Tabelle SLR

Costruzione di tabelle di Parsing SLR

Metodo simple LR

- Metodo di costruzione di una tabella di parsing LR
- Abbreviazione: SLR
- Parser SLR: parser LR che usa una tabella di parsing SLR
- Grammatica SLR: grammatica per cui esiste un parser SLR

Potenza del metodo

- È il metodo di costruzione di tabelle LR più semplice
- È il metodo meno potente: ha successo per meno grammatiche rispetto agli altri due che vedremo
- È Il metodo più semplice da implementare

Item LR(0)

- Un item LR(0) per una grammatica G è una produzione di G con un punto in qualche posizione della parte destra della produzione
- Es: la produzione A →XYZ può dar luogo a quattro item LR(0):
 - 1. $A \rightarrow \bullet XYZ$
 - 2. $A \rightarrow X \cdot YZ$
 - 3. $A \rightarrow XY \cdot Z$
 - 4. $A \rightarrow XYZ \bullet$

Item LR(0)

- La produzione A→ ε dà luogo ad un solo item LR(0), cioè A→ •
- Un item può essere rappresentato efficacemente con due numeri interi: il numero della produzione e la posizione del punto
- Un item indica quanto di una produzione è stato visto ad un certo punto del parsing
- Es: A→ X YZ indica che X è stato visto e ci si aspetta di vedere YZ

Idea Centrale del metodo SLR

- Gli item sono gli stati di un NFA che riconosce i viable prefixes
- Insiemi di item sono gli stati del DFA che si ottiene da questo NFA con la costruzione dei sottoinsiemi
- Una collezione di insiemi di item LR(0) costituisce la base per costruire un parser SLR

Collezione canonica LR(0)

- G grammatica con simbolo iniziale S
- G' grammatica G aumentata con un nuovo simbolo iniziale S' e la produzione S' → S
- Questo accorgimento serve ad indicare al parser la fine del parsing: il parsing ha successo se e solo se l'input è terminato e c'è una riduzione con la produzione S' → S

Operazione di closure

- I insieme di item
- closure(I) è un insieme di item costruito da I come segue:
 - 1. Inizialmente poni *closure*(I) uguale a I
 - 2. Se $A \rightarrow \alpha \cdot B\beta$ è in *closure*(I) e $B \rightarrow \gamma$ è una produzione, allora aggiungi $B \rightarrow \cdot \gamma$ a *closure*(I), se non è già presente. Applica questa regola fino a quando nessun altro item può essere aggiunto a *closure*(I)

Operazione di closure

- Intuizione: la presenza di A→ α Bβ in closure(I) indica che, ad un certo punto del processo di parsing, ci aspettiamo di vedere nell'input una stringa derivabile da Bβ
- Se B → β è una produzione, allora è possibile che ci sia una stringa derivabile da γ, a questo punto dell'input
- Per questa ragione aggiungiamo anche l'item
 B → γ a closure(I)

Esempio closure

- \blacksquare E' \rightarrow E
- \blacksquare E \rightarrow E + T | T
- \blacksquare T \rightarrow T * F | F
- \blacksquare F \rightarrow (E) | id
- $\blacksquare I = \{E' \rightarrow \bullet E\}$
- $closure(I) = \{E' \rightarrow \bullet E\} \cup \{E \rightarrow \bullet E + T, E \rightarrow \bullet T\} \cup \{T \rightarrow \bullet T * F, T \rightarrow \bullet F\} \cup \{F \rightarrow \bullet (E), F \rightarrow \bullet id \}$

Kernel item

- Si noti che se un item B → γ viene inserito in closure(I), allora anche tutte le produzioni di B vengono inserite con il punto nella posizione più a sinistra
- In effetti basterebbe indicare solo B convenendo che rappresenta tutte le sue produzioni con il punto nella posizione più a sinistra

