.2, in which ISI will check the suitability of Gromov’s spaces of bounded geometries to 
encode the relationship obtained by WP2 between geometric and topological quantities. A 
crucial goal is to prove that the partition function is well-defined for appropriate control pa-
rameters whose values are most likely determined by the torsion invariants associated with 
an orthogonal representation of the fundamental groups of the set of manifolds. The work 
ongoing with AMU on the topology of configuration manifold of critical Hamiltonians already 
constitutes a stepping stone in this direction, in particular toward understanding whether the 
phase transitions are described by a passage from a simple homotopy type to another. 
 
Work developed so far was dictated by the necessity to define a suitable measure on the 
space of data, allowing us to construct the statistical functionals (first of all entropy, but in-
deed any probability distribution and the related moments) necessary to single out and eval-

uate correlations (patterns  knowledge) in such space. Preliminary results are summarized 
hereafter. No publication has been completed yet, but active work on the subject is in pro-
gress, expected to lead soon to two manuscripts.  
 
It is well known that in the continuous case there are relationships between the heat flow, 
acting on differential forms on a closed oriented manifold M, and the topology of M. In view 
of Hodge theory, one can recover the Betti numbers of M from the heat flow. Furthermore, 
Ray and Singer defined an analytic torsion (nonzero only on odd-dimensional manifolds), 
smooth invariant of acyclic flat bundles on M, proved by Cheeger and Muller to be equal to 
the classical Reidemeister torsion. This analytic torsion behaves in some way as an odd-
dimensional counterpart of the Euler characteristic. 
 
If M is not simply-connected, then there is a covering space analog of the Betti numbers. Us-
ing the heat flow on the universal cover of M, one can define the L2-Betti numbers of M by 
taking the trace of the heat kernel not in the ordinary sense, but as an element of a type II 
von Neumann algebra. This essentially amounts to integrating the local trace of the heat 
kernel over a fundamental domain in M. The covering space analog of the analytic torsion, 
T(M), could be considered as well, having the same relation to the L2-cohomology as the or-
dinary analytic torsion bears to de Rham cohomology.  
 
We aim to computing T(M) in the case where M is hyperbolic. T(M) is clearly proportional to 
the hyperbolic measure ('volume'), which is expected to be a topological invariant by Mostow 
rigidity. The question is whether the constant of proportionality is nonzero. The invariant of M 
which in the PL case gives the hyperbolic 'volume' is the simplicial volume ||M|| of Gromov. 
The relationship between ||M|| and T(M) needs to be made more explicit. 
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Chapter 15
Networks and Cycles: A Persistent Homology
Approach to Complex Networks

Giovanni Petri, Martina Scolamiero, Irene Donato, and Francesco Vaccarino

Abstract Persistent homology is an emerging tool to identify robust topological
features underlying the structure of high-dimensional data and complex dynamical
systems (such as brain dynamics, molecular folding, distributed sensing).

Its central device, the filtration, embodies this by casting the analysis of the sys-
tem in terms of long-lived (persistent) topological properties under the change of a
scale parameter.

In the classical case of data clouds in high-dimensional metric spaces, such fil-
tration is uniquely defined by the metric structure of the point space. On networks
instead, multiple ways exists to associate a filtration. Far from being a limit, this
allows to tailor the construction to the specific analysis, providing multiple perspec-
tives on the same system.

In this work, we introduce and discuss three kinds of network filtrations, based
respectively on the intrinsic network metric structure, the hierarchical structure of its
cliques and—for weighted networks—the topological properties of the link weights.
We show that persistent homology is robust against different choices of network
metrics. Moreover, the clique complex on its own turns out to contain little infor-
mation content about the underlying network. For weighted networks we propose a
filtration method based on a progressive thresholding on the link weights, showing
that it uncovers a richer structure than the metrical and clique complex approaches.

Keywords Complex networks · Persistent homology · Metrics · Computational
topology

15.1 Introduction

Over the last decade complex networks have become one of the prominent tools in
the study of social, technological and biological systems. By virtue of their sheer
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sizes and complex interactions, they cannot be meaningfully described and con-
trolled through classical reductionist approaches.

Within this framework, the study of the topology of complex networks, and its
implications for dynamical processes on them, has most often focused on the statis-
tical properties of nodes and edges and therefore found a natural and effective de-
scription in terms of statistical mechanical models of graph ensembles [1, 2]. These
models rely for their formulations on local interactions and become quickly hard
to manage when higher correlations are included or one-step approximations are
not sufficient, as Schaub et al. [3] pointed out for the case of community detection
algorithms for example.

The last few years saw a new perspective emerge that focuses on the very geom-
etry of complex network. It was promoted by a large availability of new (typically
geosocial) data coming from spatial networks [4], but also by analytical and numer-
ical results on the relations between geometrical properties and global features of
complex networks, e.g. the hyperbolic embedding of the Internet with the result-
ing increased efficiency of greedy routing algorithms [5], stationarity conditions for
chemical networks [6] and brain cortex dynamics [7].

In this work, we take on this perspective and study the geometrical properties
of networks through the goggles of persistent homology, a technique originally
introduced by [8, 9] to uncover robust topological information from noisy high-
dimensional point clouds. Persistent homology works by extracting from a dataset
a growing sequence of simplicial complexes (called filtration), indexed by a param-
eter ε, and studying the associated homology groups, which encode the geometrical
information (for example, the holes of an n-torus). The robustness of each topo-
logical feature is then obtained from the persistence of the corresponding generator
along the filtration,

For example, in the case of the torus, there will be two persistent generators
associated to the two non-equivalent loops on its surface.

Persistent homology has received some attention in the context of networks [10],
but there has been no systematic study on its efficiency and sensibility for networks
yet. This is of particular importance since, in contrast with the unique natural met-
ric available for point cloud datasets, networks allow various rules to generate the
filtration.

Our results will show that the salient features of the homology do not change
significantly under different metrics and that there exist a metric scale εc at which
the filtration displays the richest structure.

We will then study a second method to create the filtration, relying only on the
network clique structure. Unfortunately, this will turn out to yield little additional
information.

In the case of weighted networks it is possible to devise a refined filtration based
on the clique structure of the network thresholded by ε, which yield a much richer
picture than the simple clique complex method.

The rest of this work is organised as follows. In the next section a minimal in-
troduction to homology and its persistent sister is given. The following section will
present selected results of simulations and datasets under different choices of met-
rics for the network filtration.
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We conclude then presenting the procedure for the filtration built with the link-
thresholded clique structure and briefly discuss the results and implications for fu-
ture research. In particular, we have discuss the possibility of expanding the method
by considering multi-filtrations, that is filtrations indexed by more than one param-
eter.

15.2 Homology

Formally, homology is an algebraic invariant converting local geometric informa-
tion of a space into a global descriptor. There are many homology theories, but
simplicial homology is the most amenable for computational purposes thanks to its
combinatorial structure.

This kind of homology is applied to simplicial complexes, that are combinations
of vertices, segments, triangles and higher dimensional analogues, joined accord-
ing to specific compatibility relations. As we will see in the following, simplicial
complexes can be constructed from discrete spaces or networks. Low dimensional
homology groups have an intuitive interpretation. Given a simplicial complex X,
H0(X) is the free group generated by the connected components of X, H1(X) is
the free group generated by the cycles in X, H2(X) is the free group generated
by voids—holes bounded by two-dimensional faces. The Betti numbers count the
number of generators of such homology groups.

The standard tool to encode this information is the so-called barcode, which is
a collection of intervals representing the lifespans of such generators. Long-lived
topological features can be distinguished in this way from short-lived ones, which
can be considered as topological noise. There are various ways of building persis-
tence modules out of a given dataset. The most known are the Rips-Vietoris com-
plex, the Cech complex and the clique complex [8]. The first two require a metric
space for the data and are generated by inflating spheres of the same radius around
points (or nodes in a network) and associating set of points to simplices according
to the overlap of the corresponding spheres. They can also be used to create a filtra-
tion out of general network, once a metrical structure is given on the network itself
(shortest-path, commute time distance, etc). Besides these two methods, there ex-
ist a few methods pertaining to networks only [8], the best known being the clique
complex, which is generated by associating to each maximal clique the simplex gen-
erated by the vertices of the clique.

15.3 Robustness Against Metric Change

Network metrics have been well studied, especially in the context of clustering al-
gorithms [11] and Markov Chain models [12]. In addition to the shortest path and
commute time metrics, it is possible to define kernel matrices as functions of the
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Fig. 15.1 Barcodes for the shortest path metric (left, panels (a), (c) and (e)) and the Von Neumann
metrics (right, panels (b), (d) and (f)) on the C. Elegans brain network. From top to bottom, we
report the intervals of existence of the homological spaces H0 (panels (a) and (b)), H1 (panels (c)
and (d)), H2 (panels (e) and (f)). The parameter ε ∈ [0,1] increases from left to right. Each hori-
zontal line corresponds to the intervals of existence of a generator of the corresponding homology
space. In both cases, the higher homology space are non-trivial only in the vicinity of the merging
of a large number of connected components, as highlighted by the drastic reduction in the number
of generators of H0

network’s adjacency and Laplacian matrices. From such kernels one obtains a well-
defined distance, which effectively turns the network into a metric space.

We analysed the metrics associated to: the shortest paths, the commute time
between nodes, exponential diffusion [13] and exponential Laplacian diffusion
[11, 14], which emerge as solutions of diffusion processes on the corresponding net-
work, the von Neumann kernel [15],which generalises the hub-authority measures,
Markov diffusion [16] and random walks with restart.

For each metric, the filtration was generated and the persistent homology calcu-
lated. The analysis was repeated on a range of different networks, spanning different
network topologies, sizes and origins (biological, social, technological).

For brevity, in this paper, we show only the comparison of the barcodes obtained
using the shortest path and the exponential diffusion (with α = 0.01) distances for
the C. elegans neuronal network (Fig. 15.1). In order to compare the results both
metrics have been mapped to the interval [0,1]. Surprisingly, we found that the
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higher homology spaces (H1, H2 . . . , bottom plots in Fig. 15.1) are trivial for most
values of the filtration parameter. They do however show the appearance of genera-
tors of higher homology groups in the vicinity of the value of ε at which a significant
number of connected components merges into few, as shown by the decrease in the
number of generators of H0.

In this respect, our results suggest the existence of a particular value εc, a metric
scale, at which one observes the most structure in the metrical representation of the
network under study. The same behaviour was found in a number of other networks,
ranging from the US air passenger network to the human gene regulatory one. Note
moreover that, in general, εc is different from the average distance between the
nodes (in terms of the chosen metric) and therefore cannot be explained as a mere
effect of the distances distribution. Moreover, if the appearance of non trivial higher
homology groups was only due to the merging of small connected components into
a giant component, one would expect to observe the same phenomenon also for the
merging of smaller components. However, we did not see any of these signatures,
supporting the existence of a characteristic scale εc.