Kernel item

- Kernel item: S' → S oppure un item con il punto non nella posizione più a sinistra
- Non-kernel item: tutti gli altri (quelli che hanno il punto nella posizione più a sinistra)
- Ogni insieme di item può essere generato con una closure a partire da un certo insieme di kernel item
- Questa proprietà è utile per minimizzare lo spazio necessario per memorizzare gli insiemi di item

Operazione goto

- I insieme di item
- X simbolo della grammatica
- $goto(I,X) = closure(\{A \rightarrow \alpha X \cdot \beta \mid A \rightarrow \alpha \cdot X \beta \in I\})$
- Se I è un insieme di item validi per un qualche viable prefix γ, allora goto(I,X) è il set di item validi per il viable prefix γX

Esempio goto

- \blacksquare I = {E' \rightarrow •E, E \rightarrow E + T}
- $goto(I,+) = closure(\{E \rightarrow E + \bullet T\}) = \{$

$$E \rightarrow E + \bullet T$$

$$T \rightarrow \bullet T * F$$
,

$$\mathsf{T} \to \mathsf{\bullet} \mathsf{F}$$

$$F \rightarrow \bullet (E),$$

$$F \rightarrow \bullet id$$

Collezione canonica LR(0)

```
procedure items(G');
begin
  C := \{ closure(\{S' \rightarrow \bullet S\}) \}
  repeat
      for each insieme di item I in C e simbolo
            X tale che goto(I,X) non è vuoto do
                   aggiungi goto(I,X) a C
      until non possono essere aggiunti nuovi
            insiemi di item a C
end;
```

- Costruiamo la collezione canonica LR(0) per la solita grammatica
- **■** E' → E
- \blacksquare E \rightarrow E + T | T
- \blacksquare T \rightarrow T * F | F
- $\blacksquare \mathsf{F} \to (\mathsf{E}) \mid \mathsf{id}$

■ II primo insieme di item che inseriamo in C è $I_0 = closure(\{E' \rightarrow \bullet E\}) = \{E' \rightarrow \bullet E,$

$$\begin{array}{l} = closure(\{\mathsf{E'} \rightarrow \bullet \mathsf{E}\}) = \{\mathsf{E'} \rightarrow \bullet \mathsf{E}, \\ & \mathsf{E} \rightarrow \bullet \; \mathsf{E} + \mathsf{T}, \\ & \mathsf{E} \rightarrow \bullet \; \mathsf{T}, \\ & \mathsf{T} \rightarrow \bullet \; \mathsf{T} * \mathsf{F}, \\ & \mathsf{T} \rightarrow \bullet \; \mathsf{F}, \\ & \mathsf{F} \rightarrow \bullet \; \mathsf{id} \; \} \end{array}$$

Iniziamo il ciclo. Vediamo subito che goto(I₀,E) non è vuoto perché in I₀ ci sono i due item E' → •E e E → • E + T

- $goto(I_0,E)=$ $closure(\{E' \rightarrow E \bullet, E \rightarrow E \bullet + T\}) =$ $\{E' \rightarrow E \bullet, E \rightarrow E \bullet + T\}$
- Chiamiamo I₁ questo nuovo insieme ed aggiungiamolo a C

■ Continuiamo con $goto(I_0,T)=$ $closure(\{E \rightarrow T \bullet, T \rightarrow T \bullet * F\}) = \{E \rightarrow T \bullet, T \rightarrow T \bullet * F\}$

- Anche questo insieme non è presente in
 C e quindi lo inseriamo con il nome l₂
- $goto(I_0,F) = closure(\{T \rightarrow F \cdot \}) = \{T \rightarrow F \cdot \} = I_3$

Esempio (continuando)