15.4 Clique Complex and Link Weights Thresholding

Another natural filtration of a network is generated by considering its clique struc-
ture. The clique complex is obtained by associated to each maximal k-clique, a com-
pletely connected subgraph formed by k nodes, the (k − 1)-simplex whose vertices
are the nodes of the clique. The natural parameter for this filtration is the clique
dimension k. Recent work [10] tried to uncover specific signatures of modular and
cluster structures in complex networks by making use of this filtration. In our anal-
ysis the filtration obtained in this way did not show interesting features in addition
to the clique structure itself, which however can be investigated without recurring
to homological concepts. However, if we consider weighted networks, it is possible
to devise a filtration which combines link weights and clique structure. Given the
weighted adjacency matrix ωij , we let ε vary in (minωij ,maxωij ) and consider a
sequence of networks, such that the network at step ε contains all links (i, j) with
ωij > ε. As we decrease ε from its maximum allowed value, we go from the empty
network to the original one. For each step, we build the corresponding clique com-
plex and study the persistent homology of the resulting filtration. Figure 15.2 shows
the results of this filtration on a large Facebook-like network of online contacts. It
is immediately evident that a very rich topological information is present. Long per-
sistent intervals appear both for some generators of H1 and H2. The first implies the
existence of chains composed by edges with large weights, whose nodes though are
not strongly connected across the chain itself, but only with their two neighbours
along the chain. The same reasoning applies to the case of H2 where the building
blocks are not segments but triangles. The presence of long persistent H2 genera-
tors is a signpost for higher ordering in the structure of the online contacts. This
means that strong pair interactions organise in long loops without significant triadic
closure.
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Fig. 15.2 Barcodes obtained from the weighted-clique complex filtration of a network of online
contacts for the homology groups H0 (a), H1 (b) and H2 (c). Persistent H1 and H2 generators
imply that the existence of loops and chains of tethraidra formed by nodes which are weakly
interacting with their neighbours in the chain, with the exception of the one directly adjacent along
the chain. In the case of human contacts, this means that strong pair interactions organise in long
loops without significant triadic closure

Finally, we can conclude that this method is able to identify mesoscopic and long-
range structures which are present in networks, but would otherwise pass undetected
with standard methods, and assigns to them also a measure of robustness in the form
of the persistence intervals.

Acknowledgements The authors acknowledge Mario Rasetti for insightful discussions and con-
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Chapter 39
Decimation of Fast States and Weak Nodes:
Topological Variation via Persistent Homology

Irene Donato, Giovanni Petri, Martina Scolamiero, Lamberto Rondoni,
and Francesco Vaccarino

Abstract We study the topological variation in Markov processes and networks
due to a coarse-graining procedure able to preserve the Markovian property. Such
coarse-graining method simplifies master equation by neglecting the fast states and
significantly reduces the network size by decimating weak nodes.

We use persistent homology to identify the robust topological structure which
survive after the coarse-graining.

Keywords Markov processes · Complex networks · Coarse-graining (theory) ·
Persistent homology · Computational topology

39.1 Introduction

Networks have received large attention over the last decade [5, 6] because of their
ability to encode complex behaviours in simple ways, namely through the topol-
ogy of their connectivity and the type of interactions between their elements. Fur-
thermore, such interactions often evolve according to stochastic rules, characteristic
that tightly connects complex networks to Markov processes. However, the salient
features of large networks can be hard to identify due to the sheer size of the sys-
tems and heterogeneity in linking and weight distributions. In this context, effective
techniques to highlight dominant structures within large networks are of extreme
importance both for control and understanding [3]. In particular, such techniques
have to preserve chosen network properties while reducing the complexity of the
system.

We analyse a coarse-graining procedure inspired by the method recently devel-
oped for continuous Markov processes [1, 2]. This procedure simplifies the numer-
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ical treatment of chemical and biological processes in terms of master equations
reducing the number of variables with a decimation of fast states and a subsequent
renormalization of the weights of all the surviving states in order to preserve the
Markovian property.

In particular, we slightly modify the method of [1] in order to extend it to the
case of complex networks. Whereas, in the case of Markov processes, the faster
states are removed, in the case of networks we consider as candidates for decimation
the nodes displaying smaller strength i.e. weak nodes. For every decimated node i,
we introduce edges between all pairs of i’s neighbours, effectively substituting the
node itself with a clique composed by its former neighbours. The renormalization
procedure of assigning weights to these new edges is described in the following
section.

Importantly, we show on a range of different networks that this decimation tech-
nique is able to preserve the robust homological properties of the system, obtained
through a persistent homology approach, while at the same time reducing signifi-
cantly the complexity of the computation. We see also that the topological features
depend crucially on the variation of coarse-graining level.

We report the example of C. elegans brain neural network of the type of results
obtained for networks under the procedure that decimates the weak nodes and an
asymmetric scale-free graph associated to an irreversible Markov process, as exam-
ple of the procedure that decimates fast states.

39.2 Decimation of Fast States and Weak Nodes

The coarse-graining procedure, considered here, allows to advance the understand-
ing of a certain Markov process with very different time-scale by neglecting the fast
dynamic. Indeed, if the process is described by Master equation (here ωij indicates
the rate of going from state i to state j whereas Pi is the probability of being in
state i)

dPi

dt
=

∑

i �=j

(Piωij − Pjωji) (39.1)

and we are interested in the slow dynamics, it is usually not necessary but computa-
tionally demanding to exactly integrate the fast dynamics.

In this method the coarse-graining is parametrized by some threshold i.e. the
coarse-graining level. Particularly, we can decimate all states having an average
permanence time smaller than a prescribed threshold �τ (fast states), where the
time spent in a generic state n is exponentially distributed with average τn = 1/ωout

n

and ωout
n is the sum of the outgoing rates from n.

Similar considerations can be made in the context of network analysis, where typ-
ically the main interest is the description of the underlying backbone of the system,
which is usually defined in terms of link weights [3] or connectivity [4]. From this
point of view, weak nodes, that is nodes with low outgoing strength, are good can-
didates for removal, since they do not contribute significantly to the main structure
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of the network. In particular, given a strength threshold s and a node i, we decimate
all the nodes with total outgoing strength sij = ∑

j∈Γi
ωij < s (weak nodes).

It is important to replace the decimated nodes with effective interactions between
the nodes they used to bridge. Namely, this means that a disappearing node i is
substituted by links creating a fully connected clique among i’s former neighbours.
The weights of the clique edges are setted in such a way to preserve the Markovian
propriety that leads to the following renormalization [1]:

ω̃
j
i = ω

j
i + ωn

i ω
j
n

ωout
n

(39.2)

Note that this procedure corresponds to neglect the time spend in the removed state.
We use the same renormalization (39.2) in the case of the network although the
decimated nodes are the weak ones.

Interestingly, it was proved that, given a set of candidates for decimation, the re-
sult of this procedure does not depend on the order in which the nodes are removed,
i.e. the procedure is commutative, widening its applicability and generality.

39.3 Persistent Homology

Formally, homology is an algebraic invariant converting local geometric informa-
tion of a space into a global descriptor. There are many homology theories, but
simplicial homology is the most amenable for computational purposes thanks to its
combinatorial structure.

This kind of homology is applied to simplicial complexes, that are combinations
of vertices, segments, triangles and higher dimensional analogues, joined accord-
ing to specific compatibility relations. Low dimensional homology groups have an
intuitive interpretation. Given a simplicial complex X, H0(X) is the free group gen-
erated by the connected components of X, H1(X) is the free group generated by
the cycles in X, H2(X) is the free group generated by voids—holes bounded by
two-dimensional faces. The Betti numbers count the number of generators of such
homology groups.

The standard tool to encode this information is the so-called barcode, which is
a collection of intervals representing the lifespans of such generators. Long-lived
topological features can be distinguished in this way from short-lived ones, which
can be considered as topological noise. Moreover, the value of the filtration parame-
ter at which a certain generator provides important information about its role within
the network.

There are various ways of building persistence modules out of a given dataset.
The most known are the Rips-Vietoris complex, the Cech complex and the clique
complex [7]. Here, we exploit the network’s weighted clique structure. The clique
complex is obtained by associating to each maximal k-clique, a completely con-
nected subgraph formed by k nodes, the (k − 1)-simplex whose vertices are the
clique’s nodes. In this way however one produces a single simplicial complex, which
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Fig. 39.1 The barcodes are shown with the percentage of the decimated nodes. The arrows indi-
cates the persistence of the same loops. The overlapped arrows mean that two cycles have merged.
We see the disappearance of the persistent cycles only when the decimation becomes massive

does not convey in itself any information about the robustness of the topological fea-
tures it displays.

It is possible to devise a filtration, i.e. a sequence of simplicial complexes, com-
bining link weights and clique structure. Given the weighted adjacency matrix ωij ,
we let ε vary in

(
min(ωij ),max(ωij )

)
and consider a sequence of networks, such

that the network at step ε contains all links (i, j) with ωij > ε. As we decrease ε

from its maximum allowed value, we go from the empty network to the original one.
For each step, we build the corresponding clique complex and study the persistent
homology of the resulting filtration.

39.4 Topological Variation Due to the Decimation Procedure

We applied the decimation procedure to different weighted graphs representing real
networks and than we have studied the relevant topological features to investigate
if they are destroyed by the coarse-graining. We report two examples, one is the
C. elegans neural network, where we decimated weak nodes, and the other one is an
asymmetric weighted scale-free graph where we decimated fast states because of its
interpretation as an irreversible Markov process.

We show the barcodes for the H1 generators at different percentages of nodes
removed for both the C. elegans neural network (Fig. 39.2) and the scale-free graph
(Fig. 39.1). The barcodes summarize the topological information dictated by the dy-
namic of the network. Indeed, they are a collection of horizontal lines representing
the homology generators in an arbitrary order. The starting and final points of these
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segment indicate the filtration level where they have appeared and disappeared. In
particular, the H1 generators are the cycles i.e. edges set in circular way with weight
stronger then the near ones. The moment in the filtration in which they appeared
gives information about the scale of the cycles (or voids if we are taking in consid-
eration the H2 generators). Indeed, persistent homology is a tool able to see also the
structures (cycles, voids etc. . . . ) in the meso-scale and, furthermore, able to show
the edges and nodes constituting such structures. In Figs. 39.2 and 39.1, for example,
arrows of the same color highlight cycles that are present both in the initial graph
and in the decimated ones. Hence, we can distinguish between graphs displaying
the same homology generators distribution or having the same generators.

Decimation and Persistent Homology Applied to a Random Weighted Scale-
Free Markov Process We have applied the coarse-graining procedure to a
50 states continuous Markov process, obtained from a directed scale-free graph.
The motivation for applying this method to a scale-free graph is that it is recognized
to reproduce observed properties of the world-wide web [9] and that this coarse-
graining procedure is especially useful to integrate master equation when there are
a lot of different scales.

The model used to create the initial data gives a graph that grows with preferen-
tial attachment so that the in- and out-degrees distributions follow power laws [8].
After we added random weights to each edge and divided the weights from i to j by
the number of neighbours of i in order to prevent that the lifetime of state i would
be the shorter the higher is its degree centrality. This step permit also to increase the
separation of time scales. The H1 generators for the full network and the ones cor-
responding to 12 and 24 percent of the weaker states removed (Fig. 39.1) evidence a
good preservation of the relevant cycles. If a node of a certain cycle is removed we
observe the shortening of that cycle in the coarse-grained graph. There could also be
the merging of two cycles when a node to be decimated belong to both structures.

Importantly, the decimation procedure was also applied to a graph obtained in
the same way that the previous one but without dividing the weights by the number
of neighbours. We observed in this case that the cycles after the coarse-graining are
not so long preserved because of the higher degrees of the fast states.

Decimation and Persistent Homology Applied to C. Elegans Neural Network
Fig. 39.2 reports the barcode for the H1 generators, which correspond to loops com-
posed by strong links, obtained from the weighted clique persistent homology after
a series of decimation. The plots refer in particular to respectively 40, 60, 80 and
85 percent of the network nodes being removed. Interestingly, we find that a set of
generators, characterized by an early appearance in the barcode and a long persis-
tence, that is emerging at large weight thresholds, survive through the decimation.
This is particularly interesting especially when considering the high percentages
of node removal, hence highlighting the extreme robustness and importance of the
topological network features identified through their persistence. The other smaller
cycles instead disappear under the decimation results, confirming their role as topo-
logical noise.
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Fig. 39.2 In the first two figures (the ones corresponding to a threshold values s = 19.89 and
s = 29.84) the generators are the same although decreased because of a reduction of the 34 per cent
of the nodes between the two figures. The cycles start to change for a threshold value s = 39.79,
where the reduction of the nodes become very large (more then 50 per cent with respect to the
above figure), but an accurate study bring us to the conclusion that the cycles are only slightly
varied. For example, the first stripe on the figure with s = 29.84 corresponds to the persistence
cycle between the nodes 71, 74, 216, 207, whereas the first stripe on the figure with s = 19.89
corresponds to the cycles 71, 74, 216, 305 i.e. 305 takes the place of 207 that, effectively, was
decimated

39.5 Conclusion

We used the persistent homology to explore topological features dictated by the
dynamics on networks and Markov processes.

We conclude that the relevant topology features are essentially preserved under a
coarse-graining based on decimation of weak nodes and fast states. The dynamics,
before and after the decimation procedure, concentrates on the same cycles provided
that the nodes even if fast should not be of the higher degree.
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Abstract

The statistical mechanical approach to complex networks is the dominant paradigm in describing natural and societal
complex systems. The study of network properties, and their implications on dynamical processes, mostly focus on locally
defined quantities of nodes and edges, such as node degrees, edge weights and –more recently– correlations between
neighboring nodes. However, statistical methods quickly become cumbersome when dealing with many-body properties
and do not capture the precise mesoscopic structure of complex networks. Here we introduce a novel method, based on
persistent homology, to detect particular non-local structures, akin to weighted holes within the link-weight network fabric,
which are invisible to existing methods. Their properties divide weighted networks in two broad classes: one is
characterized by small hierarchically nested holes, while the second displays larger and longer living inhomogeneities. These
classes cannot be reduced to known local or quasilocal network properties, because of the intrinsic non-locality of
homological properties, and thus yield a new classification built on high order coordination patterns. Our results show that
topology can provide novel insights relevant for many-body interactions in social and spatial networks. Moreover, this new
method creates the first bridge between network theory and algebraic topology, which will allow to import the toolset of
algebraic methods to complex systems.
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Introduction

Complex networks have become one of the prominent tools in
the study of social, technological and biological systems [1–3]. In
particular, weighted networks have been largely used to convey
not only the presence but also the intensity of relations between
nodes in a network. Real-world networks display however intricate
patterns of redundant links with edge weights and node degrees
usually ranging over various orders of magnitudes [4,5]. This
makes very hard to extract the significant network structure from
the background [6–9], especially in the case of very dense
networks [10,11]. Alongside topological filtering methods [12,13],
the typical approach to this problem is to choose a suitable
threshold for the edge weights, e.g. global [10] or local [14], and
study the reduced graph composed by only the edges of weight
larger (smaller) than the threshold parameter. In any case, some
properties of the original graph are inevitably lost under such
transformation.

To avoid this pitfall, given a weighted network G we consider
the set of all filtered networks, F (G), ordered by the descending
thresholding weight parameter, in the spirit of persistent homology
[15–18].

Persistent homology is a recent development in computational
topology designed for robust shape recognition and data-discovery
from high dimensional datasets [19]. It has found successful
application in various fields, ranging from biological systems
(e.g.brain correlation networks [20] and breast cancer diagnosis
[15]), computer vision and sensor network coverage problems [15]

all the way to the analysis of large scale cosmological structure
[22]. Its central device is the construction of a simplicial filtration of
the original dataset: data points are usually embedded in a metric
space in order to extract from their configuration a sequence of
growing simplicial complexes, which approximates with increasing
precision the original dataset. Studying the changes of the
topological structure along such filtration provides a natural
measure of robustness for the topological features emerging across
different scales. In analogy to the metric example, we call the set
F (G) graph filtration: considering the set of all filtered networks
captures the link weights and connectivity structure over all weight
scales, without the need to resort to any assumption on an eventual
metric structure underlying the graph structure. The graph
filtration of a network V is built following these steps :

N Rank the weights of links from vmax to vmin: the discrete
parameter Et scans the sequence.

N At each step t of the decreasing edge ranking we consider the
thresholded graph G(vij ,Et), i.e. the subgraph of V with links

of weight larger than Et.

Figure 1a provides a schematic illustration of the rank filtration.
This approach preserves the complete topological and weight
information, allowing us to focus on special mesoscopic structures:
weighted network holes, that relate the network’s weight-degree
structure to its homological backbone.

A weighted network hole of weight v is a loop composed by n
nodes i0,i1,i2,::::,in{1, where all cyclic edges (il ,ilz1) (with i0:in)
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have weights §v, while all the other possible edges crossing the
loop are strictly weaker than v. We focus on this special class of
subgraphs, because formally such weighted holes represent the
generators of the first homology group, H1, of the clique complex
of the graph thresholded by weight v (see Materials and Methods).
The aim of this paper is to characterize the evolution of these
generators along the network filtration. As we swipe the network
from the largest to the smallest weights, network holes appear and
potentially close.

By unearthing their properties, we obtain the main contribution
of this paper: the statistical features of weighted network holes
yield a classification of real-world networks in two classes,
depending on the compatibility or lack thereof with null models
generated by graph randomisations. Furthermore, this classifica-
tion is defined by mesoscopic homological structures that cannot
be reconduced to local properties alone.

The method used for the classification itself, which we call
weighted clique rank homology, is the second novel main contribution of
this paper. It allows to recover complete and accurate long-range
information from noisy redundant network data, by building on
persistent homology [16], a recent theory developed in compu-
tational topology [17], which we extend to the case of networks.

Each weighted hole g is characterized by three quantities: its
birth index bg, its persistence pg and its length lg. After ranking

links in a descending order according to their weights, the birth
index of a hole is the rank t of its weight v. As we proceed adding
links to the filtration in ranking order, it is possible that a link with
rank t0wt will appear and cross the hole. We call this closure of
the weighted hole, or death dg. The persistence pg is the interval

between the birth and death of g, pg~dg{bg~t0{t. Finally, the

length lg is the number of links composing g:

Figure 1. Weight rank clique filtration and homology of networks. (a) The weight rank filtration proceeds from the bottom up. Weighted
holes (colored) and cliques (gray) appear as links are added. Weighted holes can branch into smaller holes, which have then independent evolution,
persisting or dying along the filtration as links close them by 3-cliques. The cartoon shows two very long-persistence holes (violet and purple)
appearing quite early and living until the end, while the largest hole (red) branches into three smaller holes, of only one survives to the end of the
filtration (green). (b) A selection of weighted holes from the US air passenger network (year 2000). The node colors represent the best modularity
partition of the entire network. The cycles are all long-persistence one, chosen to represent different behaviors: for example, the Chicago-Los
Angeles-San Jose-Seattle cycle spans a large spatial distance, implying weaker connectivity across the cycle and within the region encompassed by
the cycle, while the cycle going east from New York connects the east coast to three large European network and its persistence is due to the
reduced connectivity due to the Atlantic Ocean. (c) A selection of the strongest cycles in the face-to-face contact network in a primary school (see SI
for details on dataset). Node colors represent different classes in the school. Cycles are often found across communities, since by definition they
probe the presence of holes among network regions. However, this is not the only information they convey. The cycle contained in a single
community (green) testify the presence of peculiar contact geometries even within dense community structures.
doi:10.1371/journal.pone.0066506.g001
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Similarly to stratigraphy, each step of the filtration is a
topological stratum of the network, where the edge weight rank
plays the role of depth. Intuitively, g can then be thought as an
underground cavity, hidden in the link-weight fabric of the
network, and bg, pg and lg as its maximal depth, vertical size and

girth respectively.

Results

Homological Network Classes
We applied this analysis to various social, infrastructural and

biological networks (see SI for a detailed list). In order to compare
datasets, indices are normalized by the corresponding filtration
length (maximal rank) T , so that all bg, dg, and thus pg, vary in the

unit interval. In addition, we compared each dataset with two
randomized versions, obtained by weight reshuffling and edge-
swapping respectively. While both randomisations preserve the
weight and degree sequences (and the relative distributions (p(k)
and p(v)), the first one redistributes only the edge weights and is
meant to destroy weight correlations, preserving the joint degree
distribution p(k,k0) and thus the degree assortativity. The second
instead randomizes the network through double-edge swaps,
preserving p(k) and p(v) but destroying both weight and degree
correlations [23]. We stress that, as the degree and weight
sequences are preserved in the randomisations, they cannot
account for the differences in the observed homology.

The statistical distributions obtained for the fbgg, fpgg and

flgg for H1 cycles highlight a natural division of the analysed
networks in two broad classes (Fig. 2):

Class I networks. cycle distributions are markedly different
from the randomized versions (cycles display shorter persistence
times, earlier and broader birth distributions and very short
lengths as compared to their randomized versions);

Class II networks. cycle distributions are very close to their
random versions (late appearance, short persistences, long cycles).

The short cycles of Class I networks nest hierarchically and
appear and die over all scales while those in the randomized
counterparts are born uniformly along the filtration but are more
persistent, producing largely hollow network instances. The
implications are twofold. Since cycles represent weaker connec-
tivity regions, this results in class I networks being more solid than
the randomized versions, while class II networks resemble more
closely the randomized instances. Second, since the cycle
abundance ratio between real and random instances is the same
in the two groups, the differences between class I and II does not
depend on cycle abundance, but rather on their properties.

This can be seen easily by compressing the whole information
within two scalar metrics which do not depend on the number of
generators in a given network filtration. We define the network

hollowness hi and the chain-length normalized hollowness ~hhi as:

hk~
1

Ngk

X

gk

pgk

T
ð1Þ

~hhk~
1

Ngk

X

gk

lgk

N

pgk

T
ð2Þ

where fgkg is the set of generators of the k-th homological group
Hk and Ngk

~ dim Hk their number. The first is a measure of the

average generator persistence, while the second weights generators
according to both their length and persistence. Table 1 reports the

values for h1 and ~hh1. Class I networks have lower hollowness
values as compared to their randomized versions, while class II
ones show comparable values.

Interestingly, the hollowness values for the H2 generators mostly
vanish for the randomized instances (Table 1), as opposed to the
case of real networks. It appears that, while persistent one-
dimensional cycles are more easily generated in the randomized
instances, higher forms of network coordination, e.g. H2

generators (akin to two-dimensional surfaces bounding three-
dimensional voids), do not only display different properties in
comparison to the real network, but are instead wiped away.
These findings hint therefore to the presence of higher order
coordination mechanisms in real world networks.

Naturally, the two network classes do not represent a binary
taxonomy and should be considered as two extremes of a range
over which networks are distributed. For example, we find
networks that interpolate between these classes, e.g. the online
messages network has short persistence intervals, but also late cycle
appearances and short length cycles. However, classes do not
appear to display uniform behavior for local and two-body
quantities: degree- and weight-distributions and correlations are
mixed within the same group and do not provide a direct answer
for the nature of the two classes. Similarly, a recently proposed
measure of structural organisation, integrativeness [24], which
measures the neighborhood overlap around strong links, does
not provide insights to explain class I, since within the latter one
finds both integrative and dispersive networks.

Finally, the classes do not show a consistent pattern in
assortativity: for example, class I includes the gene network
(assortative) and the airport networks (disassortative), while class
II includes the assortative co-authorship networks and the
disassortative Twitter data. Therefore, assortativity cannot be the
discriminating factor between classes.