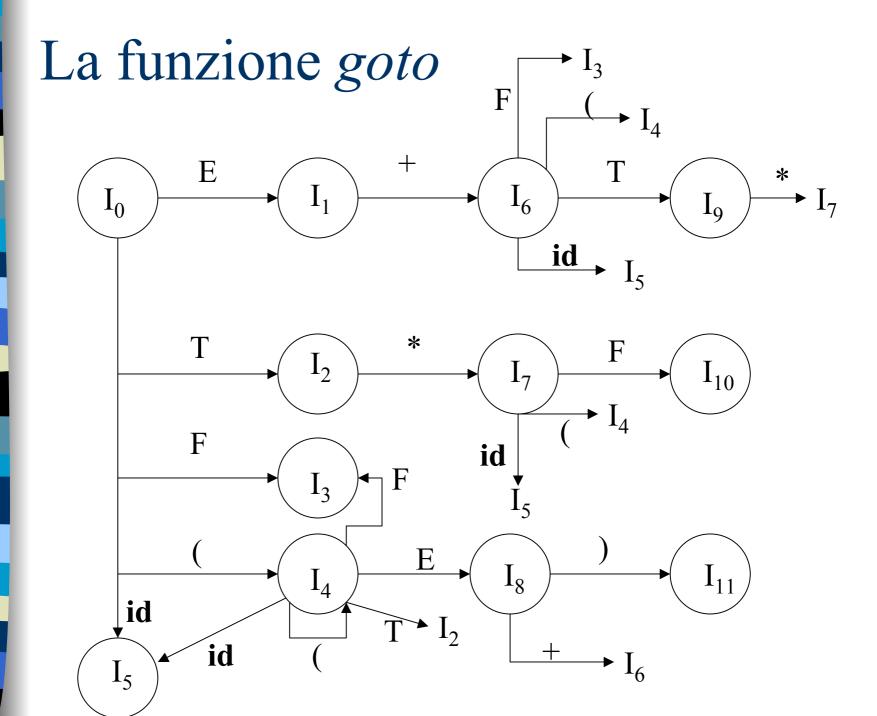
■ $goto(I_0, `(`)=closure(\{F\rightarrow (\bullet E)\})=\{F\rightarrow (\bullet E), E\rightarrow \bullet E+T, E\rightarrow \bullet T, T\rightarrow \bullet T*F, T\rightarrow \bullet F, F\rightarrow \bullet (E), F\rightarrow \bullet id \})=I_{\Lambda}$

Questa volta l'operazione di chiusura ha rigenerato tutti gli item di l₀ dall'item F→ (• E)

Esempio (continuando)

```
I_5 = \{F \rightarrow id \cdot \}
I_6 = \{E \rightarrow E + \bullet T,
               T \rightarrow \bullet T * F
                T \rightarrow \bullet F.
                \mathsf{F} \to \bullet (\mathsf{E}),
                \mathsf{F} \rightarrow \bullet \mathsf{id}
\mathsf{F} \to \bullet (\mathsf{E}),
                \mathsf{F} \rightarrow \bullet \mathsf{id}
I_8 = \{E \rightarrow E \cdot + T,
                \mathsf{F} \to (\mathsf{E} \bullet)
```

- $I_9 = \{E \rightarrow E + T \cdot , \\ T \rightarrow T \cdot F\}$
- $I_{10} = \{T \rightarrow T * F \bullet \}$
- $I_{11} = \{F \rightarrow (E) \cdot \}$



La funzione goto

- Si noti che il precedente è un DFA: non è un caso!
- Se ogni stato di questo automa è uno stato finale e l₀ è lo stato iniziale, allora l'automa riconosce tutti e soli i viable prefixes della grammatica aumentata
- L'algoritmo aveva intenzione di costruire proprio un automa di questo genere

■ Un item $A \rightarrow \beta_1 \bullet \beta_2$ si dice **valido** per un viable prefix $\alpha \beta_1$ se e solo se esiste una derivazione:

$$S \Rightarrow_{rm}^* \alpha Aw \Rightarrow_{rm} \alpha \beta_1 \beta_2 w$$

- In generale un item sarà valido per più viable prefixes
- L'informazione sul fatto che un certo $A \rightarrow \beta_1 \bullet \beta_2$ è **valido** per $\alpha \beta_1$ ci aiuta molto nella decisione fra lo shift e il reduce