Higher Order Organization
Because homology is essentially a non-local property, it was

expectable that the local measures mentioned would not be able to
explain the observed homological patterns. Network homology
can be seen in fact as the weighted complement to the perturbative
dK-series approach [8]: the latter proceeds by successive bottom-
up constraints on k-body correlations, rapidly becoming very
cumbersome, while our method returns the complete superposi-
tion of the network’s degree and weight correlation layers in a non-
perturbative (top-down) fashion.

A simple artificial network helps illustrating this point: Random
Geometric Graphs (RGG) have been recently shown to display
long-range many-body correlations [25,26]. We find also that they
have homological structures reminding of class I networks (Fig. 2a,
b and c) and the same relation to their randomized versions. Class
I networks are the result of high-order coordination in a similar
way. This is supported also by the presence in real networks and
RGGs of higher homology generators, which require elaborate
coordination patterns in order to appear. While these cycles almost
disappear in randomized versions of real-world networks, they are
present in the case of RGGs.

For the latter and the airports, this organisation can be thought
as the result of the non-local constraint imposed by the metric of
the underlying space [27]. Although spatial constraints are harder
to fathom for social and genetic systems, alternative explanations
are possible: for example, the homological structure of the
observed online communication and gene networks can be
thought as stemming from group interactions among people (e.g.
mailing lists, multi-user mails) and biological functions (e.g.

Topological Strata of Weighted Complex Networks
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pathways ) respectively, which provide an underlying non-local
mechanism for the emergence of homological patterns.

Further evidence of this behavior can be found by zooming on
specific cycles which convey information about underlying
constrains hidden in the network weight-link connectivity patterns.
For example, the cycle structure of the air passenger network
detects the expected reduced connectivity over oceans in the form
of strong persistent cycles– and the strong backbone of US airport
hubs, which is then filled by the local (intra-community) links
(Fig. 1b). Another example can be found in the school children’s
face-to-face contact network. As expected we find the most
significant cycles to link together different school classes (yellow
and pink cycles in Fig. 1c). However, we also find that a school
class (green nodes), despite being both a network community and
3-clique component [28], is characterized by a strong internal H1

generator, which might be reflecting peculiar social dynamics

coming from same-gender biases, different seating arrangements
or schedules for part of the class [29].

Spectral Correlates of Homology Classes
At the opposite extreme of local quantities lie the spectral

properties of networks. It is very important therefore to investigate
whether it is possible to highlight peculiar spectral signatures of the
two classes. Network eigenvalues, especially those of the Laplacian
matrix, figure prominently in a number of applications, ranging
from spectral clustering [30] to the propensity to synchronize of a
set of oscillators distributed on the nodes [31]. Given a graph G,
we denote its adjacency matrix A(G) and its Laplacian matrix as

L(G)~D{A(G), where dij~dij

X
k

aik. For a symmetric

network with N nodes, A(G) has a set of real eigenvalues
l1§l2§ . . . lN{1§lN . The spectral gap DlA~l1{l2, and its

normalized version, RA~
l1{l2

l2{lN
, effectively measure how far the

Figure 2. Statistical and spectral properties of H1 generators. Box plots of the distributions of persistences fpgg (panel a)), births fbgg (panel
b)) and lengths flgg (panel c)) for the 1d cycles (H1 generators) of real networks (black), reshuffled (white) and randomized (gray). The gray and green
shaded areas identify the two network classes described in the main text: class I is significantly different from the random expectations, with shorter,
less persistent cycles that appear across the entire filtration; class II networks are not significantly different from the random versions, with long cycles
and late birth times in the filtration. The characteristics of class I networks imply a stratification of cycles that betrays the presence of large, non-local
organisation in the network structure, which is not present in class II networks. For comparison, an example of RGG network (600 nodes in the unitary
disk, linking distance 0.01), known to have higher order degree correlations, had edge weights set according to vij!(kikj)

h , with h~1 (linearly
correlated weight RGG) and h~0 (random weight RGG). In both cases, the distributions of cycles’ properties resemble closely those of class I
networks. Panel d) finally reports the distribution of adjacency spectral gaps DlA and RA (left plot) and the Laplacian eigenratio RL (right plot). All
the quantities show significant (pv0:05) differences between the two classes, implying that the homological structure affect the dynamical
properties of networks, e.g. the synchronizability threshold.
doi:10.1371/journal.pone.0066506.g002
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leading eigenvalue lies in comparison to the bulk of the eigenvalue
distribution [32].

Interestingly, we find that class I networks have significantly
larger spectral gaps (pv0:05 comparing the distributions) than
class II networks (in Fig. 2d and Table 2 for information on
individual datasets). Despite being somewhat neglected in the
complex networks literature, DlA has been linked to the notion of
natural connectivity [33]: it encodes spectral information about
network redundancy in terms of the number of closed paths and is

defined as !ll~ log
1

N

XN

i~1
eli

! "
. Rewriting !ll~l1z log

1

N
(1z

XN

i~2
eli{l1 )

! "
, it is easy to see that for large gaps all

the terms in the sum are exponentially suppressed and therefore !ll
is essentially dominated by the leading adjacency eigenvalue

modulo a size effect, !ll*l1{ log N . This result is consistent with
the nested cycle structure that we highlighted in class I. More
importantly, we find a difference between the two classes in the
topological constraints to synchronization processes. For the
Laplacian L(G), label the set of eigenvalues

0~l1vlL
2 ƒlL

3 ƒ . . . ƒlL
N and define the Laplacian eigenratio

RL~
lL

N

lL
2

. Barahona and Pecora [34] showed that a set of

dynamical systems, placed on the network’s nodes and coupled
according to the graph adjacency with a global coupling s, has a
linearly stable synchronous state if

RLvb ð3Þ

where b is a purely dynamical parameter. This inequality implies
that networks displaying very large RL are hard (or impossible) to
synchronize. Panel IVb of Fig. 2 shows again a significant
difference between the two classes: class I networks have much
larger eigenratios, making them hardly synchronizable.

Our results show therefore a deep connection between the
homological network structure, the network spectral properties
and their implications on network dynamics. Indeed, the role of
mesoscopic structures in the stability and evolution of dynamical
systems on networks is gradually emerging, as shown for example
by recent work based on the concepts of basic symmetric
subgraphs and their legacy eigenvalues in the global network
spectrum [35], and is indeed being shaped by algebraic methods,
well suited to capture the geometric information hidden within the
network fabric.

Conclusions
Hitherto, the homological structure of weighted networks could

not be systematically studied. Our method, grounded in compu-
tational topology, allows to probe multiple layers of organized
structure. It highlighted two classes of network distinguished by
their homological features, which we interpreted as caused by
differences in the higher order networks organisations that are not
captured by (quasi)local approaches.

Among the many possible applications, two very relevant ones
for social and infrastructural networks are the study of the
weighted rich club’s geometry beyond the aggregate measure
[23,36], and the generalisation of network embedding models to
include homological information [37]. Furthermore, the two
classes displayed also a marked difference in their spectral gap
distributions and in particular in the values of the algebraic
connectivity, implying that the different homological structures are
correlated with different synchronizability thresholds.

This work therefore provides a stepping stone towards
understanding the coupling between network dynamical processes
and the network’s homology.

Finally, the filtration’s construction rule is flexible and can be
readily adapted to other problems. Similarly to changing goggles,
different edge metrics can be used (e.g. betweenness or salience
[38]), the thresholding method varied (e.g. local thresholding [14])
or the filtration promoted to a filtering on two quantities (e.g. edge
weight and time in a temporal network) using multi-persistent
homology [39].

Materials and Methods

Datasets
The dataset analysed in this paper cover a broad range of fields,

spanning social, infrastructural and biological networks. Figures
S1–S15 in the File S1 report the analysis for the individual datasets
as opposed to the class-aggregate of figure 2.

In detail, they are:
US air passenger networks. The networks refer to the years

2000, 2002, 2006 and 2011. The years were chosen to provide
snapshots of the air traffic situation at 4–5 years intervals, plus one
extra (year 2000) just before the events of 9/11 which significantly
affected the air transportation industry. The data used are publicly
available from the website of the Bureau of Transportation
Statistics (http://www.transtats.bts.gov/). Individual flights be-
tween airports were aggregated on routes as defined by origin and
destination cities. The weight reported is the yearly aggregated
passenger traffic.

C.Elegans. The network is available at http://cdg.columbia.
edu/cdg/datasets and reports a weighted, directed representation
of the C. Elegans’s neuronal network [40]. The network was
symmetrized by summing the weights present on edges between

the same nodes (given vij and vji, vsymm
ij ~vsymm

ji ~vijzvji).

Online messages and forums. The online messages
network consists of messages in a student online community at
University of California [41]. The online forum network refers to
the same online community, but focuses on the activity of users in
public forums, rather than on private messages [42]. Both
networks are publicly available online at Tore Opsahl’s website
(http://toreopsahl.com/datasets/).

Gene network. The gene interaction network used in the
paper is a sampling of the complete human genome dataset
available from the University of Florida Sparse Matrix Collection.
Each node is an individual gene, while the edges correlates the
expression level of a gene with that of the genes (using a NIR score
[43]). The node set of the analysed network was obtained by
randomly choosing an origin node, then adding its neighborhood
to the node set; the neighborhoods of the newly added nodes were
then added to the node set recursively until a given number of
nodes was obtained (in the case used the target number of nodes
was N~1300). Then all the edges present in the original network
between the nodes in the node set were added, effectively taking a
connected subgraph of the original network. To reduce the
computational complexity due to the large density of the graph,
the weighted clique filtration was stopped at an edge weight of
0:09 (similarly to the choice made in [24]).

Twitter. The dataset consists of a network of mentions and
retweet between Twitter users and is available online on the Gephi
dataset page (http://wiki.gephi.org/index.php/Datasets). Weights
are proportional to the number of interactions between a pair of
users.

School face-to-face contact network. The dataset contains
two days of recorded face-to-face interactions in a primary school.
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Each node represents a child, with the edge weight between two
nodes being proportional to the amount of time the two children
spent face to face. We analysed the two days separately, yielding
two networks. The dataset has been collected by the Sociopattern
project (http://www.sociopatterns.org/) and analysed in [29].

Co-authorship networks. The networks analysed are the
weighted co-authorship networks of the Condensed Matter E-print
Archive between 1995 and 1999 (cond-mat) and the High-Energy
Theory E-print Archive between 1995 and 1999 (hep-th) [44].

The graph edgelists used in the paper are available online as
part of the code package we developed [45].

Finally, for comparison we use Random Geometric Graphs
(RGG) [46,47], which are simple models of spatial networks: a
RGG is generated by sprinkling N of nodes randomly on a metric
space that acts as a substrate (usually a disk of unitary radius or a
square with identified edges), and then linking nodes that are
closer than a given linking distance d .

The networks analysed in this article are undirected and
weighted, because the weighted clique filtration finds a natural
application in such case. However, schemes for directed networks
can be easily devised and tailored to specific case studies, e.g. one
could adopt the definition used in the directed clique percolation
method [48] in order to associate network structures to simplices.

Persistent Homology
The method we use to uncover weighted holes is persistent

homology of the weight clique rank filtration. In this section we
will briefly explain persistent homology and its realization through
the weight rank clique filtration.

Persistent homology is a technique from computational
algebraic topology that can be viewed as parametrized version
of simplicial homology [49]. The two definitions needed for
simplicial homology are those of simplicial complex and homology. A

simplicial complex is a non empty family X of finite subsets, called
faces, of a vertex set with the two constraints:

– a subset of a face in X is a face in X ,

– the intersection of any two faces in X is either a face of both or
empty.

We assume that the vertex set is finite and totally ordered. A
face of nz1 vertices is called n{face and denoted by ½p0, . . . ,pn$.
The interpretation of low dimensional faces is intuitive: a 0{face
is a vertex, a 1{face is a segment, a 2{face is a full triangle, a
3{face is a full tetrahedron. The dimension of a simplicial
complex is the highest dimension of the faces in the complex.

Morphism between simplicial complexes are called simplicial
maps. A simplicial map is a map between simplicial complexes
with the property that the image of a vertex is a vertex and the
image of a n{face is face of dimension ƒn.

Simplicial Homology with coefficients in a field is a functor from
the category of simplicial complexes to the category of vector
spaces [49]. Homology of dimension n assigns to each simplicial
complex X , the vector space Hn(X ) of n-cycles modulo

boundaries and to every simplicial map X ?
f

Y the linear map
Hn(f ) : Hn(X )?Hn(Y ).

The construction that leads to the vector space Hn is the
following. Given a simplicial complex X of dimension d , consider
the vector spaces Cn on the set of n{faces in X for 0ƒnƒd.
Elements in Cn are called n{chains. The linear maps sending a
n{face to the alternate sum of its (n{1){faces

Ln : Cn?Cn{1

Table 1. Summary of hollowness values.

Dataset (class) h1
~h1 hsh

1
~h

sh

1 hrnd
1

~hrnd
1 h2

~h2

Genes(I) 0.515 0.003 0:020+0:001 0:0007+0:00001 0:0151+0:0004 0:00023+0:00005 0.35 0.006

Online forums(I) 0:175 0:001 0:355+0:005 0:007+0:001 0:325+0:005 0:007+0:001 0.02 0.0003

US Air 2000(I) 0.160 0.001 0:405+0:005 0:0065+0:0007 0:358+0:006 0:0060+0:0005 0.02 0.0003

US Air 2002(I) 0.186 0.0008 0:39+0:01 0:0037+0:0003 0:34+0:01 0:0034+0:0003 0.23 0.002

US Air 2006 (I) 0.167 0.0005 0:398+0:005 0:0036+0:0005 0:348+0:008 0:0032+0:0003 0.165 0.001

US Air 20011(I) 0.181 0.0006 0:41+0:01 0:0034+0:0002 0:35+0:01 0:0033+0:0003 0.076 0.0007

Online
messages(I)

0.21 0.0014 0:190+0:002 0:0017+0:0001 0:185+0:002 0:0015+0:0001 0.02 0.0003

School day 1 (II) 0.088 0.0034 0:113+0:002 0:007+0:001 0:093+0:002 0:006+0:001 0.015 0.0012

School day 2 (II) 0.090 0.0033 0:115+0:002 0:0065+0:0005 0:098+0:003 0:0089+0:0008 0.01412 0.00095

C. elegans (II) 0.0784 0.002 0:0745+0:0017 0:001+0:0001 0:0896+0:0023 0:0041+0:0005 0.058 0.002

Twitter (II) 0.03 0.0001 0:030+0:001 0:0002+0:0001 0:029+0:001 0:0002+0:0001 0.01 0.0001

Hep-th (II) 0.08 0.0002 0:075+0:001 0:0002+0:0001 0:0508+0:0003 0:0002+0:0001 – –

Cond-mat (II) 0.26 0.0004 0:20+0:003 0:0002+0:0001 0:180+0:002 0:0005+0:0001 – –

Lin. RGG 0.227 0.003 0:368+0:005 0:006+0:001 0:355+0:002 0:012+0:001 0.28 0.006

Ran. RGG 0.3 0.0041 0:299+0:005 0:0045+0:0002 0:649+0:40 0:015+0:001 0.115 0.003

Summary of hollowness values. For each dataset, we report the values of the hollowness h1 and cycle-length normalized hollowness ~hh1 for H1 cycles for real networks
and their randomisations (sh and rnd). Most networks (class I in particular) show lower values than for their randomized versions. We also report the values of the

hollowness h2 and cycle-length normalized hollowness ~hh2 for H2 cycles for real networks. The values for the randomized networks are not reported as –strikingly– the
randomisations do not inline any higher homology, while almost all real networks inline positive values of the H2 hollowness.
doi:10.1371/journal.pone.0066506.t001
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½p0, . . . ,pn$?
Xn

i~0

({1)i½p0, . . . ,pi{1,piz1, . . . ,pn$:

shares the property Ln{10Ln~0:
The subspace kerLn of Cn is called the vector space of n{cycles

and denoted by Zn. The subspace ImLnz1 of Cn, is called the
vector space of n{boundaries and denoted by Bn. Note that from
Ln{10Ln~0 it follows that Bn(Zn for all n.

The n{th simplicial homology group of X , with coefficients in
k, is the vector space Hn : ~Zn=Bn.

Persistent homology is the homology of a filtration, i.e. an increasing
sequence of simplicial complexes

X05X15 . . .5Xn~X ,

as opposed to that of a single simplicial complex.
It assigns to a filtration the homology groups of the simplicial

complexes Hn(Xv) and the linear maps iv,w : Hn(Xv)?Hn(Xw)
induced in homology by the inclusions Xv.Xw for all vƒw. Note
that the linear maps iv,vz1 are not always injective, meaning that
some homological features can disappear along the filtration.
These features are encoded by the persistent homology generators:
an element g[Hn(Xv) such that there is no h[Hn(Xw) for wvv
with the property that iw,v{wh~g: Two indices completely
determine a generator g[Hn(X ), namely its birth, bg and its

death dg. The index bg traces the first index such that g is in the

filtration and dg is the index of the simplicial complex in which the

cycle becomes a boundary (i.e. disappears homologically). The
persistence (lifetime) of a generator is measured by pg : ~dg{bg.

The length of a cycle, that is the number of faces composing it, is
denoted by lg.

For each homology group, the information about the filtration is
collected in a barcode: the set of intervals ½bg; dg$ for all generators

g[Hn, which constitutes a handy complete invariant of Hn [16].
An alternative way to represent the persistent homology of a
filtration is through persistence diagrams [16,50], which we use
extensively in the SI. A persistence diagram is a set of points in the
plane counted with multiplicity. It can be recovered from the

barcode considering the points (bg,dg)[R2 with multiplicity given

by the number of generators with the same persistence interval. In
the SI, the reader can find H1 persistent diagrams of the real world
datasets examined for the classification, together with the explicit
comparison to the results for their relevant randomized versions.

Filtrations
In classical applications, the filtration is obtained from a point cloud

using the Rips-Vietoris complex and persistent homology used to
uncover robust topological features of the point cloud. We instead use
the clique weight rank filtration to uncover properties deriving from the
topology and weighted structure of weighted networks.

Recalling that an n{clique is a complete subgraph on nz1
vertices, the clique complex is a simplicial complex built from the
cliques of a graph. Namely there is a n{face in the simplicial
complex for every (nz1){clique in the graph. The compatibility
relations are satisfied because subsets of cliques and intersection of
cliques are cliques themselves.

The Weight Rank Clique filtration on a weighted network V
combines the clique complex construction with a thresholding on
weights following three main steps.

N Rank the weights of links from vmax to vmin: the discrete
parameter Et indexes the sequence.

N At each step t of the decreasing edge ranking we consider the
thresholded graph G(vij ,Et), i.e. the subgraph of V with links

of weight larger than Et.

N For each graph G(vij ,Et) we build the clique complex K(G,Et).

The clique complexes are nested along the growth of t and
determine the weight rank clique filtration. Note that this
construction is in fact the clique complex of each element in the
graph filtration.

In particular, persistent one dimensional cycles in the weight
rank clique filtration represent weighted loops with much weaker
internal links.

There is a conceptual difference in interpreting H1 persistent
homology of data with the Rips-Vietoris filtration and H1

persistent homology of weighted networks with the weight rank
clique filtration. While in the first case persistent generators are
relevant and considered features of the data, short cycles are more
interesting for networks. This is because random networks, or
randomisations of real networks, display one dimensional persis-
tent generators at all scales, while short lived generators testify the
presence of local organisation properties on different scales.

Computational Complexity
Computing the filtration of a large dataset can be extremely

demanding computationally. The identification of the maximal cliques
requires in general exponential time, although algorithms exists for
special cases that allow solutions to be obtained in polynomial time. In
addition, the javaPlex library [51] requires the explicit enumeration of
the simplicial facets appearing at each filtration step, which implies the
need for large memory resources in order to calculate the persistent
homology. However, there are a number of simplifications and
improvements to the brute force approach that provide a significant
reduction of the problem’s complexity. In the metrical case, this is
usually done by constructing a smaller complex, the witness complex [52],

Table 2. Summary of spectral quantities values.

Dataset (class) RA DlA RL

Genes(I) 1.14 14.6 873

Online forums(I) 0.5 4:105 3:4:105

US Air 2000(I) 0.868 6:9:106 6:7:106

US Air 2002(I) 0.872 6:3:106 2:8:107

US Air 2006 (I) 0.958 7:7:106 4:2:107

US Air 20011(I) 0.941 6:9:106 8:9:107

Online messages(I) 0.14 1:1:104 6:7:104

School day 1 (II) 0.11 2:5:103 56

School day 2 (II 0.08 2:3:103 110

C. elegans (II) 0.25 76 1:8:103

Twitter (II) 0.11 370 1:5:104

Hep-th (II) 0.11 7.4 9:6:103

Cond-mat (II) 0.005 0.24 5:2:103

Lin. RGG 0.0034 34 836

Ran. RGG 0.018 54 255

Summary of spectral quantities. For each dataset, we report the values of
RA , DlA and RL . The two classes inline different spectral properties, with
particular reference to RA which is related to the network expansion property.
doi:10.1371/journal.pone.0066506.t002
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which approximates with controlled precision [52] the homology of the
original data.

In the case of non-metrical discrete spaces, for example
networks, one cannot easily construct a witness complex through
a controlled sub-sampling of the network. Luckily, it is still possible
to reduce the computational complexity in different ways: first, one
can limit the analysis to the first s homology groups, which
amounts to restricting the clique detection and storage to cliques
up to size sz2, which reduces the problem to polynomial in time
and memory; second, it is possible to parallelize the computation
of persistent homology [53]; finally, the more elegant solution is to
calculate the homology of an homologically equivalent but much
smaller filtration (see the tidy set construction [54]). With respect
to the standard clique complex case, the tidy set in particular was
shown to reduce the number of simplices along the filtration of
various orders of magnitude number of simplices and of one order
of magnitude the total memory required. Therefore, a combina-

tion of the techniques mentioned above allows to scale up dataset
sizes to large-scale networks.
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Networks, as efficient representations of complex systems, have appealed to scientists for a long
time and now permeate many areas of science, including neuroimaging [1]. Traditionally, the struc-
ture of complex networks has been studied through their statistical properties and metrics concerned
with node and link properties, e.g. degree-distribution, node centrality and modularity. Here we
study the characteristics of functional brain networks at the mesoscopic level, focusing on their ho-
mological properties, more specifically the first homological group, that uncovers cycles. In this con-
text, we introduce the homological backbones, a new set of objects designed to represent compactly
the homological features of the links supporting the cycles and make their homological properties
amenable to networks theoretical methods. We apply these tools to compare resting-state functional
brain activity in fifteen healthy volunteers after intravenous infusion of placebo and psilocybin, the
main psychoactive component of magic mushrooms. The results suggest that the brain’s network
structure undergoes a dramatic change post-psilocybin, revealing many transient structures of low
stability but also a small number that have an especially high stability. These cycles appear to tra-
verse different network communities indicating that the brain becomes functionally more intergrated
under psilocybin compared to normal resting-state. We interpret these findings in the context of
unconstrained, hyperassociative cognition in the psychedelic state.