- Se durante il parsing troviamo sullo stack αβ₁ allora:
 - Se β_2 è diversa da ϵ allora la è possibile che la handle non è ancora stata messa interamente sullo stack. *Dovremmo* procedere quindi a fare uno shift
 - Se β_2 è ϵ allora *è possibile* che A $\rightarrow \beta_1$ sia la handle e quindi la mossa *dovrebbe* essere una riduzione con questa produzione

- Tuttavia può succedere che due diversi item validi per lo stesso viable prefix indichino mosse diverse
- Alcuni di questi conflitti possono essere risolti guardando il simbolo di lookahead oppure applicando metodi più potenti
- Come sappiamo, in generale, non tutti i conflitti possono essere risolti se il metodo LR scelto viene usato su una grammatica arbitraria

- Come trovare gli item validi per un certo viable prefix?
- Teorema: L'insieme degli item validi per un viable prefix γ è esattamente l'insieme di item raggiunto dallo stato iniziale lungo un cammino etichettato γ del DFA rappresentato dalla funzione goto fra gli stati della collezione canonica LR(0)

Item validi: esempio

- È facile convincersi che E + T * è un viable prefix per la nostra grammatica aumentata
- "Eseguendo" questa stringa nell'automa che rappresenta la funzione goto si arriva nello stato I₇
- $I_7 = \{T \rightarrow T * \bullet F, \\ F \rightarrow \bullet (E), \\ F \rightarrow \bullet id \}$
- Questi tre item sono esattamente gli item validi per E + T *

Item validi: esempio

- Per convincerci che sono validi, consideriamo le seguenti derivazioni rightmost:
- 1. $E' \Rightarrow E \Rightarrow E+T \Rightarrow E+T*F (T \rightarrow T* \bullet F \text{ valido})$
- 2. E' \Rightarrow E \Rightarrow E+T \Rightarrow E+T*F \Rightarrow E+T*(E) (F \rightarrow (E) valido)
- 3. E' \Rightarrow E \Rightarrow E+T \Rightarrow E+T*F \Rightarrow E+T*id (F \rightarrow id valido)
- Non ci sono altri item validi per E + T *

Tabelle di parsing SLR

- Ingredienti:
 - Grammatica aumentata G'
 - DFA che riconosce i viable prefixes di G' (funzione goto)
 - FOLLOW(A) per ogni non terminale A di G'
- Output: tabella di parsing LR (se è multidefinita in almeno un'entrata la grammatica non è analizzabile SLR(1))

Algoritmo

- Costruisci C = {I₀,I₁,...,I_n}, la collezione canonica LR(0)
- 2. Lo stato i del parser LR è costruito a partire da I_i. Le azioni di parsing per lo stato i sono determinate come segue:
 - a) Se A $\rightarrow \alpha \bullet a\beta \in I_i$ e $goto(I_i,a) = I_j$, allora poni action[i,a]:= "shift j" (a è terminale!)
 - b) Se A $\rightarrow \alpha \bullet \in I_i$, allora poni *action*[*i*,a] := "reduce A $\rightarrow \alpha$ " per tutte le a \in FOLLOW(A) (A \neq S')
 - c) Se S' \rightarrow S $\bullet \in I_i$, allora poni action[i,\$] := "accept"

Algoritmo

- La tabella action+goto del parser LR così ottenuto è data dalla tabella action così costruita e dalla funzione goto calcolata durante la costruzione della collezione canonica LR(0)
- Lo stato iniziale del parser LR così ottenuto è quello costruito dall'insieme di item che contiene S' → • S
- Tutte le entrate non definite sono entrate "error"

- Calcoliamo la tabella SLR per la nostra solita grammatica aumentata
- Abbiamo già calcolato la collezione canonica LR(0)
- Esaminiamo tutti gli stati e seguiamo le istruzioni
- Cominciamo con lo stato l₀ che è quello iniziale

```
■ I_0 = \{E' \rightarrow \bullet E, \\ E \rightarrow \bullet E + T, \\ E \rightarrow \bullet T, \\ T \rightarrow \bullet T * F, \\ T \rightarrow \bullet F, \\ F \rightarrow \bullet (E), \\ F \rightarrow \bullet id \}
```