Keywords: brain functional networks, fMRI, persistent homology, psilocybin

I. INTRODUCTION

The understanding of global brain organisation and its large scale integration remains a challenge for modern
neurosciences. Recently, network theory has been increasingly used to analyse neuroimaging data (fMRI, EEG,
MEG) in order to address these questions [1, 2], and has even shown potential for clinical application [3, 4].

A natural way of approaching the analysis of large-scale complex systems is to devise a meaningful measure
of dynamical similarity between the microscopic constituents and interpret it as the strength of the link between
those elements. Commonly used similarity measures are for example (partial) correlations or coherence [5–7]. The
resulting matrix can be viewed as a fully connected, weighted and possibly signed adjacency matrix representing the
network of interactions between the system’s constituents. Unfortunately, the analysis of such weighted networks is
not straightforward and renders the use of usual network metrics ill-defined, begetting the need to produce a sparser
network representation. Sparsity may be achieved by thresholding the adjacency matrix following a criterion aimed
at minimising spurious similarities. However this approach invariably leads to loss of information as thresholds are
established either empirically or according to general purpose statistical criteria which may neglect weaker but still
functionally meaningful interactions. Importantly, non-dominant interactions can be crucial to understand how a
system integrates [8]. In addition to the observations above, a general limitation of standard network approaches
stems from their focus either on local or global quantities that forfeit the intermediate, mesoscopic scales.

In this paper, we present an alternative route to analyse weighted networks and more specifically to analytically
compare neuroimaging datasets: weighted graph persistent homology. The value added of this method over con-

Deliverable D1.1
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ventional network techniques lie in its capability to describe mesoscopic structures within the system that coexist
over different spatial and intensity scales, making it a good candidate for describing brain functional networks [9].
Moreover, this approach uses the whole information, without any ad-hoc filtering.
This is particularly relevant in the case of fMRI data as homological information allows one to uncover functional
circuits and their relative importance within the structure of the fMRI correlation matrices.
The method was introduced in [10] and it relies on an extension of the metrical persistent homology theory originally
introduced by [11, 12].
Standard simplicial homology details the multidimensional hole structure of a topological space X and is widely used
in applications ranging from sensor networks coverage [13] to shape recognition in computer vision [14].
This is because topological information is independent of the metrical properties of the space and thus it provides a
robust indicator in noisy or incomplete datasets.
Persistent homology [15] refines the standard homological analysis by focusing on the homology of an inclusion chain
of progressively coarser simplicial complexes, a filtration, obtained from the data. Informally, simplicial complexes can
be thought as a high-dimensional polygonal foam approximating the shape of the original dataset in an appropriate
space. Just like in the intuitive case of lower dimensionality, this foam can be studied to obtain information about
the dataset’s features.
In particular, we focus on the evolution of each homological feature (n-dimensional hole) along the inclusion chain of
complexes providing a natural measure of significance for the detected features, which can then be used to discern
the meaningful ones from topological noise.
Weighted graph persistent homology takes a step further by adapting the persistent homology machinery to the case
of general weighted graphs. The key point here is that this methodology permits to analyse dataset spaces where no
metrical structure is given a priori, as in the case of general similarity measures.
We build the inclusion chain through a process called weight clique filtration (see sect. II C and II B), which is
conceptually akin to a stratigraphy within the link-weight fabric of a network. The filtration swipes across all weight
and distance scales within the correlation network identifying strongly correlated units. The circuits among these
units constitutes mesoscopic regions of reduced functional connectivity. Weights on edges are ranked in descending
order and a series of binary graph snapshot Gi, i ∈ 0, 1, ...M is built by thresholding the network along the weight
ranking. Here M is the maximal weight rank. To each graph snapshot Gi, the corresponding clique complex K(Gi) is
canonically associated: k-cliques are mapped to (k − 1)-simplices, inheriting their configuration from the underlying
network structure. Since the filtration proceeds over all weights, it preserves all the information contained in the
correlation structure of the data. Moreover, it also highlights how the network properties evolve along the filtration
providing insights about which and when circuits emerge: each circuit is associated to a corresponding generator of
a homology group and the information about its importance is encoded in the form of “time-stamps” recording the
birth and death of the generators gkj of the homology groups Hk.

We applied this methodology to a prototypical dataset, an fMRI resting-state time-series recorded in subjects
after intravenous injection of a placebo or, on a separte ocassion one week later, psilocybin [16]. The order of scans
we balanced so that 7 subjects had psilocybin in the first scan and 8 placebo. Psilocybin is a naturally occurring
psychedelic compound found in the psilocybe genus of mushrooms, which grow across the world. Persistent homology
has been previously applied to neuroimaging data before [17, 18]; however, the focus in these papers was on H0, the
first homological group which contains information about the emergence of connected components.
Here we focus on the second homological group H1, which characterises the cycles present in the simplicial complexes
created along the filtration, i.e. sets (or chains) of regions that are more correlated along the circuit than across.

First, we find that the homological structure of the two conditions are different as seen in the persistence diagrams
1, the psilocybin group having shorter lived cycles compared to the placebo group.

Secondly, to understand better the structure of the cycles that appear along the filtration, and more specifically the
roles of the edges forming those cycles, and to make the persistent homology results amenable to classical network
tools, we introduce two secondary networks: the persistence H p (Eq. 1) and frequency H f (Eq. 2) homological
backbones. In these networks the edges are weighted, respectively, with the number of cycles an edge belongs to and
the total persistence of the cycles an edge belongs to. The homological backbones encode the specific role of the links
between the different brain regions, and enable, for example, the discrimination between edges that have a long total
persistence but belong to many cycles (hub links) or a few long lived, highly stable cycles (restricted links).

Remarkably, the methodology presented in this paper allows one to transform a signed weighted network, the
partial-correlation matrix, into a sparser weighted network while preserving the information contained in the original
data.
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II. METHODS

A. Dataset

A sample of 15 Healthy control subjects was scanned using fMRI [16]. Each subject underwent an T1-Weighted
anatomical scan followed by an eyes-closed resting-state fMRI scan, which lasted 12 min. Participants were scanned
on two occasions, 14 days apart. Placebo was given on one occasion and psilocybin on the other in a balanced
order. Infusions of psilocybin or placebo began 6 min after the start of the scan. The fMRI data were acquired
using a gradient-echo EPI sequence, TR/TE 3000/35 ms, field-of-view = 192 mm, 64 64 acquisition matrix, parallel
acceleration factor = 2, 90 flip angle. Fifty-three oblique- axial slices were acquired in an interleaved fashion, each 3
mm thick with zero slice gap (3× 3× 3-mm voxels). A total of 240 volumes were acquired (120 normal resting-state,
120 after injection of placebo/psilocybin). The data were high-pass filtered with a cutoff of 300 seconds. Correction of
motion related image distortion and esitmation of a 6-dimension motion model for each functional run were estimated
using MCFLIRT from the FMRIB Software Library [19].

For each subject, the T1 image was segmented into n=194 cortical and subcortical regions, including white matter
and CSF compartments using Freesurfer (http://surfer.nmr.mgh.harvard.edu/), according to the Destrieux anatomical
Atlas [20]. Segmented brain images were registered to the middle volume of the motion corrected functional imaging
data using boundary based registration [21] and mean timecourses for voxels within each each region were extracted
in naitive image space. The time-series were used to calculate partial correlations between all regions couples (i, j)
and motion correction parameters, thus covariating white matter signal, CSF signal, movement and modelling the
effect of the placebo/drug injection.

B. Filtrations

In classical applications, the filtration is obtained from a point cloud in a metric space using the Rips-Vietoris
complex and persistent homology used to uncover robust topological features of the point cloud.
This is done by considering the neighbourhood Γr(x) of radius r around each point x in the point cloud. Given a set
of points X = {x0, . . . , xm}, if Γr(xi)∩ Γr(xj) 6= for all pairs (xi, xj) ∈ X ×X, one adds the simplex generated by X
to the filtration at the step corresponding to r.
For the general case of similarities without a metric structure, one can instead use the clique weight rank filtration to
uncover the properties deriving from the topology and weight structure of networks.
Recalling that an n−clique is a complete subgraph on n+ 1 vertices, the clique complex is a simplicial complex built
from the cliques of a graph. Namely there is a n−face in the simplicial complex for every (n+ 1)−clique in the graph.
The compatibility relations are satisfied because subsets of cliques and intersection of cliques are cliques themselves.

The Weight Rank Clique filtration on a weighted network Ω combines the clique complex construction with a
thresholding on weights following three main steps.

• Rank the weights of links from ωmax to ωmin: the discrete parameter εt indexes the sequence.

• At each step t of the decreasing edge ranking we consider the thresholded graph G(ωij , εt), i.e. the subgraph of
Ω with links of weight larger than εt.

• For each graph G(ωij , εt) we build the clique complex K(G, εt).

The clique complexes are nested along the growth of t and determine the weight rank clique filtration. Note that this
construction is in fact the clique complex of each element in the graph filtration.
In particular, persistent one dimensional cycles in the weight rank clique filtration represent weighted loops with much
weaker internal links.
There is a conceptual difference in interpreting H1 persistent homology of data with the Rips-Vietoris filtration and
H1 persistent homology of weighted networks with the weight rank clique filtration. While in the first case persistent
generators are relevant and considered features of the data, short cycles are more interesting for networks. This is
because random networks, or randomisations of real networks, display one dimensional persistent generators at all
scales, while short lived generators testify the presence of local organisation properties on different scales.

C. Persistent homology

In this section we give a brief definition of persistent homology .
The two definitions needed for simplicial homology are those of simplicial complex and homology.
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Definition 1. A simplicial complex is a non empty family X of finite subsets,faces, of a vertex set with the constraints:

- a subset of a face in X is a face in X,

- the intersection of any two faces in X is either a face of both or empty.

In the case of real datasets, we can assume without loss of generality that the vertex set is finite and totally
ordered. A face of n + 1 vertices is called n−face and denoted by [p0, . . . , pn]. Low dimensional faces can easily
be imagined: a 0−face is a point, a 1−face a line or segment, a 2−face a full triangle, a 3−face is a filled tetra-
hedron. The dimension of a simplicial complex is defined as that of the face with the highest dimension in the complex.

Definition 2. A simplicial map is a map between simplicial complexes with the property that the image of a vertex
is a vertex and the image of a n−face is face of dimension ≤ n.

Definition 3. Simplicial Homology with coefficients in a field is a functor from the category of simplicial complexes
to the category of vector spaces [15].

The homology of dimension n assigns to a simplicial complex X, the vector space Hn(X) of n-cycles modulo boundaries

and to every simplicial map X
f→ Y the linear map Hn(f) : Hn(X)→ Hn(Y ).

The vector space Hn are constructed as follows. Given a simplicial complex X of dimension d, consider the vector
spaces Cn on the set of n−faces in X for 0 ≤ n ≤ d. The elements of Cn are called n−chains. Consider also the linear
map, boundary map ∂n, which sends a n−face to the alternate sum of its (n− 1)−faces:

∂n : Cn −→ Cn−1

[p0, . . . , pn] →
n∑
i=0

(−1)i[p0, . . . , pi−1, pi+1, . . . , pn].

It is easy to see that ∂n has the property ∂n−1 ◦ ∂n = 0.
We refer to the ker ∂n of Cn as to the vector space of n−cycles and is denoted by Zn. The subspace Im∂n+1 of Cn
is instead the vector space of n−boundaries and we denote by Bn. Note that the property ∂n−1 ◦ ∂n = 0 implies
that Bn ⊆ Zn for all n, which means that the elements of Hn are cycles that are not boundaries, therefore identify
(n+ 1)-dimensional holes within the topological space.
The n−th simplicial homology group of X, with coefficients in k, is the vector space Hn := Zn/Bn.
Persistent homology is the homology of a filtration, i.e. a sequence of inclusions between successive simplicial complexes

X0 ⊂ X1 ⊂ . . . ⊂ Xn = X.

It equips a filtration with the homology groups Hn(Xv) and the linear maps iv,w : Hn(Xv) → Hn(Xw) induced by
the inclusions Xv ↪→ Xw for all v ≤ w. A generator of Hn(Xv) is an element g ∈ Hn(Xv) such that there is no
h ∈ Hn(Xw) for w < v with the property that iw,v−wh = g. The linear maps iv,v+1 are in general non-injective, which
means that the generators can vanish at some point along the filtration. The information about the birth βg and
death δg of the homological features along the filtration is completely described by the corresponding generator g of
the homology groups. The persistence of g then given is measured by πg := δg − βg. One of the standard ways to
represent the features of each Hn is through the corresponding persistence diagram [11, 12]: a persistence diagram is
a set of points in R2 counted with multiplicity, where each point represents a generator g and has coordinates (βg, δg).
Hence, for each subject in the two groups we have therefore a set of persistence diagrams relative to the persistent
homology groups Hn. In this paper, we focused on H1 and used the H1 persistence diagrams of each group to construct
the corresponding persistence probability densities for H1 cycles. The two-dimensional distributions of Figure 1 show
the probability densities for the two groups.

D. Graph homological backbone

Given the generators gki of the persistent homology group Hk, one can build network representation of the original
data exploiting the homological features. Each generator gki is associated to a cycle path on the original network and
has a persistence πgi . We exploit this to define the persistence homological backbone H p

G of graph G as the network
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composed by all the cycle paths weighted with their persistences. If an edge e belongs to multiple cycles g10 , g
1
1 , . . . , g

1
s ,

its weight is defined as the sum of the generators’ persistences:

ωπe =
∑

g1i |e∈g1i

πgi . (1)

Similarly, we can define a second network, the frequency homological backbone H f
G of graph G, where the weight of

an edge e is the number of different cycles it belongs to:

ωfe =
∑
g1i

1e∈g1i . (2)

By definition, the two backbones have the same links, although differently weighted.
The construction of these two backbones therefore highlights the role of links which are part of many and/or long
persistence cycles, isolating the different roles of edges within the functional connectivity network. For example,
the persistence backbone encodes the overall persistence of a link through the filtration process aggregated on all
patients, while the second highlights the number of cycles it belongs to. The combined information given by the
two backbones then enables to decipher the nature of the homological role of different links. Note also that the
construction is able to transform a signed network into a positive-weighted one, maintaining all the homological
information. Finally, we remark that the definition of backbones we gave depends on the choice of a specific basis of
the homology group. In this case, we decided to choose the basis composed by the algebraic cycles whose underlying
graph cycle is maximal. The choice is motivated by our interest mesoscopic structures.

III. RESULTS

Starting from the processed (see section II A) fMRI time-series, the linear correlations between regional time-series
were calculated after covarying out the variance due to all other regions and the residual motion variance represented
by the 6 rigid motion parameters obtained from the pre-processing, yielding a partial-correlation matrix χα for each
subject. The matrices χα were then analysed through the weighted clique rank filtration (see section II C and II B
for more details). This procedure finds the generators gi of the first homological group H1 at each step of the
filtration process. Each generator gi of the homological group H1 identifies a lack of mesoscopic connectivity in the
form a one dimensional cycle which is associated with its birth and death times along the filtration; hence each gi
is associated with a point in R2. The set of those points for all subjects in each group can be used to estimate a
two dimensional probability density function, the persistence diagram. The persistence diagram then represents the
persistence behaviour of H1.

Grouping together the persistence diagrams of each group, we defined a persistence probability density for the
group (Fig. 1) that constitutes the statistical signature of the group’s H1 features. In particular, although the number
of cycles in the groups are comparable, the two probability densities strongly differ (p < 10−10). The placebo group
displays generators appearing and persisting over a limited interval of the filtration. On the contrary, most of the
generators for the psilocybin group are situated in a well-defined peak at small birth indices, indicating a general
shorter cycle persistence. The psilocybin distribution is also endowed with a “fat tail” on the significance of which we
will come back later. The difference in behaviour of the two groups is made explicit when looking at the probability
distribution functions of the persistence of the generators (Fig. 2), which are found to be statistically significantly
different (KS=0.65, p-val=5.28 · 10−33).

In order to better interpret and understand the differences between the two groups, we introduce two secondary
networks: the frequency and persistence homological backbones, H f and H p (see section II D), which inform about
the edges supporting the cycles. The weight of the edges in these secondary networks is proportional to the total
number of cycles an edge is part of and the total persistence of those cycles respectively. They complement the
information given by the persistence density distribution, where the focus is on the entire cycle’s behaviour, with
information on the single link. In fact, individual edges belonging to many and long persistence cycles represent
functionally stable ’hub’ links. As with the persistence density distribution, the backbones are obtained at a group
level by aggregating the information about all subjects in each group. These networks are slightly sparser than the
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original complete χα networks:

ρ(H f,p
P la) =

2m(H p
P la)

n(n− 1)
= 0.88 (3)

ρ(H f,p
Psi ) =

2m(H p
Psi)

n(n− 1)
= 0.89 (4)

and they also show very similar densities. The probability distribution functions for the edges’ weights are shown
in Fig. 3 (a). While edges belong statistically to the same number of cycles, Fig. 3 (a-inset) (p = 0.8), the weights
distribution of the persistence homological backbone are different, the psilocybin showing a fatter tail (p < 10−39),
Fig. 3 (a). The difference between the two groups homological backbones is immediately evident when looking at the
scatter plot of the edges frequency versus persistence Fig. 3 (b). The placebo group has a linear relationship between

the two quantities, while the psilocybin group has a much larger dispersions, showing that, on average, edges in H f,p
Psi

are longer-lived but still appear in the same number of cycles.
Gathering together the results from the persistent homology analysis, the insights provided by the homological

backbones imply that although the mesoscopic structures, i.e. cycles, in the psilocybin condition are more versatile
than in the placebo group (i.e. many of them are unstable), their constituent edges are more stable.

IV. DISCUSSION

Two main results are presented in this paper. Firstly, the stability of mesoscopic association cycles is reduced by
the action of psilocybin, as shown by the difference in the probability density function of the generators of the second
homology group H1. Figure 1 shows the comparison of the probability densities obtained for the birth-death pairs of
cycles in the two groups. Most of the cycles are concentrated in the bottom-left segment (white area) representing
cycles of low stability.

A simple reading of this result would be that the effect of psilocybin is to relax constraints on brain function
- ascribing cognition a flexible quality. This could be explained by the reduced activity in subcortical (e.g. the
basal ganglia and thalamus) and cortical hubs (e.g. the posterior cingulate cortex, PCC) induced by psilocybin [16]
that presumably function to constrain information processing. The thalamus is known to be involved in maintaining
cortical oscillatory rhythms [22] and oscillatory synchrony is a classic mechanism for conferring constraint on a system’s
behaviour. Broadband oscillatory power is decreased after psilocybin and this phenomenon is especially pronounced
in the PCC [23]. The PCC is a functional heterogenous structure that contains spatial segments that functionally
connect to a range of different brain networks [24, 25]. The PCC also appears to be involved in mediating global brain
function [26] as might be expected by its uniquely high metabolism [27] and connectivity [28]. Thus, a principal effect
of psilocybin may be to disorganise activity in strategically important regions of the brain such as the PCC and as a
corollary, this will render functional important mesoscopic circuits unstable.

The second aspect of our results is the insight that the homological backbones give us, as they allow to go beyond
the picture given by persistent homology by gaining access to information about the edges constituting the cycles
found along the filtration process. The results of this analysis tell us that although edges are statistically part of
the same number of cycles in the two conditions (i.e. there are not more cycles in the psychedelic state), there is
a set of edges that is predominant in the psilocybin group compared to the placebo group Fig. 3. That is, these
edges or links support cycles that are especially stable. This implies that the brain does not simply become a random
system after psilocybin but retains some organisational features. Further work is required to identify the functional
significance of these edges but qualitively, they traverse functional network communities, implying that psilocybin
increases communication between modules that are usually relatively discrete as shown in 4.

One possible by-product of this greater communication across the whole brain would be the phenomenon of synesthe-
sia which is often reported in conjunction with the psychedelic state. Synesthesia is described as an inducer-concurrent
pairing, where the inducer could be a grapheme or a visual stimulus, that generates a secondary sensory output, like
a colour for example. Many different types of synesthesia have been reported [29], however genuine synesthesia is
very stable in the inducer-concurrent association and often subjects only have one specific type of association. Drug-
induced synesthesia instead leads to chain associations, pointing to dynamic causes rather than fixed structural ones
as may be the case for acquired synesthesia [30]. Synesthesia is also consistent with the the phenomenology of the
sensory deprived state, where there is decreased gain on incoming sensory information and a reciprocal increase in the
gain on spontanous activity - including activity in high-level multisensory regions [31]. Broadly consistent with this,
it has been reported that subjects under the influence of magic mushrooms, have objectively worse colour perception
performance despite subjectively intensified colour experience [32].
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To summarise, we present a new method to analyse fully connected, weighted and signed networks and apply it
to a unique fMRI dataset of subjects under the influence of magic mushrooms. We find that the psychedelic state
is associated to a less constrained and more integrated brain function, which is consistent with reported psychedelic
experiences.
Funding statement GP and FV are supported by the TOPDRIM project funded by the Future and Emerging
Technologies program of the European Commission under Contract IST-318121. I.D. PE and FT are supported by a
PET Methodology Program Grant from the Medical Research Council UK (Ref G1100809/1).
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FIG. 2: Comparison of persistence distributions. The plot reports the H1 generators’ persistence distributions for the
placebo group (blue line) and psilo group (red line). The cycles’ persistence distributions are obtained by all the generators
identified in a group. The distributions illustrate clearly the difference in the persistence distributions between the two groups.
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FIG. 3: Statistical features of group homological backbones. Panel (a) reports the probability distributions for the
edge weights in the persistence homological backbone (main plot) and the frequency homological backbone (inset). Panel (b)
shows the scatter plot of the edge frequency versus total persistence. The placebo backbone display a clean linear relationship.
On the contray, the psilocybin backbone is characterised by an heterogeneous relationship between the frequency and total
persistence of individual edges, hinting to a different local functional structure within the functional network of the drugged
brains.
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FIG. 4: Visualisation of the persistence homological backbones.. The persistence homological backbones H p
Pla (panel

a)) and H p
Psi (panel b)) are shown for comparison. In order to highlight the differences in the structure of strong (persistent)

edges between the two backbones, only edges in the tail of the weight distributions with edge weight greater than ωbif = 20
are shown. The value of ωbif is chosen as to be slightly smaller than the bifurcation point of the weight distributions in Fig.
3a. Colours represent communities obtained by modularity [33] optimization on the complete backbones using the Louvain
method [34]. The width of the links is proportional to their weight in the persistence homological backbone and the size of the
nodes are proportionnal to their strength. The proportion of heavy links between communities is much higher in the psilocybin
group, showing greater integration.



One graph to rule them all: persistence is graph
filtration
Francesco Vaccarino ∗ †, Martina Scolamiero ‡ † Giovanni Petri ∗ Correspondence and requests for materials should be addressed
to G.P. (email: giovanni.petri@isi.it).
∗DISMA POLITO,†ISI Foundation, Via Alassio 11/c, 10126 Torino - Italy, and ‡KTH - Dept.Math.