- L'item F \rightarrow (E) indica di porre *action*[0,(]:= "shift 4" (poiché goto(I_0 ,()= I_4)
- L'item $F \rightarrow \bullet id$ indica di porre *action*[0,id]:= "shift 5" (poiché goto(I_0 ,id)= I_5)
- Gli altri item di I₀ non suggeriscono azioni

- $I_1 = \{E' \to E^{\bullet}, \\ E \to E^{\bullet} + T\}$
- L'item E' → E• suggerisce di porre action[1,\$]= "accept"
- L'item E → E + T suggerisce di porre action[1,+]= "shift 6" poiché goto(I₁,+) = I₆

- $I_2 = \{E \rightarrow T^{\bullet}, \\ T \rightarrow T^{\bullet} * F\}$
- L'item E→ T• suggerisce di effettuare una reduce. Si ha che Follow(E)={\$,+,)} e quindi action[2,\$] := action[2,+] := action[2,)] := "reduce E→ T"
- L'item T → T• * F suggerisce action[2,*]="shift 7"

- Continuando in questo modo otteniamo la tabella di parsing LR che avevamo già visto per questa grammatica quando illustravamo il funzionamento di un parser LR
- Siccome non ci sono entrate multidefinite concludiamo che la grammatica è SLR(1)

La tabella SLR(1)

			action					goto	
Stato	id	+	*	()	\$	Е	Т	F
0	s5			s4			1	2	3
1		s6				acc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

Grammatiche non SLR(1)

- Sappiamo già che nessuna grammatica ambigua può essere LR, quindi tantomeno SLR
- Ci sono grammatiche non ambigue che però non sono SLR. Ad esempio:

$$S \rightarrow L = R \mid R$$

 $L \rightarrow R \mid id$
 $R \rightarrow L$

- Questa grammatica non è ambigua
- Genera gli assegnamenti fra identificatori e puntatori oppure espressioni di locazioni o valori
- Es: id = * id, * id = id, **id
- L sta per locazione, R è un valore che può essere memorizzato in una locazione, * sta per "il contenuto di"

Collezione canonica LR(0)

$$\begin{split} I_0 &= \{S' \rightarrow \bullet S, & I_2 &= \{S \rightarrow L \bullet = R, \\ S \rightarrow \bullet L = R, & R \rightarrow L \bullet \} \\ S \rightarrow \bullet R, & I_3 &= \{S \rightarrow \bullet R\} \\ L \rightarrow \bullet^* R, & I_4 &= \{L \rightarrow^* \bullet R, \\ L \rightarrow \bullet \text{id}, & R \rightarrow \bullet L, \\ R \rightarrow \bullet L \} & L \rightarrow \bullet^* R, \\ I_1 &= \{S' \rightarrow S \bullet \} & L \rightarrow \bullet \text{id} \} \\ I_5 &= \{L \rightarrow \text{id} \bullet \} \end{split}$$

$$I_{6} = \{S \rightarrow L = \bullet R, \\ R \rightarrow \bullet L, \\ L \rightarrow \bullet *R, \\ L \rightarrow \bullet id\}$$

$$I_{7} = \{L \rightarrow *R \bullet\}$$

$$I_{8} = \{R \rightarrow L \bullet\}$$

$$I_{9} = \{S \rightarrow L = R \bullet\}$$

- Consideriamo lo stato 2.
- L'item S→ L•=R fa porre action[2,=] := "shift 6"
- L'item R → L• suggerisce una riduzione. Ma il simbolo = appartiene a Follow(R) e quindi si ha anche che action[2,=] := "reduce R → L"
- Un conflitto shift/reduce sul simbolo di input = nello stato 2.
- Il metodo SLR non è abbastanza potente per decidere quale azione intraprendere avendo visto una stringa riducibile ad L e il segno =