Submitted to Proceedings of the National Academy of Sciences of the United States of America

bla bla

Computational topology, complex networks, persistent homology

Introduction
@@@@@@@@@@@@@@@SEZIONE PROVVISORIA MO-
FOLTOFO PROFOVVIFISOFORIFIAFA

(Multi-)Persistent homology has been inotrduced by GIO-
VANNI and has become a pervasive tool in computational
topology and a well studied topic in pure and applied mathe-
matics, see [?] for a recent and well documented survey.

Typically, the starting point is filtration F = X1 ⊂ X2 ⊂
· · · ⊂ X of a topological space X i.e. a nested sequence of its
subspaces, whose union is the whole X. In this case we say
that X is filtered.

Given a filtration F = {Xt}t∈N of a topological space and
a commutative ring of coefficients k one has a family of ho-
mology groups H∗(Xt, k). Since H∗ is a functor these groups
come together k−linear maps xts : H∗(Xt, k) → H∗(Xs, k),
for all t, s with t ≤ s. The direct sum H∗(F) :=

⊕
tH∗(F) is

then a k[x]−module via xts 7→ xs−t. We will call Hi(F) the
i−th persistent homology group of F.

A more general approach is obtained by considering fil-
trations over partially ordered sets (posets) as observed by
Carlsson in Bull.AMS.

In the standard case P = N and α is the category of
topological spaces. Then persistence modules are functorially
obtained via the homology functor.
P−persistence objects in A form a category AP and are

sometimes called diagram in categories and there are sev-
eral results on this topic due, as an example, by ALLIEVO
KASHDAN, CARLSSON BUBENIK. One can consider the
incidence algebra P of P and it is easy to show that the cat-
egory AP is equivalent to the category of P−modules (see
Kashdan). Here we do not have a nice decomposition theo-
rem like in the standard persistence case, but some results can
be found in (Carlsson, Nostri...). Nevertheless this point of
view allow us to introduce a way of defining persistence, that,
in a sense which will be made clear in this paper, is the more
general we are permitted to use.

Usually, and especially in application, the space X is finite
and built out of some dataset, the point cloud.

MAIN
Before going through homology and filtrations let us start
with X be a finite topological space, which we can imag-
ine to be given as some sampling taken from a given data
set. If the space X is not T0, then we can always take
the Kolmogorov quotient of X, thus making it a T0−space
which is homotopically equivalent to the starting space. Fi-
nite T0−spaces are in bijective correspondence with finite par-
tially ordered sets, briefly posets, via x ≤ y if and only if
Ux = capU closed :x∈U ⊆ Uy. To every finite poset (X,≤) one
can functorially associate a simplicial complex O(X,≤), the

order complex, in the following way: the underlying set is X
and {x0, . . . , xn} is a face if and only if x0 < x1 < · · · < xn in
(X,≤). By a result of McCord [?], there is a weak homotopy
equivalence between a finite T0−space X and O(X,≤).

Given a (simple) graph G = (V,E) there is a simplicial
complex Cl(G) associated to it: the clique (or flag) complex.
The points Cl(G) are the vertices of G and {v0, . . . , vn} is a
face if and only if (vi, vj) ∈ E, for all i, j. It is well know that
any finite simplicial complex is homeomorphic to the clique
(or flag) complex of a graph, namely to the clique complex
of the 1−skeleton of its barycentric subdivision. Furthermore
the order complex is the clique complex of its 1−skeleton.

Therefore, to study the homology of finite topological
spaces it is equivalent to study the homology of clique com-
plexes of finite graphs.

If the finite space X is T1 then it has the discrete topology
and the process just described is not very informative because
in this case the poset (X,≤) is discrete and the associated or-
der complex is has vertices the elements of X and it is zero
dimensional.

Cech complex

Def inition 1. A graph is is a pair G = (V,E), where V is a

finite set whose elements are called vertices and E ⊂
(
V
2

)
,

the family of subsets of V of cardinality two. A morphism of
graphs ϕ : G → G′ is given by map ϕ : V → V ′ such that
(ϕ(x), ϕ(y)) ∈ E′ for all (x, y) ∈ E. The category of graphs
will be denoted by G.
Def inition 2. A simplicial complex is a non empty family X of
finite subsets, called faces, of a vertex set with the two con-
straints:

- a subset of a face in X is a face in X,
- the intersection of any two faces in X is a face of both.

We assume that the vertex set is finite and totally or-
dered. A face of n + 1 vertices is called n−face and denoted
by [p0, . . . , pn]. A 0−face is a vertex, a 1−face is a segment,
a 2−face is a full triangle, a 3−face is a full tetrahedron. The
dimension of a simplicial complex is the highest dimension of
the faces in the complex. A morphism of simplicial complex is
called simplicial map and is given by a map on vertices such
that the image of a face is again a face. We denote by S the
category of (finite) simplicial complex.
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Given a graph G = (V,E) the clique complex Cl(G) is
a simplicial complex having the same vertices of G and such
that [p0, . . . , pn] ∈ Cl(G) if and only if (pi, pj) ∈ E for all
i, j. There is a n−face in Cl(G) for every (n + 1)−clique in
the graph, i.e. a complete subgraph on n + 1 vertices. It is
easy to see that the assignment G→ Cl(G) gives a covariant
functor Cl : G → S.

Fixed a field k, in the following by vector space we intend
a k−vector space. Given a simplicial complex X of dimen-
sion d, consider the vector spaces Cn on the set of n−faces
in X for 0 ≤ n ≤ d. Elements in Cn are called n−chains.
The linear maps sending a n−face to the alternate sum of it’s
(n− 1)−faces.

∂n : Cn −→ Cn−1

[p0, . . . , pn] →
n∑

i=0

(−1)i[p0, . . . , pi−1, pi+1, . . . , pn].

shares the property ∂n−1 ◦ ∂n = 0.
The subspace ker ∂n of Cn is called the vector space of

n−cycles and denoted by Zn. The subspace Im∂n+1 of Cn,
is called the vector space of n−boundaries and denoted by
Bn. Note that from ∂n−1 ◦∂n = 0 it follows that Bn ⊆ Zn for
all n.

The n−th simplicial homology group of X, with coeffi-
cients in k, is the vector space Hn := Zn/Bn. The rank of Hn

is called the n-th Betti number of X.
The first Betti numbers of X have an easy intuitive mean-

ing: the 0-th Betti number is the number of connected com-
ponents of X, the first Betti number is the number of two
dimensional (poligonal) holes, the third Betti number is the
number of three dimensional holes (convex polyhedron).

It is fundamental to note that homology is a functor, this
implies the following proposition.

Let X and Y be two simplicial complexes, a simplicial map
f : X → Y determines a linear map between the homology
groups Hi(f) : Hi(X)→ Hi(Y ) for all i.

Def inition 3. Let G ∈ G we

P-persistence.
Def inition 4. Let P be a poset and let A an arbitrary cate-
gory. We regard P as a category in they usual way. A
P − persistence object in A is a functor ϕ : P → A. As
usual we denote the category of these functors and their nat-
ural transformation by AP .
Def inition 5. Let P be a poset and let A an arbitrary cate-
gory. We regard P as a category in they usual way. A
P − persistence object in A is a functor ϕ : P → A. As
usual we denote the category of these functors and their nat-
ural transformation by AP .

The starting point in persistent homology is a filtration.
As in [8], we call a simplicial complex X filtered if we are
given a family of subspaces {Xv} parametrized by N, such
that Xv ⊆ Xw whenever v ≤ w. The family {Xv} is called a
filtration. There are many ways to construct a filtration from
a point cloud or a network, some relevant ones are explained
in section II.

The persistent homology module of a filtration is given by
the homology groups of the simplicial complexes Hn(Xv) and
the linear maps iv,w : Hn(Xv) → Hn(Xw) induced in homol-
ogy by the inclusions Xv ↪→ Xw for all v ≤ w.

Following [8], this system is called a module because the
vector space Hn = ⊕vHn(Xv) can actually be endowed with
a k[t]−module structure, defining t · m := iv,v+1(m) for
m ∈ Hn(Xv). Note that the linear maps iv,v+1 are not al-

ways injective. A persistent homology generator is a gener-
ator of Hn according to the k[t]−structure, i.e an element
g ∈ Hn(Xv) such that there is no h ∈ Hn(Xw) for w < v with
the property that tv−wh = g. By the structure theorem on
modules over PID, k[t]−modules are completely determined
by the degree of each generator g (birth of the generator βg)
and the degree in which the generator is annihilated by the
module action (death of the generator δg). The persistence
(lifetime) of a generator is measured by pg := δg − βg. The
length of a cycle, number of faces composing it, is denoted by
λg.
The barcode of a filtration is the set of intervals [βg; δg] for all
generators g ∈ Hn, this is a handy complete invariant of Hn,
[8]. By persistent topological features we intend generators of
Hn such that the interval [βg; δg] is large with respect to the
filtration length.
An alternative way to represent persistent homology mod-
ules is the persistence diagram [?], [?]. A persistence dia-
gram is a set of points in the plane counted with multiplicity,
it can be recovered from the barcode considering the points
(βg, δg) ∈ R2 with multiplicity given by the number of gener-
ators with the same persistence interval.

Filtrations. In this section we will go through some basic con-
structions that generate a filtration starting from a point cloud
or a complex network.

The most popular filtration for data analysis is the Rips-
Vietoris filtration [8]. The Rips-Vietoris complex is a simpli-
cial complex associated to a set of points in a metric space
in the following way: every point p is the center of a radius ε
ball D(p, ε) and n+ 1 points {p0, . . . , pn} determine a n−face
in the Rips-Vietoris complex if the corresponding radius ε
balls intersect two by two, i.e D(pi, ε) ∩ D(pj , ε) 6= ∅ for all
i 6= j ∈ {0 . . . n}. Clearly the Rips-Vietoris complex depends
on the parameter ε and if ε1 < ε2 the complex with ε1 ra-
dius balls is contained in the complex with ε2 radius balls.
To the growth of ε we obtain an increasing sequence of sim-
plicial complexes, a filtration, the Rips-Vietoris filtration. In
this context persistent topological features of the filtration are
considered as features of the point cloud.

For unweighted networks, the Clique filtration is used in
[19] to analyse the difference between the barcodes of random
networks, networks with exponential connectivity distribution
and scale-free networks. The k−skeleton Xk of a simplicial
complex X is the subcomplex of X containing all the faces of
dimension smaller or equal to k. Consider a complex network
and the corresponding clique complex X, the clique filtration
is obtained by filtering the clique complex according to the
dimension of the skeleton:

X0 ⊆ X1 ⊆ X2 ⊆ . . . ⊆ X.

Note that persistent features of the Clique filtration are gen-
erators of the homology groups of the clique complex. These
generators can be directly calculated from the clique complex
of the graph, thus the filtration gives no extra information.
This is not the case for the following filtration we have in-
troduced for weighted networks in which persistent features
cannot be determined from a single simplicial complex in the
family but instead reveal the intricate multiscale relation be-
tween weights and links in a weighted indirect network.

The Weight Rank Clique filtration on a weighted network
Ω combines the clique complex construction with a thresh-
olding on weights. The fist step is to rank the weights of
links from ωmax to ωmin: the discrete parameter εt scans the
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sequence. At each step t of the decreasing edge ranking we
consider the thresholded graph G(ωij , εt), i.e. the subgraph of
Ω with links of weight larger than εt. For each graph G(ωij , εt)
we build the clique complex K(G, εt). The clique complexes
are nested to the growth of t and determine the weight rank

clique filtration. Persistent one dimensional cycles represent
weighted loops with much weaker internal links.

Results
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